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Cancer is a complex disease inwhich a variety of factors interact over awide range of spatial
and temporal scales with huge datasets relating to the different scales available. However,
these data do not always reveal the mechanisms underpinning the observed phenomena. In
this paper, we explain why mathematics is a powerful tool for interpreting such data by
presenting case studies that illustrate the types of insight that realistic theoreticalmodels of
solid tumour growth may yield. These range from discriminating between competing
hypotheses for the formation of collagenous capsules associated with benign tumours to
predicting the most likely stimulus for protease production in early breast cancer. We will
also illustrate the benefits that may result when experimentalists and theoreticians
collaborate by considering a novel anti-cancer therapy.
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1. Introduction

Paradoxically, improvements in healthcare that have enhanced the life
expectancy of humans in the Western world have, indirectly, increased the
prevalence of certain cancers such as prostate and breast. It remains unclear
whether this phenomenon should be attributed to the ageing process or the
cumulative effect of prolonged exposure to harmful environmental stimuli, such
as ultraviolet light, radiation and carcinogens (Franks & Teich 1988). Equally,
there is compelling evidence that certain genetic abnormalities can predispose
individuals to specific cancers (Ilyas et al. 1999).

The variety of factors involved in the development of solid tumours stems, to a
large extent, from the fact that ‘cancer’ is a generic term, often used to
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characterize a series of disorders that share common features. At this generic
level of description, cancer may be viewed as a cellular disease, in which controls
that usually regulate growth and maintain homeostasis are disrupted. Cancer is
typically initiated by genetic mutations that lead to enhanced proliferation rate
and the formation of an avascular tumour. Since it receives nutrients by
diffusion, the size of an avascular tumour is limited to several millimetres in
diameter. Further growth relies on the tumour acquiring the ability to stimulate
the ingrowth of a new, circulating blood supply from the host vasculature via
angiogenesis (Folkman 1974). Once vascularized, the tumour has access to a vast
nutrient source and rapid growth ensues. Further, tumour fragments that break
away from the primary tumour, on entering the vasculature, may be transported
to other organs in which they may establish secondary tumours or metastases
that further compromise the host. Invasion is another key feature of solid
tumours, whereby contact with the host tissue stimulates the production of
enzymes that digest it, liberating space into which the tumour cells migrate.
Thus, cancer is a complex, multiscale process. The spatial scales of interest range
from the subcellular level to the cellular and macroscopic (or tissue) levels, while
the timescales may vary from seconds (or less) for signal transduction pathways
to months for tumour doubling times.

In this paper, we review a number of mathematical models that have been
developed to describe some of the above aspects of tumour growth. In so doing, we
aim to show how mathematical modelling, computation and analysis can generate
useful insight into the mechanisms that underpin this devastating disease. With
limited space we are unable to explain the variety of mathematical approaches
that are being used: we focus on deterministic models, but recommend a variety of
references for details of alternative approaches (Preziosi 2003; Mantzaris et al.
2004; Araujo & McElwain 2004; Komarova 2005).

The remainder of the paper is organized as follows. In §2, we focus on simple
models of angiogenesis and tumour encapsulation, these providing examples of
models that were developed after the associated experiments had been
performed. In §3, we consider three-dimensional models of early avascular
tumour growth and models of ductal carcinoma in situ (DCIS), focusing on the
experimental predictions and questions that such work has stimulated. Section 4
continues with applications where the theoretical and experimental work were
combined and illustrates the sort of additional insight that such collaboration
can generate. The paper concludes in §5 with a brief discussion of the current
state-of-the-art in modelling solid tumour growth and of the challenges that lie
ahead.
2. Experiments driving theory

A facet shared by the models presented in this section is that they were
developed after the relevant experiments had been performed and/or hypotheses
developed. Even so, they illustrate an important feature that realistic
mathematical models should possess: the ability to reproduce data and, in so
doing, to provide possible explanations of observed phenomena. We start by
reviewing models of tumour angiogenesis (for more details, see Mantzaris et al.
2004) and then discuss a model of tumour encapsulation.
Phil. Trans. R. Soc. A (2006)
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(a ) Tumour-induced angiogenesis

The earliest continuum models of tumour angiogenesis focused on three key
physical variables: a generic tumour-derived chemical, termed a tumour
angiogenesis factor (TAF), capillary tips and capillary sprouts. The one-
dimensional model developed by Balding & McElwain (1985) consisted of three
partial differential equations that were derived by applying the principle of mass
balance to each species. The capillary tips were assumed to move by chemotaxis
towards the TAF source, the tumour, and to emanate from existing vessels or
tips at rates that increased with the TAF concentration. Capillary tips were lost
as a result of fusion with other tips and vessels (anastomosis). The production of
capillary sprouts was assumed to be driven by tip migration, the sprout density
increasing at a rate that matched the flux of capillary tips (the ‘snail-trail’). The
TAF was modelled as a diffusible chemical that was produced by the tumour,
underwent natural decay and was consumed by the migrating capillary tips.

Stimulated by more detailed knowledge of the biochemistry involved, Levine
et al. (2001) have developed highly complex models that represent an important
step towards understanding angiogenesis using biochemical rather than
phenomenological arguments. Their models account for interactions between
endothelial cells, angiogenic factors and other cell types that are also involved in
angiogenesis. The various models exhibit many features of angiogenesis that are
observed in vivo (Muthukkaruppan et al. 1982). For example, simulations of
successful angiogenesis show an accelerating front of capillary tips and sprouts
migrating towards the tumour with the maximum capillary density preceding the
maximum capillary sprout density (Byrne & Chaplain 1995b).

Extending Balding & McElwain’s model to two and three spatial dimensions
(Orme & Chaplain 1997) highlights the shortcomings of using a continuum
framework to study angiogenesis. First, angiogenesis is a multi-dimensional
process, with tips sprouting in directions other than that of the propagating
vascular front. Hence, it is not obvious how the ‘snail-trail’ approach should be
extended to higher spatial dimensions. In addition, the models do not distinguish
between different vascular morphologies (a region perfused by one large vessel is
equivalent to another region perfused by many small vessels) or between
anastomosis (which increases nutrient supply) and capillary tip death (which
does not). Finally, vascular remodelling and the impact of blood flow (and
haematocrit) on the evolving vasculature are neglected. Only by developing the
simple, one-dimensional models of angiogenesis do such problems come to light
and stimulate the design of new models that address these deficiencies.
Fortunately, several such models are now being developed. For example, Chaplain
and co-workers have developed a continuum-discrete model, in which movement
of the vessel tips is modelled using a biased random walk (Anderson & Chaplain
1998), and blood flow through the vessels is included (McDougall et al. 2002).

In spite of their weaknesses, the continuum models provide useful insight into
the ways in which different physical mechanisms influence angiogenesis. In
particular, the success of angiogenesis is tightly controlled by the balance
between endothelial cell proliferation and migration: as the strength of the
chemotactic response increases, the tips migrate more rapidly towards the
tumour, reducing the time available for tip proliferation, and hence the vascular
density when they reach the tumour.
Phil. Trans. R. Soc. A (2006)
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(b ) Tumour encapsulation

Many benign tumours are surrounded by a rim of collagenous connective
tissue, whose presence is an integral determinant of prognosis, and yet the
mechanisms by which the capsule forms remain to be elucidated fully. Two
complementary theories have been proposed to explain this phenomenon (Barr
1989). The ‘Expansive Growth Hypothesis’ (EGH) postulates that capsule
formation is a passive process: as the tumour expands, it compresses the collagen
in the surrounding extracellular matrix (ECM). By contrast, the ‘Foreign Body
Hypothesis’ (FBH) suggests that capsule formation is an active process: the host
recognizes the cancer as a foreign body and mounts an immune response by over-
expressing collagen. While it is difficult to discriminate between the hypotheses
using experimental techniques, mathematical modelling provides a natural
framework by which to compare the two alternatives.

Jackson & Byrne (2002) developed such a model by viewing the tumour–host
environment as a mixture of three phases: the cellular phase comprises tumour
cells, the ECM phase and the aqueous phase consist primarily of water and
dissolved extracellular tissue components. Mass and momentum balance
equations are derived for each phase and closed by specifying constitutive
relations for various features, including the stresses that develop within the
phases and the net rates at which they are produced. The FBH is incorporated by
assuming that the ECM production rate is an increasing function of the tumour
cell density, with constant of proportionality aR0. The EGH is included by
assuming that the pressure in the ECM includes a contribution that increases as
the tumour cell density increases, with constant of proportionality qR0. Since
species tend to move down pressure gradients, this pressure will drive ECM
motion away from regions of high tumour cell density and, thereby, concentrate
ECM near the tumour boundary. Numerical simulations of the full system with
both hypotheses active confirm that the model can generate a capsule ahead of
the invading tumour (see figure 1). The ECM capsule is preserved in simulations
having aZ0!q and disappears when qZ0!a (results not shown). These
results suggest that the EGH provides a more plausible explanation of tumour
encapsulation than the FBH.
3. Theory driving experiments

Here, we review theoretical models that were developed without relevant data,
but are useful nonetheless because they raise questions and yield predictions that
stimulate biomedical researchers to design new experiments that will validate
(or refute) the theoretical predictions.

(a ) The growth of multicellular spheroids

The majority of models of solid tumour growth are based on mass balance
principles for cells and reaction–diffusion equations for growth factors (see Araujo
& McElwain 2004 for a review). The main challenges involved in developing such
models are describing how the tumour cells move, divide and die and how the
various chemicals diffuse, are produced and absorbed by the tumour cells. In the
earliest models (Greenspan 1972; McElwain & Morris 1978; Adam 1987),
Phil. Trans. R. Soc. A (2006)
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Figure 1. Numerical results showing how the model of tumour encapsulation evolves when both the
expansive growth and the foreign body hypotheses are included. The tumour and ECM profiles are
plotted at equally spaced time intervals (tZ0; 10; 20;.; 60, with t increasing from left to right in all
panels) and for two choices of the parameter values: (a) and (b) show the tumour and ECM profiles
for the first simulation, while (c) and (d) show the corresponding profiles for the second simulation.
In both cases, the tumour invades the ECM (a and c) and the ECM responds by developing a dense
band ahead of the invading tumour front (for details, see Jackson & Byrne 2002). (Reproduced with
permission.)
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attention was focused on the one-dimensional growth of a single population of
tumour cells of constant density. Mathematical models of this type usually
comprise reaction–diffusion equations for the distribution within the tumour of
chemicals of interest (e.g. oxygen, glucose or cytotoxic drugs) and an integro-
differential equation characterizing the tumour’s volumetric growth rate
(Greenspan 1972; McElwain & Morris 1978; Adam 1987). Such models have
enjoyed considerable success, reproducing the multilayered patterns observed in
multicellular spheroids cultured in vitro (Folkman & Hochberg 1973; Sutherland
1988), i.e. an outer rim of nutrient-rich, proliferating cells, a central core of
nutrient-starved, necrotic debris and an intermediate region of nutrient-poor,
quiescent cells. The models also yield experimentally testable predictions. For
example, Byrne & Chaplain (1998) showed that following the onset of central
Phil. Trans. R. Soc. A (2006)
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necrosis, the tumour’s overall size remains approximately fixed while the size of
the necrotic region increases rapidly, a prediction that was confirmed in
independent experiments (Groebe & Mueller-Klieser 1996).

Unfortunately, not all tumours undergo one-dimensional growth and they may
be heterogeneous, containing, for example, ECM, immune cells and blood vessels.
These observations stimulated demand for three-dimensional models that
account for cellular heterogeneity.

Since the early models (Greenspan 1972; McElwain & Morris 1978) do not
generalize readily to higher spatial dimensions, new models were needed
(Greenspan 1976; Byrne & Chaplain 1996). These models introduced the inter-
related concepts of cell movement and pressure: pressure gradients, generated by
differences in cell proliferation and death, cause cells to move from regions of high
cell proliferation and pressure (near the tumour periphery) to regions of net cell
death and lower pressure (at the tumour centre). Complete specification of the
models necessitated the introduction of constitutive laws to characterize the
mechanical properties of the tumour. In the absence of relevant data, Darcy’s law
was used in both models to relate the cell velocity to the pressure. A key
difference between the two models concerns the mechanism that maintains the
tumour as a compact mass. Greenspan (1976) invoked surface tension, whereas
Byrne & Chaplain (1998) invoked cell–cell adhesion, assuming that cells on the
boundary require additional nutrient to maintain the tumour’s compactness and
that this would create a jump in the nutrient concentration there. In spite of this
difference, both models yielded similar qualitative predictions: if surface tension
or cell–cell adhesion is strong enough, then stable, one-dimensional growth
occurs. For smaller values of these parameters, one-dimensional growth will not
persist and irregular structures, resembling infiltrative invasion, emerge. These
results suggest that genetic mutations that weaken the bonds of cell–cell
adhesion or reduce surface tension could explain why certain tumours possess
highly irregular, fractal-like outer boundaries. Experiments are now needed to
establish whether either of the postulated mechanisms is dominant in tumour
spheroids.

There is increasing evidence that mechanical effects influence tumour growth.
For example, when they embedded tumour spheroids in gels of different
stiffnesses, Helmlinger et al. (1997) found that the size to which the spheroids
grew decreased as the stiffness of the gel increased. Such results have prompted
the development of sophisticated multiphase models (Chen et al. 2001; Jackson &
Byrne 2002; Byrne et al. 2003) and led to predictions including the possible
correlation of cell size with stress levels inside the tumour (Roose et al. 2003).
When developing these models, consideration of cell-to-cell mechanical
interactions is required and constitutive laws such as Darcy’s law or Stokes’
flow must be employed. Once again, validation of these models requires
experimental work to characterize the mechanical behaviour of the different
species and how they interact.
(b ) Ductal carcinoma in situ

Ductal carcinoma in situ represents the initial growth stage of breast cancer,
during which the tumour is non-invasive, being confined by the duct. The duct is
composed of a central lumen, surrounded by a thin layer of epithelial cells, with
Phil. Trans. R. Soc. A (2006)
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an outer basement membrane (the duct wall) which is made of a network of
proteins. DCIS occurs when epithelial cells that have undergone a malignant
transformation proliferate. Sustained tumour cell proliferation in the duct
increases the outward pressure on the basement membrane. If accompanied by
the local production of proteases, this may cause the membrane to yield and
enable the tumour cells to invade the tissue (Brummer et al. 1999).

While the literature is now replete with models addressing all aspects of solid
tumour growth, little attention has been devoted to DCIS. Xu (2004) studied an
existing tumour growth model (Byrne & Chaplain 1995a) in a radially
symmetric, cylindrical geometry, and noted that the spatial patterns (spots,
stripes and uniform distributions) exhibited by stationary model solutions were
consistent with morphologies commonly observed in DCIS (e.g. cribriform,
comedo and papillary). In the paper by Xu (2004), nutrient diffusion limits
tumour growth, the duct wall is rigid and tumour properties such as the local
cellular density and pressure are neglected. Franks and co-workers developed
new models that include these features (Franks et al. 2003, 2004, 2005). The
resulting models involve coupling existing models of avascular tumour growth in
a cylindrically symmetric tube with mechanical models for the finite deformation
of the compliant membrane that confines the tumour, the coupling being
mediated by interactions between the expansive forces created by tumour cell
proliferation and the stresses that develop in the compliant membrane (Epstein &
Johnston 2001).

The models provide insight into DCIS progression and also generate several
hypotheses that could be tested experimentally. For example, the pressure on the
duct wall is likely to be greatest at the centre of the tumour and, hence, this is
where the duct wall is likely to be breached (Franks et al. 2003). The model is
also used to test two hypotheses for the localization, near the duct wall, of
proteases that compromise its integrity. Model simulations and asymptotic
analysis suggest that the elevated pressure that accompanies tumour growth is
more likely to stimulate protease production and localization near the duct wall
than hypoxia (Franks et al. 2005).

While several interesting predictions arise from the theoretical work,
complementary experiments are now needed to determine the mechanical
properties of the duct wall and to validate the predictions. Thus, the models of
DCIS illustrate how qualitative insight into a particular system can be
generated, even in the absence of relevant data, and how theoretical studies
may prompt future experimental work.
4. Experiments and theory: synergy

In §§2 and 3, the models and experiments were effectively independent, with the
experiments preceding the theory (§2) or the theory stimulating new experiments
(§3). It is natural to ask whether additional insight can be gained when
experiments and theory are combined. Consequently, we now focus on studies
which illustrate the benefits that may accrue when experimentalists and
theoreticians collaborate. We start by considering anti-angiogenic therapies
and then discuss a new therapy involving genetically engineering a patient’s
macrophages to achieve localized cell killing in certain tumour regions.
Phil. Trans. R. Soc. A (2006)
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(a ) Tumour response to anti-angiogenic treatments

In the paper by Hahnfeldt et al. (1999), data from tumour-bearing mice
treated with a range of angiogenic inhibitors are presented with a theoretical
model of tumour growth in response to (tumour-derived) angiogenic stimulators
and inhibitors (the drugs). By combining their theoretical and experimental
work, Hahnfeldt and co-workers were able to use their model to quantify the
effectiveness of different antiangiogenic agents. They were also able to predict
conditions under which a tumour will attain a fixed size that is independent of its
size at the start of treatment, this being the case when the anti- and pro-
angiogenic factors are in balance. A further advantage of the model developed
there is that it could be adapted and applied to a clinical setting.

The above model was extremely simple, involving ordinary differential
equations for the tumour mass and the perfusing vasculature (the drug
concentration was prescribed and targeted the vasculature directly). Recently,
Arakelyan et al. (2005) have developed a complex, multiscale model of vascular
tumour growth that accounts for vessel maturation and the regression of
immature and mature vessels, phenomena that depend on growth factors, such as
VEGF and the angiopoietins and pericytes. Model simulations suggest that rapid
tumour growth will occur when the vessel maturation rate is high, due to the
rapid increase in vessel density that this causes. By contrast, the model also
predicts that lower vessel maturation rates in tumours with lower background
vessel densities will create slower growing tumours that possess larger
proportions of immature vessels and may exhibit oscillatory growth dynamics
(when the immature vessels regress, perfusion is limited and a new cycle of
angiogenesis stimulated). Experimental results confirm the model predictions
and, used in combination with the mathematical model, strengthen the
hypothesis that variations in tumour growth rates may be strongly influenced
by the strength of the angiogenic response elicited in the tumour environment.

(b ) Novel anti-cancer therapies

Increased understanding of how different solid tumours grow means that it is
now possible to design patient-specific treatment protocols. Even so, certain
tumour sites, in particular hypoxic regions, remain notoriously difficult to target
with existing therapies. Hypoxic regions are usually furthest from the blood
vessels that perfuse the tissue, hampering drug delivery. Furthermore, tumour
cells respond to hypoxia by slowing their rate of proliferation, so that anti-
proliferative therapies will have minimal effect there. Hypoxic tumour cells are
also potent sources of angiogenic factors such as VEGF.

A possible solution to this problem is linked to the observation that
macrophages localize in hypoxic regions of many tumours, particularly breast.
A new therapy using genetically engineered macrophages exploits their tendency,
when reinjected into the patient, to migrate preferentially to low oxygen regions
where they are activated to release anti-tumour drugs. Particularly, the low
oxygen levels that characterize solid tumours are peculiar to tumours and not
usually observed in other organs. Hence, the therapy promises increased tumour
specificity, with reduced side-effects.

Preliminary results are promising, showing up to 30% reduction in the size of
avascular tumours treated with appropriately engineered macrophages (Griffiths
Phil. Trans. R. Soc. A (2006)
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et al. 2000). Many questions remain to be answered before this approach can be
used routinely. Of particular interest is establishing where cell kill occurs when
engineered macrophages are used. In order to address this issue, models of
macrophage infiltration into tumour spheroids growing either in vitro (in free
suspension) or in vivo (in healthy tissue) have been developed (Owen et al. 2004;
Webb et al. submitted). In these models, it is important to describe precisely how
the macrophages exert their influence. In one approach currently under
investigation, the macrophages produce an enzyme under hypoxia. The enzyme
converts to active form a pro-drug, which is injected separately. When these
features are incorporated into models of spheroid growth in vitro, cell kill is
localized towards the tumour periphery, where the proliferation rate is highest
(see figure 2). Since a similar response would result on application of a
conventional drug that targets proliferating cells, it is natural to question the
value of such an elaborate treatment. Fortunately, results from in vivo
simulations indicate that the engineered macrophages may be beneficial when
used to treat patients, as they predict reduced toxicity (see figures 3 and 4).

The benefit of combining the experimental and theoretical endeavours should
now be clear: on the basis of the in vitro results alone, the macrophage therapy
might be dismissed since it appears to act in the same way as conventional
therapies. However, the models show that in vivo the therapy has significant
benefits, in terms of enhanced tumour specificity and weaker side-effects.
5. Conclusions

The variety of phenomena involved in cancer, the range of spatial and temporal
scales over which they act and the complex way in which they are inter-related
Phil. Trans. R. Soc. A (2006)
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mean that it is practically impossible to deduce how the different mechanisms
interact by intuition alone. Through the development of well-founded theoretical
models of solid tumour growth, such as those reviewed in this article, we believe
that mathematics, in conjunction with related experimental work, can be a
valuable tool with which to address such questions.

There is now a large literature devoted to modelling solid tumour growth.
Even so, many issues remain to be resolved. For example, existing models tend to
focus on generic tumours and relatively few are specialized to specific tumours
such as gliomas (Swanson et al. 2003) or DCIS (Franks et al. 2005). Further,
existing models typically focus on a single spatial scale. As a result, they are
unable to address the fundamental problem of how phenomena at different scales
are coupled or to combine, in a systematic manner, data from the various scales
(Alarcon et al. 2004a; Arakelyan et al. 2005). Alarcon et al. (2004a) formulated a
hybrid cellular automaton that contains interlinked elements that describe
processes at each spatial scale: progress through the cell cycle (Alarcon et al.
2004b) and the production of angiogenesis factors are accounted for at the
subcellular level; cell–cell interactions are treated at the cellular level; and, at the
tissue scale, attention focuses on the vascular network, whose structure adapts in
response to blood flow and angiogenic factors produced at the subcellular level.
Phil. Trans. R. Soc. A (2006)
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Further coupling between the different spatial scales arises from the transport of
blood-borne oxygen into the tissue and its uptake at the cellular level. The model
is undoubtedly complex and yields many predictions that warrant experimental
validation. For example, the simulations presented in figure 5 indicate that an
accurate description of blood flow and, hence, oxygen delivery to the tumour is
important if realistic models of this form are to be developed: if oxygen is
distributed uniformly through the vasculature, the tumour grows as a compact
mass, expanding radially outwards. By contrast, when oxygen is distributed
heterogeneously through the vasculature, the tumour’s growth is localized in
regions of high oxygen.

Multiscale modelling is a huge challenge for mathematicians. Given that it is
now recognized that the traditional ‘top-down’ approach to modelling in the life
sciences does not make full use of the huge amount of data being generated
experimentally, there is a move to model ‘bottom-up’. However, here we have to
be careful that we do not simply replace the biological system we are trying to
understand by a huge computational model that we have no chance of ever
understanding! One way forward is to develop ‘toy’ models at one level that are
then used as input at another level. For example, if we wish to understand how
regulation of the HIF-1a pathway leads to tissue growth under hypoxic
conditions, we need first to write down the detailed biochemical pathways
Phil. Trans. R. Soc. A (2006)
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regulating HIF, understand them and then derive, using, for example, multi-
timescale approaches and coarse-graining, a simple model which can be linked to
a model for how HIF upregulates VEGF production and hence angiogenesis, and
how this increases nutrient delivery leading to increased tissue growth. The
detailed modelling at the biochemical level will allow us to address issues, such as
which pathway might be the key one to attack from a therapeutic point of view,
but will have limited value in a whole organ model. Thus, we really need to
develop a suite of models which are used to answer different questions. Of course,
a key problem here will be to ensure that in simplifying the model we still capture
all the salient features. This will require using intra- as well as interdisciplinary
research approaches, for example, using perturbation analysis of ordinary
differential equations, and Boolean network or topological approaches, to make
sure that we fully understand the regulatory network being studied.
Phil. Trans. R. Soc. A (2006)
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Mathematical and computational modelling have a number of roles to play in
cancer research, and we have chosen in this review to focus on certain models
which illustrate each of these roles. For example, the first model that anyone
develops (usually the experimentalist) is a ‘word’ model, that is, the assumption
that a limited set of processes combine to produce an observed phenomenon. The
verbal reasoning used to manipulate such word models is necessarily linear.
However, most biological interactions are nonlinear, and the natural medium for
manipulating such ideas is mathematics. Therefore, one role of a mathematical
model is to verify hypotheses and we have given a number of examples of this in
the present paper. Modelling can also help to develop our intuition and to
understand what appear to be counter-intuitive results.

Other roles of modelling are to generate hypotheses and to make predictions,
and, again, we have illustrated a number of such examples above. However, this
is as far as a model can go. There must be an iteration between modelling and
experiment, where theoreticians develop models based on in-depth discussion
with experimentalists, who, in turn, test the predictions of the model. Based on
these results, the model is refined and the iteration continues, allowing us
hopefully to converge to a full understanding of the phenomenon at hand. This is
an example of the type of interdisciplinary research discussed in the paper by
Welsh et al. (2006). However, a disappointing aspect of cancer research thus far
has been the lack of experimental testing of model predictions (Komarova 2005).
This arises mainly because the groups doing theory and those doing experiment
are not embedded with each other. This was one of the prime motivations for us
to develop the Integrative Biology programme (discussed in the paper by Welsh
et al. (2006), and in which both Byrne and Maini are co-investigators) directly to
address this problem. The benefits of such an interaction are very apparent. In
1996, Gatenby and Gawlinski developed a mathematical model for the acid-
mediated invasion hypothesis for tumour spread. The model predicted that under
certain circumstances a gap would arise between the advancing tumour front and
the regressing normal tissue (Gatenby & Gawlinski 1996). As Gatenby is himself
a clinician, he was able to test this prediction and show it to be true.
Unfortunately, few individuals have access to both the theoretical know-how and
the experimental equipment to work in this way, and once again this highlights
the need for a new way to do science (Komarova 2005; Welsh et al. 2006).

In conclusion, in this article we have explained why we believe theoretical
modelling has an important role to play in advancing our understanding of solid
tumour growth in particular and medicine in general. We hope that in the future,
as these benefits become more widely recognized, mathematicians will be
routinely involved in the design and analysis of experimental work.
Editors’ note

Please see also related communications in this focussed issue by Pinter & Shohet
(2006) and Schaller & Meyer-Hermann (2006).

The authors gratefully acknowledge support from the EU Research Training Network (5th
Framework): ‘Using mathematical modelling and computer simulation to improve cancer therapy’
(TA) and the EPSRC (via an advanced research fellowship, HMB).
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