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Abstract

It has been suggested that the Turing reaction—diffusion model on a growing domain is applicable during limb development, but
experimental evidence for this hypothesis has been lacking. In the present study, we found that in Doublefoot mutant mice, which have
supernumerary digits due to overexpansion of the limb bud, thin digits exist in the proximal part of the hand or foot, which sometimes
become normal abruptly at the distal part. We found that exactly the same behaviour can be reproduced by numerical simulation of the
simplest possible Turing reaction—diffusion model on a growing domain. We analytically showed that this pattern is related to the
saturation of activator kinetics in the model. Furthermore, we showed that a number of experimentally observed phenomena in this
system can be explained within the context of a Turing reaction—diffusion model. Finally, we make some experimentally testable

predictions.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Periodic pattern formation occurs at various stages and
locations during development. Formation of periodic
structure can be seen in skin pigment pattern (Bard,
1981; Kondo and Asai, 1995), feather follicle formation
(Jung et al., 1998), digit formation during development
(Newman and Frisch, 1979; Miura and Shiota, 2000b) and
so forth. These patterns cannot simply be explained by
positional information theory and some developmental
biologists are beginning to utilize the Turing reaction—
diffusion model (Turing, 1952) to understand the mechan-
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ism of biological pattern formation (Gilbert, 2004;
Wolpert, 1998).

One of the most extensively studied periodic patterning
systems is digit formation during limb development (Maini
and Solursh, 1991). In 1979 it was postulated that a
Turing-type reaction—diffusion system could account for
limb pattern formation, and the model reproduced the
increase in the number of chondrogenic loci in the distal
part of the limb bud (Newman and Frisch, 1979; see also
Othmer, 1986; Newman et al., 1988). The Turing reac-
tion—diffusion model is one of the class of activator—inhi-
bitor models (Gierer and Meinhardt, 1972) and in fact
gives patterns very similar to the later proposed mechan-
ochemical models of Oster and Murray (Oster et al., 1983).
This work has been neglected by developmental biologists
since molecular biology became the predominant ap-
proach, but has remained influential in the field of
mathematical biology (Murray, 2003). In 1993 it was
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Fig. 1. (a) Conventional view of digit formation as a self-organizing phenomenon. In this model, pattern formation only occurs at the distalmost part of
the limb bud and its trace is left proximally as the bud grows outwards. As a result, chondrogenic pattern (blue) is assumed to correspond to the time
course of a one-dimensional reaction—diffusion model on a growing domain. (b) Reproduction of Dbf phenotype with this model. Appearance of

supernumerary digits is observed by increasing growth speed.

shown that digit formation occurs even in the absence of
proper Hox code specification (Ros et al., 1994). This
observation revitalized research on pattern formation
during limb development, and several relevant experiments
have recently been carried out in vitro (Miura and Shiota,
2000a, b; Moftah et al., 2002). Recent findings on digit
formation in the absence of proper Shh signalling and
subsequent Hox genes (Niederreither et al., 2002) further
support the idea of self-organized periodic pattern forma-
tion during limb development. Current conventional
models hypothesize that periodic pattern formation occurs
in the distal part of the autopod and leaves traces of the
pattern proximally (Hentschel et al., 2004; Chaturvedi
et al., 2005); since the autopod is flattened, the pattern can
be correlated with the one-dimensional reaction—diffusion
model on a growing domain (Fig. 1a).

An example supporting the existence of such a periodic
pattern formation mechanism in limb development is
provided by polydactylous mutant mice, in which super-
numerary digits are formed. For example, the polydacty-
lous mutant mouse Doublefoot (Dbf) has six to eight
supernumerary digits without clear identity; in some cases
digits arise abruptly from interdigital connective tissue or
one digit splits into two distally (Hayes et al., 1998Db).
Morphologically the autopod is 2-2.5 times the width of
the wrist in the Doublefoot mutant, in contrast to 1.5 times
in the wild-type autopod. Overexpansion of the digital
plate is associated with ectopic Indian hedgehog (Ihh)
expression (Yang et al., 1998) and subsequent acceleration
of cell proliferation (Crick et al., 2003). Ectopic Ihh
expression is first seen at E10.25 (Crick et al., 2003), by
which time the proximal elements have been specified and

excessive cell proliferation affects only the carpal/tarsal and
digital elements. Therefore we only consider the autopod
region of the limb in the simulation. If we increase the
domain growth speed at the distal part, the pattern shows
additional bifurcation or insertion of digits, which mimics
the digit phenotype of the Dbf mutant (Fig. 1b).

In the present study, we further investigated the model
and the Dbf mutant phenotype and found convincing
evidence that a one-dimensional Turing reaction—diffusion
model on a growing domain is applicable during limb
development. Firstly, we show that in Dbf mutant limbs,
extremely thin digits are sometimes present in the proximal
part of the metacarpus/metatarsus, which discontinuously
become normal thickness digits more distally. Next we
show, by numerical simulations, that this complex mixed
mode pattern can be generated by the simplest possible
Turing reaction—diffusion system under certain conditions.
Then we analytically obtain plausible conditions for mixed
mode pattern using matched asymptotics. Next we provide
a descriptive explanation of why the mixed mode pattern
occurs under certain conditions using the nullclines of the
activator kinetics. We then go back to numerical calcula-
tions to test the validity of our analytical prediction, and
finally show some relevant experimental observations
which support the model and discuss possible experimental
applications of the model.

2. Experimental observation: appearance of thin digits in
Dbf mutant mice

Dbf mutant limbs have six to eight digits, and among
them we found that there sometimes exist thin digits at
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Fig. 2. The shape of mixed-mode patterns. (a) An example of a Dbf forelimb. A thin digit (arrowhead) suddenly becomes a digit of normal thickness at its
distal part (circle). (b) An example of a Dbf hindlimb. Multiple thin digits are observed (arrows). (c) Numbering system for the location of the thin digit.
The anteriormost digit was assigned the value 0 and posteriormost digit was assigned the value 1. (d) Distribution of thin digits in Dbf limb bud.

variable positions within the digital array (Fig. 2). They
were observed in both the fore- and hindlimb, the hindlimb
showing a slightly higher frequency (forelimb 22/72,
hindlimb 28/72). In some hindlimbs (but not forelimbs),
multiple thin digits were observed. Thin skeletal elements
were strictly confined to the autopod, never being observed
in the proximal parts (zeugopod, stylopod) of the limb.
They were most frequently observed in the anteriormost
part of the limb but were not confined to that region. To
show this, we introduced a numbering system in which the
anteriormost digit was assigned the number 0 and the
posteriormost digit was assigned the number 1, and
examined the distribution of the location of thin digits
(Fig. 2c, d). From this analysis we found that thin digits
occurred most frequently in the anteriormost part of
the limb. We observed another hot spot of thin
digits around location 0.5-0.8, indicating that in other
cases these digits are likely to appear in the posterior half of
the limb.

In some cases (4/144) including both fore- and
hindlimbs, the thin digit abruptly attains normal thickness
distally (Fig. 2a, circle).

3. Model definition

We consider the simplest possible form of the Turing
reaction—diffusion model which exhibits pattern formation.

The system is defined as follows:

W ) + oA
% = g(u,v) + 7' Av, (1)
where
—fuu+fo=2f, (w<-1,
fuv)y =S fuu+fw (—1<u<l), )
St fo+2f, (<uw),
g(u,v) = g,u + g,v. 3)

We choose this piecewise linear model because it is one of
the simplest possible models which contains the minimal
essential factors for diffusion driven instability. It simply
describes the interaction of u and v in linear terms and
avoids blow-up of u by adding saturation kinetics when u
exceeds a certain threshold. This model is qualitatively
similar to the FitzHugh—Nagumo type equations (Murray,
2003), but one advantage of this model is that we can easily
obtain approximate analytical solutions using matched
asymptotics (described in Section 6.1). Numerical simula-
tion results of the FitzHugh—Nagumo model are qualita-
tively similar to those presented here (data not shown).
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Fig. 3. Appearance of mixed-mode pattern in the simplest possible Turing reaction—diffusion model. (a) Normal sine-like Turing pattern. Mode doubling
can be observed at the end of the simulation. (b) Mixed-mode pattern. A thin stripe is observed between normal thickness stripes (arrows) which
sometimes suddenly becomes a normal thickness stripe (arrowhead). (c, d) Profile plot of activator (u) concentration at the early phase of the time course
of two different simulations. Both have simple sine-like shape. (e, f) Profile plot of activator (1) concentration at the late phase of the time course of two

different simulations. Mixed-mode pattern is observed in (f).

Here, u and v represent the concentrations of activator
and inhibitor chemicals (morphogens), respectively. We
standardize the system so that ¥ = v = 0 is an equilibrium
point. The activator reaction term f(u, v) consists of three
linear functions. The second function represents the
interaction around the initial (z small) state. The first and
third functions represent the interaction after saturation/
depletion of u. The inhibitor reaction term g(u, v) consists
of a simple linear function. f,,f,,d,,g, are constants and
f.>0,1,<0,9,>0,9,<0. y is a scaling parameter which
can capture the domain growth and will increase with time.
We use linear growth and assume that the growth process
is slow so that the observed pattern is a quasi-steady state.
¢’ represents the ratio between activator and inhibitor
diffusion coefficient and is less than 1 to satisfy diffusion
driven instability conditions (Murray, 2003).

4. Numerical experiment: thin-digit-like structure appears in
some of the reaction—diffusion models on a growing domain

When the numerical calculation of the Turing reaction—
diffusion system on a growing domain was undertaken and
the distribution of activator molecule visualized, for some

Table 1

The appearance of mixed-mode pattern is facilitated by domain growth
Normal Mixed mode

No growth 99 1

Growing domain 53 47

One hundred random Turing reaction—diffusion systems were generated
and the patterns they exhibited were analysed. A statistically significant
difference is observed between the control (no growth) and growing
domain group.

parameter sets the pattern showed a stable thin-digit-like
pattern naturally. The thin-digit-like pattern is only seen in
u distribution and we could not detect any mixed mode
pattern in the distribution of v (data not shown). The
pattern was not a transient pattern during peak splitting
since peak splitting itself was a rather rapid process and
the thin-digit-like pattern persisted much longer than the
actual splitting process. In most parameter ranges the thin-
digit-like pattern was not detected (Fig. 3a, c, ¢). In some
cases, the pattern was at first a simple sine wave-like
pattern but gradually evolved to a thin-digit-like pattern
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(Fig. 3b, d, f). We could even detect the appearance
of normal digits from thin digits in some cases, which
faithfully mimics the example illustrated in Fig. 2a (Fig. 3b,
arrowhead). The abrupt appearance of normal-size digits
was analysed previously (Crampin et al., 2002a) and is a
separate problem, so we concentrate below on the
appearance of mixed mode patterns.

To confirm whether the thin-digit-like pattern is
observed only on a growing domain, we determined 100
random linear parameter sets (f,,f,,dy> 9p> dudy) Which
satisfy diffusion-driven instability conditions, and under-
took numerical calculation to see whether they produce
normal sine wave-like patterns or thin-digit-like patterns in
fixed domains and in growing domains. In the fixed domain
simulations only 1 out of 100 systems showed thin-digit-
like pattern while in the growing domains about half of the
patterns were of mixed mode type (Table 1). From this
result we conclude that domain growth facilitates forma-
tion of a thin-digit-like pattern.

5. Comparison of experimental observation and theoretical
results

Comparing the experimental and simulation results we
see excellent agreement between the thin-digit-like pattern
sometimes observed in Doublefoot mutant limbs, and those
predicted by the Turing reaction—diffusion model under
certain conditions. It is difficult to explain this complex
pattern change simply by a one-by-one specification with
positional information. The molecular cascade which leads
to the Doublefoot mutant is well studied, so we are now
motivated to determine the conditions under which thin-
digit-like patterns are generated in the Turing reaction—
diffusion model, since this may be correlated to the
differences in the molecular cascade occurring in Double-
foot mutant limbs when compared to the wild type limb.

From here on we use the term “mixed mode” to describe
this thin-digit-like morphology. “Mode” in this context
represents a wavenumber component in the frequency
domain and in this pattern one mode (normal thickness
digit) coexists with a different mode (thin digit). This is
different from the phenomenon of “mode doubling”
described by Crampin et al. (2002a)—we use ‘“‘mixed
mode” as a description of a patterned final steady state
while “mode doubling” is a description of a dynamic
transient process during domain growth.

6. Analytical derivation of the condition for mixed mode
pattern in Turing reaction—diffusion model

6.1. Obtaining approximate solutions with a piecewise linear
model

To understand the results of the numerical calculations
described above, we undertook a matched asymptotics
approach to obtain approximate analytical solutions in the
limit of low d,,/d, ratio. An overview of the procedure is as

follows: at first we assume a specific solution form, which is
not a general form but is later confirmed by numerical
calculation. Then we construct two solutions, inner and
outer, which represent rapidly changing and slowly
changing solution parts, respectively, and combine them
to obtain an approximate solution (Crampin et al., 2002a).

We suppose ¢<1, and consider a plateau-like form
solution of u in which there are alternating “high” and
“low” states interspersed with transition layers. v should be
a smoother simple harmonic wave-like solution because of
its high diffusion coefficient. We scale the system so that it
contains the span from the centre of the peak to the centre
of the neighbouring valley between 0<x<1. Next, we
separately obtain inner and outer solutions, which hold
near and far from the transition layer, then match these
solutions between separate regions of the piecewise linear
function (3). We simplify the analysis by only considering a
system which has reverse symmetry, i.e. the system does
not change qualitatively under the (u,v) —> (—u,—v)
transformation. In this case the location of the transition
layer should be x =% and after several approximations
(following the method in Crampin et al., 2002b), the
solution obtained between 0 <x < % is

u(x) = 2eNTart-1/0)s 4 M e

p
+ i sech(y/py/2f ) cosh(v/(py/f.)X) @)
p b

2f u9u Py Py
v(x) = T (cosh<\/f:x> sech( qu) — 1), (%)

where p = —(f,9, +/,9,)>0. Details of the analysis are
described in Appendix C.

Next, we look for the term which contributes to this
mixed mode pattern. The first two terms of (4) come from
the inner solution and the third term is the contribution of
the outer solution. The first term of (4) is an increasing
function of x and the second term is constant. Since p>0
and 2f,g,sech(y/py/2f,)<0, the third term of (4) is a
decreasing function in x>0. This term should be a
decreasing function in order to generate mixed mode
pattern, so this term is responsible for the formation of
mixed mode pattern.

6.2. Intuitive explanation of the mixed-mode pattern

The mixed-mode pattern comes from the contribution of
the outer solution, which can be understood by comparing
the spatial distribution of (u, v) (Fig. 4a) and the u nullcline
(Fig. 4b). In the outer solution, ¢Au is small, so u and v
satisfy f(u,v) =0, and (u,v) should be on the u nullcline
(Fig. 4b). Consider a point a, which lies between 0 <x< %
Then u and v at that point should both be negative. Then
consider the (u, v) value of point b, which lies slightly to the
right of point a (i.e., slightly larger x) and in 0<x< %, in
Fig. 4a. v should increase by this move since the
distribution of v is monotonically increasing. Then, ¥ must
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decrease because (u,v) should be on the u nullcline
(Fig. 4b). This means that in the outer solution u should
decrease as we get close to the transition layer, which
results in mixed-mode pattern. Therefore, the upper and
lower limits of the activator concentration should result in
this type of mixed-mode pattern. This is counteracted by
the contribution of the inner solution, so this pattern
should be more prominent when ¢ is small. When 7y is large,

U, v f Fd

u, v distribution P

(outer solution) ® u, v nullcline

0= f(u,v) + vy ¥ Au

(a)

Fig. 4. Intuitive explanation of the emergence of mixed-mode pattern.
Away from the transition layer, the solution should be on the curve
f(u,v) =0, i.e. on the u nullcline. Since the system is saturated the solution
should be on the two lateral branches. Consider the (u, v) value at points a
and b on the nullcline. Since the diffusion coefficient of v is large, v should
monotonously increase as x increases. Since the solution should be on the
nullcline, u has to decrease as x increases, resulting in mixed-mode pattern.

the point ¢ has more room to move to the right, which also
results in more prominent mixed-mode pattern.

6.3. Plausible conditions for mixed-mode pattern

In summary, mixed-mode patterns tend to be generated
when

1. y is large and the domain is growing;

2. ¢ is small (diffusion coefficients of activator and
inhibitor are very different);

3. positive feedback of activator saturates at some point.

6.4. Verification with numerical simulation

We verified the above analysis by numerical solution of
the equations. A typical result is shown in Fig. 5a. It can be
seen that the analytic result is in excellent agreement with
the numerical simulation.

Then we examined whether the conditions in Section 6.3
hold. The importance of the first condition in Section 6.3
(large y) has already been mentioned (see Table 1). To see
whether the mixed-mode pattern is likely to be generated
with the small ¢ condition as predicted in the second
condition, we generated 100 Turing reaction—diffusion
systems randomly, and divided them into two groups—
systems that show mixed-mode pattern and systems that do
not. Then we compared the average of ¢ in each group.
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Fig. 5. (a) Comparison of analytical and numerical solutions. Solid line represents analytical solution and dotted line represents numerical simulation. (b)
In randomly generated Turing reaction—diffusion systems, the average of ¢ is smaller in the group which generates mixed-mode pattern. (c) Pattern
generated when d,, is decreased. We observe clearer mixed-mode pattern when d,, is smaller. (f',,f,, 9, 9., du, dy) = (0.6,—1,1.5,-2,0.005~0.02, 0.25).

t = 2000.



568 T. Miura et al. | Journal of Theoretical Biology 240 (2006) 562-573

u profile

f’uQ =—0.6 f'u.Q = —0.06

.fu2 = —6

u Nullcline

u Profile at x2 growth

A "\ o
i s\ T :I |l /I’ b
\\ I‘J - \I‘; !’F ) \ f - ]l
f | Fi L ‘| o
: \L { li |
i bt N ! L\_ . f, l\_ )
e o a |
| [ ro
A AR
i | \ || / ‘

£ | | | ’ |
12208 \\ ;ﬂ | ﬂf || ilf ‘ll

Fig. 6. Saturation kinetics of the reaction—diffusion model affects the appearance of mixed-mode pattern. If we change the gradient of the two saturation
branches of the u nullcline, we can modulate the appearance of mixed mode patterns as predicted from the intuitive explanation in Fig. 4.

The average of ¢ is smaller in the group that generates
mixed-mode patterns (Fig. 5b). To further confirm this, we
focused on one specific reaction—diffusion system and
changed &2. We can observe the appearance of mixed-mode
pattern as we decrease &%, which also confirms the above
analysis (Fig. 5¢).

Next we examined the third condition—whether the
saturation kinetics of the activator reaction term affects the
appearance of mixed-mode pattern. From the intuitive
explanation using nullclines (Fig. 4) we can predict that if
we change the saturated part of the activator kinetics and
select a gentler gradient in the nullcline, then the mixed-
mode pattern will be more apparent. To test this
hypothesis, we considered the specific piecewise linear
model

fuZ(u + 1) _fu +fvv (T/l< - 1),
f(u; 17) == fuu +fvv (—1<M<1), (6)
fuZ(u_ 1)+fu +fvv (1<M),
g(u,v) = g,u+ g,0, (N
where (£ f s Gus s dur dy) = (0.6, —1,1.5,—2,0.01,0.25),

and varied the value of f,,, which corresponds to changing
the gradient of the first and third part of the nullcline.
When we undertook numerical simulations on a growing
domain (domain size 27x, linear domain growth until the
domain doubles in size, + = 2000) and increased |f,,|, the
mixed-mode pattern became less apparent, which further
validates the above analysis (Fig. 6).

7. Experimental observation: application of the mixed-mode
pattern analysis

One prediction from this model is that we can observe an
inverse pattern—reduced differentiation within thick di-
gits—since the saturation of activator kinetics should occur
at both upper and lower limits. We found such an example
in actual Dbf mutant limbs (Fig. 7). The example illustrated
shows a thin undifferentiated area in the middle of the
thick digit; the proximal aspect of the digit is of normal
thickness, which rules out the possibility that the pattern is
generated by fusion of two preexisting digits. This pattern
again is very difficult to explain simply by regional
specification using positional information gradients, and
it further validates the model used in this study.

Another prediction from this model is that since the
assumption of the model is quite generic—it only requires
the existence of saturation of activator kinetics—this
pattern can be observed in other species. Close inspection
of the literature reveals existence of numerous such ‘‘thin-
digit” cases. In human polydactyly, thin-digit morphology
is sometimes observed (Fig. 7c, arrow), which is frequently
described as “‘rudimentary” or “hypoplastic”. In some
cases, these supernumerary digits are only thin proximally
(Fig. 7¢c, arrowhead), and the original description runs as
follows: “‘the extra toe consisted of a thin metatarsal, a
thicker and better formed proximal phalanx, and a broad
distal phalanx” (Temtamy and McKusick, 1978). Another
example of the thin-digit phenotype is Daubentonia
madagascariensis—a primate generally called aye-aye, in
which a thin, elongated middle digit is used to pick out
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Fig. 7. (a) The mixed-mode activator distribution. The activator reaction should have both upper and lower limits, so there may exist an “inverse’’ pattern
in which a thin undifferentiated area is observed within a thick digit (circle). (b) Actual inverse pattern found in Dbf limb bud. (c) “Thin-digit” morphology
observed in human polydactyly (Temtamy and McKusick, 1978). An apparently thin digit is clearly seen in the posteriormost part of the hand (arrow). In
some cases the digit starts as a thin digit but becomes of normal thickness distally (arrowhead). (d) An example of a primate hand that shows

anatomical“thin-digit” structure (arrowhead) (Krakauer et al., 2002).

insect larvae from small holes in trees (Fig. 7d, arrowhead).
It is yet to be elucidated whether this thin digit results from
the developmental changes described above or through
simple decreased growth at later stages.

8. Discussion

One advantage of using the simplest possible model for
spatial pattern generation is that the result can be applied
to a wide class of models which have the same property.
The property we use is (a) diffusion-driven instability,
which many mathematical models that generate periodic
structure utilize, and (b) saturation of activator kinetics,
which is a very natural assumption since in physical
systems values never tend to infinity and the activator,
which has positive feedback kinetics, should be the first
factor to saturate. Most reaction—diffusion models have
these properties and hence have an ability to generate
mixed-mode pattern.

We believe that mixed-mode patterns arise relatively
easily in biological situations since they occur under
natural biological conditions. Existence of activator
kinetics saturation is obvious as described in the previous
paragraph. The small ratio of diffusion coefficients (&2) is
consistent with the conditions for diffusion-driven instabil-
ity, so we will expect the mixed-mode pattern to be
frequently observed if periodic pattern is formed. Two

examples of skin patterning illustrate this point. In fish skin
pigment pattern, where a reaction—diffusion system has
been proposed (Kondo and Asai, 1995), mixed-mode
pattern is sometimes present (S. Kondo, personal commu-
nication). During the development of dermatoglyphics
(fingerprint patterns), the epidermal ridges first show a
simple periodic structure (primary ridges), then later
another furrow is formed within the ridges (secondary
ridges), which can be regarded as a mixed-mode pattern
(Shauman and Alter, 1976).

We have shown that many of the above experimental
observations are consistent with the Turing model.
Furthermore, the model analysis we carried out allows us
to make experimentally testable predictions. For example,
cell culture systems of limb mesenchyme cells can
reproduce periodic pattern formation in vitro (Miura and
Shiota, 2000a, b), and it may be possible to reproduce
domain growth by observing the edge of the cell colony
since the colony gradually grows without a barrier and the
resulting chondrogenic loci show a radiating pattern.
Another tool is TGFf2, which is a very good candidate
molecule for the activator # (Miura and Shiota, 2000b). We
can predict that continuous addition of this molecule to the
culture medium results in a change in saturation kinetics
and hence a change in the appearance of small structures.
The above analysis also implies that Dbf mutant mice
should have lower activator diffusion coefficient in their
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limbs, which might be experimentally testable utilizing
fluorescently labelled TGFf2 (Miura and Shiota, 2002), or
by monitoring whether Ihh can induce production of
certain extracellular matrix components by limb mesench-
yme cells, which should modify the diffusion coefficient of
the activator molecule.

In our model we could not detect mixed-mode pattern in
inhibitor distribution, but this is not true for all systems
that generate periodic pattern. For example, Hentschel et
al. (2004) used a three-species model and observed mixed-
mode pattern in both activator and inhibitor distribution.
In this case the model equations have nonlinearity in all
three species and should be considered separately from our
analysis. We should point out that with the present analysis
we cannot rule out a higher order mixed-mode contribu-
tion to the inhibitor concentration, but our numerical
simulations suggest that it would be so small as to be
biologically irrelevant.

Some recent studies indicate that transitions in pattern
complexity are not solely generated by domain growth. For
example, Chaturvedi et al. (2005) argued that in chick,
anteroposterior width remains constant during pattern
formation. Mathematically, changing diffusion coefficient,
overall speed of reaction term, or domain growth are all
equivalent, so a combination of these factors may be
working in vivo. The mathematical analysis in this paper
gives the qualitative result that mixed-mode pattern is more
likely to appear when the domain grows more, and this
agrees well with the fact that Doublefoot mutant mice
sometimes have thin digits.

There are several possible reasons why the thin digit
abnormality is not observed between all the digits in the
Doublefoot limb bud. One is the existence of noise in such a
biological system, which should be much larger than
thermal noise in physical systems. Another factor is the
faster domain growth in the Doublefoot autopod. From
numerical simulations we have an impression that faster
domain growth results in uneven distribution of structure.
This may be because lower wavenumber components do
not have sufficient time to decay completely if the domain
growth is fast and this results in regional differences.
Another regional difference we observed experimentally is
the high frequency of thin digits anteriorly (Fig. 2d), which
may be explained by more prolonged and hence greater
expansion in the anterior part, which can be seen in
Doublefoot limb morphology (Hayes et al., 1998; Crick
et al., 2003).

It has been noticed that mixed-mode periodic patterns
can appear in reaction—diffusion models on a growing
domain (E. Crampin, personal communication) but they
have not properly been described or analysed, because their
biological importance has not been recognized. This study
is one example of how experimental data based on both
molecular and morphological observation drive numerical
simulation and mathematical analysis to gain insight into
mechanisms of pattern formation and then provide
evidence for the validity of the model used.
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Appendix A. Skeletal staining of newborn Dhf mutant mice

We used the Dbf mutant mouse, which has an autosomal
dominant mutation and shows preaxial polydactyly and
craniofacial anomaly (Hayes et al., 1998b). Newborn pups
were obtained by mating Dbf/+ mutant mice with C3H
strain wildtype mice. They were fixed overnight with 95%
ethanol; the skin was removed under a dissecting micro-
scope and the pups were stained by alcian blue and alizarin
red using standard protocols.

Appendix B. Numerical simulation

To generate the parameter sets which create periodic
pattern within a reasonable period of time, we first
generated random parameter sets (f,,f > 9u» Gu» du» dp)
which satisfy the diffusion-driven instability conditions
(Murray, 2003). The above condition guarantees the
generation of periodic pattern. Next, we rescale the system
so that it produces a stable number of periodic structures.
The fastest growing wavenumber k in the model is given by

. \/—dudv(fu—gv>+<du+du)\/—dudufrgu ®

dudr(dv - du)

where d, = &2y~!,d, =y~ L.

Using this equation, we rescale the diffusion coefficients
of activator and inhibitor so that the wavenumber within
the domain size 27 is 5.

Then we rescale all linear terms to set the growth speed
of fastest growing wavenumber (Miura and Maini, 2004),
which is

dlju B dugu —2 V _dudlfvgu
dy—d ’ ®
v u
to 0.1. This makes the system generate stable pattern by
¢t = 100, which is confirmed by numerical simulations. All
the numerical simulations described below are carried out
using PowerPC G5 (1.8 GHz). Initial distribution of u and
v is constant (u,v = 0) with small random noise of order
0.01. All the simulations were done with a finite difference
scheme and zero flux boundary conditions. The number of
grid points is 100 and dt was set below dx’/2d, to avoid
systematic error. The source code of the entire simulations
is available from the corresponding author on request.
To detect mixed-mode pattern, first we obtained the
pattern after = 2000 with or without domain growth.

jvmax =
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Fig. 8. (a) Assumption of solution form. Alternating plus and minus states are separated by transition layers. (b) We construct approximate solution of
half the period—from the centre of a valley to the centre of a neighbouring peak. (c) The outer solution holds away from the transition layer. (d) The inner

solution holds near the transition layer.

Then we counted the number of points that cross the u = 0
line and those which change the gradient from positive to
negative or vice versa. If the latter is 1.5 times more than
the former we define the pattern as a mixed-mode pattern.

Appendix C. Derivation of approximate analytical solution
C.1. Definition of inner and outer subsystems

The original analysis was done by Crampin et al. (2002a)
with asymmetry of reaction term considered, but in this
case we use a simplified analysis with reverse symmetry
since we concentrate on the mechanism of generation of
mixed-mode pattern.

We obtain steady state solutions of the system defined
in (3)

0=/(u,v)+ &y 'Au,
0= g(u,v) +7~'Av, (10)
where

_fuu +fvv - zfu

(u< — l:region 1),

fu,v) = fuu+fo (—I<u<l:region 2), (11)
—fu+fv+2f, (I<uregion 3),
g(u,v) = g,u + g,v. (12)

We divide the reaction term of u into three regions
according to u value. We define u< —1 as region 1,
—1<u<1 as region 2, 1 <u as region 3, respectively.

To obtain the steady state solution of system (10), we
suppose ¢ < 1, and consider a plateau-like form solution of
u in which there are alternating “high” and “low” states
interspersed with transition layers (Fig. 8a). v should be a
smoother simple harmonic wave-like solution because of its
high diffusion coefficient. We scale the system so that it
contains the span from the centre of the valley to the centre
of the neighbouring peak between 0 <x < 1. The location of
the transition layer should be x = 1 because the system has
reverse symmetry, i.e. the shape of peak and inverted valley
should be the same.

We obtain the outer solution, which holds away from the
transition layer (Fig. 8c), and the inner solution, which
holds near the transition layer and has different spatial
scale (Fig. 8d). The outer solution must satisfy

0= f(u,v), (13)
0 = g(u, v) + yAu. (14)
in the limit ¢ — 0.

The inner solution holds near the transition layer, so we
define another spatial parameter £

E=(x—y/e (15)

Then the inner subsystem becomes

0= f(uv)+ u
- b y aéz b

2

0
0= g(u,0) + e~

v
et (16)
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In the ¢ — 0 limit, this becomes
2

0=f(u,v)+y—,
S (u,v) /agz
%

0=y—. 17
%5 (17)

C.2. Obtaining outer solutions

The peak and valley portions of the outer solutions
(Fig. 8c) should be in regions 3 and 1, respectively, so
appropriate equations are (13), (14) and the relevant terms
from (11). We define the outer solutions in regions 1 and 3
as (uy1,v,1) and (u,3,v,3), respectively. At first, using (13)
we can obtain the relationship between u(x) and v(x):

-2 :
ay = Hu ). s
Su
Substituting (18) into (14) yields
2
v +fvgu +fugv ,yv — 2gu,y’ (19)

ox? fu
and we can obtain the distribution of v in region 1 as

: 2fugu + 2C0 cosh x\/ _(fbgu—i_fuqv)y ,
fugu +fugv \/f_u

Uol(x) =

(20)

where Cj is a constant of integration. Cy can be obtained
by the reverse symmetry condition: v, (x) must be 0 at the

transition layer x = l. Therefore
Co = S 190N =G 9+ 119001/ 2VT ) 1)
So9u+ 190

We then obtain u,; using (18). Summarizing, the outer
solution in region 1 is

(us3,v;3), respectively. We need a solution where the u
value changes abruptly at the transition layer but v does
not. Therefore, we set the v value for the inner subsystem as
constant. The v value at x =% should be 0 because of the
reverse symmetry of the whole system, so (17) becomes

o
0=f(u,0+7" —5. (26)
o¢
For region 1, the solution is
un (&) = =2+ CreVivis 4 Cre™ VI, 27

where C; and C, are constants of integration. We need a
solution which connects to the outer solution as ¢ — —o0,
so C; should be 0 because otherwise u;; goes to infinity.

From reverse symmetry of the whole system, we can
obtain the solution in region 3 as follows:

u(8) = —ui(=9). (28)
For region 2, the solution is
up(8) = C3Sin(v/f,79). (29)

The resulting form of u(x) is somewhat cumbersome, but
if we neglect the inner solution in region 2 and consider the
solutions in regions 1 and 3 only, we do not change the
matching condition for the leading order calculation and
retain good approximation to the numerical solution
(Crampin et al., 2002a).

From the condition u;3(0) = u;;(0), we find that C; =2
and then the resulting inner solution in terms of x is

i (x) = —2 + 2eV/iits=1/2)/e, (30)
u;; can be obtained by the reverse symmetry condition.
un = —uj (1 — x). (1)

C.4. Composite solution

To obtain the composite solution, we substitute the
constant term of the inner solution (30) into the outer

vor(0) = — e _ Y9y coshO/ =09, #7800/ VI sech(/ = g +1u907/v/ 2 ) )
‘! S oGu + S0 foGu + 1 u9s
ooy () = — b _ 2 ugucosh(x ~ o9y +1u9. 00/ VI ) seeh/=(F o9 + 1197/ VA ) 23)
R R S oGu S0

The outer solutions in region 3 can be derived using the
reverse symmetry of the system:

—uy (1 — x), (24)
—v,1(1 = X). (25)

Up3 (X) =

1)03()6) =

C.3. Obtaining inner solutions

The inner solution should use regions 1-3, so we define
inner solutions for these regions as (u;,v;1), (4, vn),

solution (23) since the constant term is the value when the
inner solution is away from the transition layer (¢ — 00).
The resulting composite solution is shown in the main
text (4).
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