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Oscillatory Turing Patterns in a Simple Reaction-Diffusion System
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Turing suggested that, under certain conditions, chemicals can react and diffuse in such a way as
to produce steady-state inhomogeneous spatial patterns of chemical concentrations. We consider
a simple two-variable reaction-diffusion system and find there is a spatio-temporally oscillating
solution (STOS) in parameter regions where linear analysis predicts a pure Turing instability and
no Hopf instability. We compute the boundary of the STOS and spatially non-uniform solution
(SSNS) regions and investigate what features control its behavior.
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I. INTRODUCTION

In 1952, Turing proposed [1] that chemicals called mor-
phogens diffusing in space could interact to form stable
spatially non-uniform distributions. The concept is con-
tradictory to the common intuitive understanding of the
effect of diffusion. A reaction-diffusion system takes the
following form:

∂M

∂t
= F (M) + D∇2M, (1)

where M stands for the concentration vector of mor-
phogens, D is the diagonalized matrix of positive dif-
fusion constants, and F (M) contains the reaction kinet-
ics of the system. When there is no diffusion (D = 0),
F (M) is such that M will reach a uniform stable distri-
bution. For non-zero diffusion, under specific conditions,
an instability of the uniform distribution can be induced
(a phenomenon known as “diffusion-driven” instability
or “Turing” instability), which then will grow exponen-
tially with time, only to be bounded finally by the non-
linear terms in F (M) and form a stable spatially non-
uniform solution (SSNS). There have been many Turing-
type models used for generating patterns with applica-
tions to mammals [2–4], fish [3,5–7], ladybugs [8], bacte-
rial colonies [9–11], and phyllotaxis [12].

Other types of patterns have also been found in
reaction-diffusion systems. Among them, spatio-
temporally oscillating solutions (STOS) have attracted
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much attention [13,14]. The STOS is different from the
well-known uniform Hopf oscillation and is generally be-
lieved to be due to an interaction of the Turing instability
with either a Hopf or a wave instability [15–20]. Recently,
Vanag and Epstein [21] found an out-of-phase STOS in
a bistable reaction-diffusion system with no presence of
a Hopf or wave instability. In this report, we consider
a simple reaction-diffusion system which has only one
steady state. We found that, without interaction with
either a Hopf or a wave instability, the Turing instabil-
ity, together with the effects of a non-linear interaction
in a two morphogen system, can yield both SSNS and
STOS.

II. MODEL AND LINEAR ANALYSIS

We study a simple reaction diffusion system character-
ized by the equation for two distributions u and v [22]:

∂u

∂t
= Dδ∇2u + αu + v − αr3uv2 − r2uv

∂v

∂t
= δ∇2v − αu + βv + αr3uv2 + r2uv. (2)

Note that in this model, u and v should be thought of
not as morphogen concentrations, but as deviations from
some non-zero (positive) fixed concentration profile. In
this case, negative values of u and/or v are physically re-
alistic. The nonlinear reaction between u and v is given
by the sum of a quadratic term and a cubic term with
negative coefficients being −r2 and −αr3, respectively.
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Fig. 1. (a) Two bifurcation lines separate the parameter space into five domains: (I) Turing unstable; (II) Turing-Hopf
unstable; (III) Hopf unstable; (IV) and (V) stable. (b) Dispersion relations of the five domains. The real and the imaginary
parts of the eigenvalue are shown by gray solid lines and black dotted lines, respectively.

The origin (0,0) is the only spatially uniform steady
state, and the following conditions must be satisfied for
a diffusion-driven instability [22,23]:

α + β < 0
α(β + 1) > 0
Dβ + α > 0
(Dβ + α)2 − 4Dα(β + 1) > 0. (3)

In the standard way, we assume that u and v take the
form

u(~x, t) ∼ u0e
λtei~k·~x and v(~x, t) ∼ v0e

λtei~k·~x

in the linearized version of Eq. (2), yielding a disper-
sion relation from which one can choose parameters to
allow only some of the modes with Re(λ) > 0 to grow in
time. The dispersion relation λ(k) relating the temporal
growth rate to the spatial wave number can be found
from the characteristic equation

λ2 + [(1 + D)δk2 − α− β]λ + Dδ2k4

−δ(α + Dβ)k2 + α(β + 1) = 0. (4)

The bifurcation diagram is shown in Fig. 1. The Hopf
bifurcation line (Im(λ) 6= 0, Re(λ) = 0 at k = 0) and the
Turing bifurcation line (Im(λ) = 0, Re(λ) 6= 0 at k = kT

6= 0) separate the parametric space into five distinct do-
mains. In domains IV and V, the steady state is the only
spatially uniform stable solution of the system. Domains
I and III are regions in which this steady state solution
is Turing and Hopf unstable, respectively. In domain II,
Turing and Hopf instabilities coexist.

Fig. 2. Boundaries (fitted curves) of the SSNS and the
STOS phases are found by scanning r2 for each fixed r3. Only
SSNS is found on the left of each curve, and STOS exists on
the right. Curves (a) and (b) have the same parameters of
D = 0.516, δ = 4, α = 0.92, β = –0.965, but with different
random initial distributions for u and v. Curve (c) has the
same initial distributions as (b), but with parameters D =
0.39,δ = 4, α = 0.88, and β = –0.91. The values of α and
β for curves (a), (b), and (c) are in the pure Turing unsta-
ble domain while those for curve (d) are in the Turing-Hopf
unstable domain, D = 0.45, δ = 6, α = 0.95, β = –0.91.

III. SIMULATION RESULTS

It was known previously that to produce an “oscilla-
tory Turing” pattern one has to excite the Turing-Hopf
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Fig. 3. Concentration of u shown in a space-time plot. The concentration profile of v (not shown) follows that of u. Four
different kinds of patterns are found in the Turing unstable domain when the quadratic effect is strong: (a) in-phase oscillatory
patterns; (b) out-of-phase oscillatory patterns; (c) mixture of in-phase and out-of-phase oscillatory patterns; (d) combination
of Turing and oscillatory patterns.

or Turing-wave instabilities [19]. We, thus, chose the val-
ues of the linear parameters α and β to be within domain
II of Fig. 1(a) where Turing and Hopf instabilities coex-
ist. We found there were indeed SSNS for some parame-
ter sets of (r2, r3) and STOS for others. While fixing the
parameters D and δ, and initial random distributions for
u and v, we scanned the non-linear parameters r2 and
r3. We found that the (r2, r3) parameter space could be
separated into two regions by a curve of the form r3 =
cr2

2 (Fig. 2). Only the SSNS is found in the region r3 >
cr2

2, and STOS exists in the region r3 < cr2
2. This result

suggests that increasing the strength of the quadratic
term can induce STOS.

Surprisingly, even for parameters α and β within do-
main I of Fig. 1(a), where only the pure Turing instabil-
ity exists, we obtain STOS, as well when r2

2/r3 exceeds
a certain critical value. The critical value depends on
the parameters α, β, δ, and D, and on the initial distri-
butions of u and v (Fig. 2). Note that there is no Hopf
instability for the parameters α and β that we used. This
means that a Hopf instability is not necessary for gener-
ating STOS. In the pure Turing instability region, STOS

can be excited by a suitable non-linear interaction.
We have found four types of oscillatory Turing pat-

terns in both one- and two-dimensional space when r2
2/r3

is larger than its critical value. They are in-phase os-
cillatory patterns (Fig. 3(a)), out-of-phase oscillatory
patterns (Fig. 3(b)), a mixture of in-phase and out-of-
phase oscillatory patterns (Fig. 3(c)), and a combination
of Turing and oscillatory patterns (Fig. 3(d)).

IV. EFFECTS OF THE NON-LINEAR
REACTION

We can understand the emergence of STOS qualita-
tively by looking into Eq. (2) more carefully. If there
are no non-linear interaction terms, namely, r2 = r3 = 0,
a random perturbation will cause the distributions of u
and v to grow exponentially. There would be no SSNS or
STOS. Note the cubic term −αr3uv2 in the equation for
u always counters the growth of u while the quadratic
term −r2uv can enhance the growth of u if u and v have
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Fig. 4. The function h(v) (see text) has a negative value

when v is between −r2

αr3
and 0 and has a minimal value − r2

2
4αr3

.

The negativity of h(v) will enhance the instability of the sys-
tem characterized by Eq. (2).

opposite signs. Thus, the system will still diverge if the
quadratic term alone is included in the equation. On the
other hand, adding the cubic term would “rein in” the
system into the SSNS. If both terms are present, the sys-
tem will go from the SSNS to STOS when we increase
the strength of the quadratic term. Let us make a scale
transformation for the distributions u and v: u → su
and v → sv. Eq. (2) will be

∂u

∂t
= Dδ∇2u + αu + v − s2αr3uv2 − sr2uv

∂v

∂t
= δ∇2v − αu + βv + s2αr3uv2 + sr2uv. (5)

We see that the ratio of the square of the coefficient of
the quadratic term to the absolute value of the coefficient
of the cubic term is independent of the scale s. This
scale-free ratio, which is given by r2

2/αr3, is then the
significant parameter that one can use to indicate the
relative strength between the quadratic and cubic terms.
This explains what we found in Sec. III, namely that the
system will lead to STOS when r2

2/r3 exceeds a certain
critical value (with a given α).

If we rewrite the non-linear term in the equation for u
as −u(αr3v

2 + r2v) ≡ −uh(v), we find that h(v) has a
negative value when v is between−r2/(αr3) and 0 and its
minimal value is −r2

2/(4αr3) (Fig. 4). The negativity of
h(v) will induce an instability of the sytem, as explained
above. If we modify the original system by subtracting
a linear term (r2

2/4αr3)u from the right-hand side of the
upper equation of Eq. (2) and adding the same term to
the right-hand side of the lower equation of Eq. (2), to
compensate for the instability effect caused by the non-
linear term, then only the SSNS exists and STOS will not
occur. Our simulations confirm this. The suppression of
STOS by changing the linear terms of the equation can
also be understood from the change in the Turing space.
The added linear term has effectively changed the key
parameter α to α′ = α − r2

2/(4αr3) which, as can be

seen from Fig. 1(a), moves the system from the Turing
unstable region (domain I in Fig. 1 (a)) to a stable region
(domain IV) where no STOS is possible.

V. CONCLUSION

It is generally believed that there should be no Turing
oscillatory patterns in the domain of pure Turing insta-
bility. According to the standard linear analysis, if a
system is Turing unstable, its sole singularity has to be
an unstable saddle point; thus, no limit cycle is possi-
ble. The pure Turing instability does not interact with
other instabilities, such as the Turing-Hopf interaction
reported previously, to generate oscillatory patterns.

In this research, we, nevertheless, found that non-
linear effects could induce oscillatory patterns in the pure
Turing unstable domain. For our system, the cubic and
the quadratic terms have opposite effects on the solu-
tion behavior. The former tends to bring the system to
a stable pattern while the latter increases the instabil-
ity of the system. The final patterns result from their
competition. Only stable Turing patterns are possible
if the quadratic term is missing. When the ratio of the
square of the coefficient of the quadratic term to the ab-
solute value of the coefficient of the cubic term is larger
than a critical value, oscillatory Turing patterns emerge.
The critical value depends on the diffusion constants, the
linear parameters, and the initial distributions.
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