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We consider a recent extension to the validity of the quasi-steady-state assumption
(@ssa) which includes the case where the ratio of the initial enzyme to substrate
concentration is not necessarily small. We extend the analysis to include diffusion of
substrate, in which case the initial enzyme to substrate ratio is spatially dependent
and no longer constant. We show that the region in which the @ssa holds depends on
the nature of the enzyme—substrate reaction: if the enzyme is inactivated by the
substrate then the @ssa holds in a growing disc; if the enzyme is unchanged after
reaction then the @ssa holds in a ring travelling through space.

1. Introduction

Many biochemical reactions exhibit an initial fast transient followed by a slowly
varying change in reactant concentration. The system of ordinary differential
equations describing such reactions are usually solved analytically using the pseudo-
steady-state hypothesis (PSsH) or the quasi-steady-state assumption (Qssa). Essential
to this technique is the isolation of a small parameter to enable a singular
perturbation procedure to be employed. It is customary to take this small parameter
to be the ratio of initial enzyme to substrate concentration (see Michaelis & Menten
1913; Murray 1989; Laidler & Bunting 1973). However, in many reactions of
biochemical interest this ratio may not be small (Sols & Marcos 1970) nor even
constant. Thus the standard analysis is inadequate for a wide range of biochemically
relevant problems.

Segel & Slemrod (1989) re-examined the Michaelis—-Menten reaction and introduced
a formulation of the problem containing a new, more general, small parameter. Their
parameter not only includes the usual one as a special case, but also allows for the
possibility of a singular perturbation analysis for certain problems in which the
initial enzyme to substrate concentration is not small. This analysis was applied to
a more complicated reaction scheme by Frenzen & Maini (1988).

Burke et al. (1990) extended the analysis to the case where some of the enzyme is
rendered inactive by reaction with the substrate. They specifically considered the
mechanism-based inhibitor, or ‘suicide substrate’ system, represented by (Walsh
et al. 1978)
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where E, S and P are enzyme, substrate and product respectively; X and Y are
enzyme—substrate intermediates; K, is inactivated enzyme, and the ks are positive
rate constants. In this system the enzyme converts the substrate into an inhibitor
which, in turn, can irreversibly inactivate the enzyme. The ratio k,/k, is called the
partition ratio, and is a measure of the fraction of enzyme inactivated. The substrate
S is called a suicide substrate.

This class of reaction is of considerable experimental interest (Rando 1977)
because a suicide substrate provides a means to inactivate a specific enzyme. For
example, suicide substrates have been investigated for use in the treatment of
depression and certain types of tumours (monoamine oxidase and ornithine
decarboxylase inhibitors respectively (Seiler et al. 1978)) and in epilepsy (brain
GABA transaminase inhibitors (Walsh 1984)). In such applications it is important to
find the conditions that determine whether the substrate is exhausted before the
inactivation of all the enzyme. This has been analysed by Waley (1980) and
Tatsunami et al. (1981). Both of these studies used approximations based on a form
of @ssa which assumes that £ /S, is small, thus their results are inadequate in the
limit when /S, approaches 1. Burke ef al. (1990) used the more general form of the
small parameter to obtain an analytic, uniformly valid solution for all time which
encompasses this case. Their solution clearly shows the transition from the fast-
transient, or pre-steady-state, phase to the quasi-steady-state phase. It also provides
quantitative expressions for the time evolution of the reactants in terms of the rate
constants.

In this paper we extend the analysis to the more biochemically realistic case in
which the substrate is allowed to diffuse over the region containing the immobilized
enzyme. In §2 we derive the model equations for this system using the law of mass
action. For completeness, in §3 we briefly summarize the results for the case where
there is no diffusion (see Burke et al. (1990) for full details). When substrate diffusion
is included, we show (§4) that the region wherein the Qssa holds depends on space
and time in a manner that varies considerably depending upon the type of reaction
(inactivation or non-inactivation of enzyme) in question. We focus our attention on
the aforementioned enzyme—suicide-substrate reaction and the Michaelis—-Menten

reaction.
2. Model equations

By using the law of mass action, the rate equations for reaction (1), where the
substrate alone can diffuse, are given by

0S8/t = —ky BS+k_, X +DV?S, 2)
OB/t = —kyBS+k X +k,Y, (3)
OX/ot = ky ES—k , X —k, X, (4)
AY/ot = ky X —ky Y —1, Y, (5)
OB, /ot =k, Y, (6)
oP/ot =k, Y, (7)
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where, for notational convenience, we now represent the concentration of each
reactant by the letters specified in (1). Note that the concentrations are functions of
both the spatial coordinate, r, and time, {. We have modelled substrate diffusion
using Fick’s Law (see, for example, Murray 1989) where we have assumed that D, the
diffusion coefficient, is a positive constant. Typical experimental initial conditions

A EB(r,0) = E,,8(r,0) = Sy(r), X(r,0) = Y(r,0) = Ey(r,0) = P(r,0) = 0, 8)

where reQ, the spatial domain, E, is the spatially independent initial enzyme
concentration and Sy(r) is some initial spatial distribution of substrate. To complete
the mathematical formulation we assume that the domain boundaries are
impermeable to substrate, hence we have zero flux conditions, VS = 0 on 042, the
boundary. As we will be considering a localized reaction on a very large domain the
exact form of the boundary condition will have no effect during the time course of
reaction considered.

We rewrite the system by noting the enzyme conservation relation (adding (3), (4),
(5), and (6))

HE+X+Y+E} /ot =0 (9)
=FE+X+Y+E =K, (10)
By using (10) the original system of six equations becomes

oS/ot =—k(BEy—X—Y—E)S+k_, X+DV?S, (11)

0X/0t = ky(E,—X—-Y—E,)S—(k_,+k,) X, (12)
oY/ot = k, X —(ky+k,) Y, (13)

0, /ot =k, Y, (14)

oP/ot =k, Y, (15)

with the initial conditions
S(r,0) = 8y(r),X(r,0) = Y(r,0) = E(r,0)= P(r,0) = 0. (16)

The equation for the product is decoupled from the other equations thus we need
only solve (11)—(14) and substitute into (15) to find the product concentration.

3. Previous results

The special case of no diffusion, D = 0, and S,(r) = S,, a constant, was studied in
detail by Burke et al. (1990). In this case, the concentrations are functions only of
time. Here we simply outline the main points of their analysis. The important
features of the two distinet evolution phases is reflected in appropriate time scalings.
In the fast-transient phase it is necessary to choose a time scaling such that the
substrate concentration remains constant at leading order while the dimensionless
time rate of change of the enzyme—substrate complexes and inactivated enzyme is
non-zero. During the Qss phase it is necessary to choose a timescale on which the
rate of change of the dimensionless substrate concentration is non-zero while the
dimensionless derivatives of each of the other components should appear multiplied
by a small parameter, to indicate that they are in steady state with respect to the
instantaneous value of the substrate concentration. This is what is meant by Qss. By
solving the resulting dimensionless system in each phase and using the method of
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matched asymptotic expansions, one can then obtain a solution uniformly valid in
time.
The variables are non-dimensionalized by setting

S=28,s, X=£%S17°-{x, Y=EKy, E, =Ee, (17)
where K=(k_+ky)/k, (18)
and s, x, y and e; are now dimensionless variables. The dimensionless times are
T =t/t, = thy(S,+K) (19)
for the initial, fast-transient phase, and
T=t/t,=telk_,+k,), (20)
where e=kE,/(S,+K) (21)

for the @ss phase.
A further requirement is that the timescale of the fast-transient phase be much
smaller than that of the @ss phase: that is, ¢,/t; < 1, which implies

e/[1+(S/K)] < 1. (22)

This clearly holds if ¢ < 1. Hence the appropriate small parameter is £,/(S,+K).
This is confirmed by the subsequent singular perturbation analysis.

By using the scalings in (17) with (19) one obtains the non-dimensionalized version
of equations (11)—(14) for the fast-transient phase. In the @ss phase it is assumed, as
usual, that only the timescale need be changed and the appropriate non-dimensional
rate equations are obtained using (20). This leads to the two sets of dimensionless
rate equations for the two time periods. By using the technique of matched
asymptotic expansions one can find uniformly valid solutions.

Burke et al. (1990) compared their analytic solutions with the numerical solutions
of the full system and to previous approximations for several different sets of
parameters. They found them to be more accurate for most of the time course of the
reaction than previous approximations.

4. Diffusing substrate

The above analysis assumed that the concentration of the reactants varies only
with time and is spatially independent. However, in many biologically relevant
examples, the reactants diffuse so their concentration does depend on space. The
corresponding model equations are then (11)—(14) with initial condition (16) and
appropriate boundary conditions on §. We illustrate the analysis in this case by
assuming that initially an amount 8, of substrate is injected at the origin over a very
short period of time, and take the initial condition for S to be

S(Y,O) =SO6(r)a (23)

where d(r) is the Dirac delta function. The spatial domain is taken to be the plane.
By symmetry, for these initial conditions, the spatial distribution of each of the
reactants is radially symmetric, and the appropriate boundary condition for S at the
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origin is zero flux. At the edge of the domain we also assume zero flux boundary
conditions for S, that is, we assume that the domain is impermeable to the substrate.
In this situation we cannot use the non-dimensionalization of §3 because the initial
substrate concentration varies in space. However, we can use the expression for the
small parameter ¢ to delimit regions in which the Qssa holds. We illustrate the
procedure by comparing the results for the enzyme suicide substrate reaction with
those for the Michaelis—-Menten kinetics where the substrate can diffuse in both cases.
The Michaelis—Menten reaction has the form:
kl k2
E4+S=—X-—E+P, (24)

Foy

where E, S, X and P are enzyme, substrate, enzyme—substrate complex and product
respectively, and the ks are positive rate constants. The equations for this system,
with diffusion of the substrate, are:
oS/ot = —k,(Ey—X)S+k_, X+ DV3S, (25)
0X/ot =k (B, —X)S—(k_,+k,) X, (26)
where, as before, we represent the concentration of each reactant by the letters
gpecified in (24).
The @ss equations for this system are obtained by setting 0X/0¢ =

as E,S E,S \
6?——101(1110 S+K)S+k,18 St DV, 27)
X =E,8/(S+K), 28)

where, as previously, K = (k_, +k,)/k;.

Including diffusion greatly increases the complexity of the system and only in
certain special cases can an analytic solution be found. For example, if K is very large
then, independent of the substrate concentration, ¢ is small and we would expect the
@ssa to hold everywhere. In many enzyme reactions it is common for K to be large
(Stryer 1981) because k_, is much larger than k,. Assuming that this is the case, we
neglect the k, B S?/(S+K) term in (27), as it is much smaller than the other
two reaction terms on the right-hand side of the equation, and we assume that
S+ K =~ K. This reduces the nonlinear equation (27) to the linear equation

S kyk, ,
Ty 1% B84 DVES (29)

which‘, on a radially symmetric, two-dimensional domain, with initial condition (23)
has solution (see, for example, Crank 1956)

o kyky, ., 1
*4nDteXp[ k_ +kEt 4Dt] (30)

In figure 1 we compare this solution to numerical solution of the full system (25)
and (26) for various times and points in space. The analytic solution is clearly in very
good agreement with the numerical solution confirming that the @ssa is valid for
large K.
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Figure 1. Comparison of the analytic solution (dashed line, equation (30)) for the Michaelis—Menten
reaction with the numerical solution for the full problem (solid line, equations (25) and (26)) in the
radially symmetric case for a two-dimensional domain. Plots show the time evolution of substrate
concentration, S(r,t), at various distances r from the origin. (@) r = 0.2. (b) r = 1.0. (¢) r = 2.0.
(d) r=4.0. (e) r=6.0. (f) » = 8.0. Parameters: &, = 1.0, k_, = 20.0, k, = 1.0, ky = 1.0, £, = 1.0,
S, = 4.0. For the numerical solution, the initial condition (23) is approximated by a tent function.
Therefore the error between the two solutions is composed of the error induced by approximating
the initial condition and that induced by using the Qssa.

The corresponding Q@ss equations for the suicide substrate system are

o8 b, S(E,—EB,)
B i VS i
o T 8FIS ey k) 1K TV (1)

Ol _ kykey [ S(E,—E,) ] (32)
Ot kgt [ S+k,S/ (kg +h,) +K|
with initial conditions
S(r,0) = 8,d(r), E(r,0)=0. (33)

These equations do not admit an explicit analytic solution but numerical simulations
show that they are in good agreement with the numerical solutions of the full system
(11)—(14) thus illustrating, again, that the @ssa is valid for large K.

If K = O(K,), then for a point distance z away from the origin, ¢(z) will be O(1)
initially (because S,(z), the initial substrate concentration at z is zero) and the system
will not be in @ss at z. As the substrate diffuses away from the origin the value of S
at z, namely S(z), will rise and in time ¢(z) may indeed become small and the reaction
will move into @ss. As the reaction proceeds further, substrate will be used up and
will also diffuse away from z so S(z) will decrease. However, during the reaction at z,
some of the enzyme will have been inactivated so that £ has also decreased. Thus it
is still possible for e(z) to be small. Hence we expect that there will be a growing disc,
centre the origin, in which the @ss holds. Note that if we were dealing with a reaction
in which the enzyme were not inactivated — for example, in the Michaelis—-Menten
reaction — then e(z) would become O(1) again. Therefore we should first see a circular
disc in which the @ss holds move out from the origin followed by a second,
concentric, disc in which the expression defined by ¢ becomes O(1) and the @ss no
longer holds. The result is a kind of travelling ring in which the @ss holds.
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Figure 2. Zone of validity of the @ssa for the suicide substrate system. The difference between the
substrate concentration obtained by solving the @ss equations (31) and (32) and that given by
solving the full system (11)—-(14), as a percentage of their average, for the radially symmetric case
in two dimensions. Flat regions correspond to points in the plane where the Qssa is valid. All
solutions are computed numerically for different times, ¢. (@) ¢ = 0.1, maximum difference = 20 %.
(b) t=0.5, maximum difference =47%. (¢) ¢ = 1.0, maximum difference =48%. (d) ¢ = 1.5,
maximum difference = 36%. (¢) ¢t = 2.0, maximum difference =22%. (f) t= 2.5, maximum
difference = 10 %. Parameters: k, =1.0,k_, =1.0,k, =1.0,k, =1.0,k, = 1.0, £, = 1.0, S, = 40.0.
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Figure 3. Zone of validity of the @ssa for the Michaelis-Menten system. The difference between the
substrate concentration obtained by solving the @ss equations (27) and (28) and that given by
solving the full system (25) and (26), as a percentage of their average, for the radially symmetric
case in two dimensions. Flat regions correspond to points in the plane where the Qssa is valid. All
solutions are computed numerically for different times, ¢. () t = 0.1, maximum difference = 19%.
(b) t=0.5, maximum difference =47%. (¢) ¢ = 1.0, maximum difference =46%. (d) t = 1.5,
maximum difference = 35%. (e) t = 2.0, maximum difference = 60%. (f) ¢= 2.5, maximum
difference = 76 %. Parameters: k, = 1.0, k_, = 1.0, k, = 1.0, k, = 1.0, B, = 1.0, §, = 40.0.

In figures 2 and 3 we plot the difference between the solution to the @ss equations
and the solution to the corresponding full system for the suicide substrate and
the Michaelis—-Menten systems respectively. The disc in which the @ssa holds for
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the suicide substrate system and the corresponding ring in the case of the
Michaelis—Menten reaction are clearly seen.

5. Discussion

We have considered enzyme—suicide-substrate and Michaelis—Menten kinetics in
which the substrate is diffusing. Previous analysis for the non-diffusing substrate
case shows that the size of the ratio £,/(S, 4+ K) determines the parameter domain in
which the @ssa is valid. We have extended this idea to determine the domain in space
and time in which the @ssa is valid for a diffusing substrate. In particular we have
shown that the @ssa is valid in an expanding disc for the suicide substrate case but
only in a ring for the Michaelis-Menten reaction.

Including diffusion increases considerably the complexity of the problem and, only
in special cases, is it amenable to an analytical treatment. We presented one such
case here and obtained an analytic solution valid only in the @ss phase. To obtain a
uniformly valid solution one much carry out a subtle analysis of the pre-steady-state
phase of the reaction and match to the outer @ss phase: this will be reported
elsewhere.
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