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1. Introduction

Spatial pattern formation is a key issue in early embryonic development. Embryonic
cells divide, migrate, and differentiate to form the various structures, markings and
organs of the body. Perhaps the most spectacular manifestation of this process is
animal coat markings. These patterns are formed by melanin-secreting cells which
migrate from the neural crest to the epidermal and dermal layers of the skin. Several
models have been proposed for skin patterning. For example, reaction-diffusion
models [I, 2, 3] hypothesise the existence of chemicals (morphogens) which react and
diffuse and, under appropriate conditions, generate spatially heterogeneous patterns.
Cells are then assumed to be pre-programmed to differentiate according to the level of
the chemical they experience. Much of the justification for such models is still
circumstantial. An alternative class of models are the mechanochemical models [3,4],
which propose that initially a spatial pattern in cell density is set up and cells then
differentiate according to their local density. One such model takes account of cell-
chemotaxis, the process by which cells migrate up a chemical gradient [5]. Under
appropriate conditions this model can exhibit spatial patterns in cell density. The
hypothesis that cells in high density aggregates will differentiate and produce melanin
then suggests that the observed pigment patterns simply reflect patterns in cell
density. This model was recently proposed for the stripe and shadow patterns on the
alligator (Alligator Mississipiensis) [6]. Experimental results unequivocally show
that higher densities of melanin forming cells are found in the dark stripe regions of
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the alligator.

Here, we iIIusLratesome of the spatial patterns exhibited by the cell-chemotaxis
model. We briefly describe the model in Section 2. In Section 3 we present a
selection of spatially patterned solutions found using the finite element package
ENTWlFE. We also illusLratethe effect on the patterns of domain growth since in
many developmental situations spatial organisation of pattern takes place on a time
scale commensurate with significant growth of the embryo [6].

2. Model Equations

Chemotaxis is a major factor in many developmental processes and this is the key
aggregation force in the model. The model involves two dependent variables, the cell
density, n(r,t), and the chemoattractant concentration, e(r.t). where rand t are the
spatial coordinate and time respectively. The model consists of a pair of coupled
nonlinear partial differential equations which describes the motion of the cells and the
production, diffusion and degradation of the chemoattractanl. The nondimensionalised
model equationsare:

(1)

(2)

where D, a, s, r, and N are all positive, non dimensional, constants.
We are interested in pattern formation on finite two-dimensional domains - the

model for the skin of developing vertebrates - so we consider these equations on a
finite domain a with zero flux boundary conditions, namely

!!.Ve(d =!!.Vn(d = 0 for!: Eaa (3)

where n. is the unit outward normal to the boundary aa. The mathematical problem
consists of equations (I) and (2), with boundary conditions (3).

The system has two uniform steady-states; n =0, e =0 and n =N , e =~ and a
1 + N

linear analysis about these uniform states shows that the trivial steady state is always
unstable but that in certain parameter regimes the nontrivial spatially homogeneous
solution can be driven unstable by spatially heterogeneous perturbations and evolve
to in homogeneous spatial patterns in n and e. The form of the pattern is determined
primarily by the non-dimensionalparameter set (D, a, r, N) and the size and shape of
the domain. The model and analysis are discussed in detail in [5,7].

3. Two-Dimensional Spatial Patterns

We investigate possible steady states of the full nonlinear system using the software
package ENTWIFE, which solves nonlinear problems by discretisation in the fir.ite-
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element approximation using a standard Galerkin formulation. The package locates
the critical values of a chosen parameter for which the uniform steady state bifurcates
to a nonuniform steady state and continues this solution as the bifurcation parameter
changes [8]. Here we present a selection of the results of applying EN1WIFE to the
steady-state problem where the domain a is taken to be a I x 4 rectangular domain
(Figures I - 3).

4. Discussion

We have presented a celI-chemotactic model for biological pattern generation and have
ilIuSLrated some of the spatial patterns obtained by solving the model equations using
ENTWIFE. A more detailed discussion of the numerical procedure used and the
patterns obtained can be found in [7, 8]. This simple model exhibits a surprisingly
complex and diverse range of patterns. In its application to the formation of snake
skin markings, the model exhibits several of the patterns commonly observed on
snakes [9]. Testable predictions made by the model are discussed in [7].
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Fig.I: Bifurcation diagram for fixed r, N, D and s and varying a on a I x 4
domain. This diagram only shows the upper branches of primary bifurcations,
secondary bifurcations from these branches were observed but not studied in detail.
The letters A to H on the state diagram denote the patterns in cell density (the
chemical concentrations exhibit similar patterns). The linearised system has
eigenfunctions cos(nla) cos(mny /4) denoted by mode (n,m). Note that modes (0,4)
and (1,0) are degenerate. Shaded regions denote high cell density
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Fig. 2: Magnified view of the bifurcation of mode (0,1) in Figure 1 with the value
of n at the origin plotted against a. The letters P to S denote the patterns indicated.
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Fig. 3 : (a) A selection of patterns in cell density. (b) The effect of changing thewidth of the domain.
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