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Abstract

This paper develops a simple mathematical model of the siting of capillary sprouts on an existing blood vessel during the initiation of

tumour-induced angiogenesis. The model represents an inceptive attempt to address the question of how unchecked sprouting of the

parent vessel is avoided at the initiation of angiogenesis, based on the idea that feedback regulation processes play the dominant role. No

chemical interaction between the proangiogenic and antiangiogenic factors is assumed. The model is based on corneal pocket

experiments, and provides a mathematical analysis of the initial spacing of angiogenic sprouts.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In any cellular environment, precise execution of
activities depends on well-coordinated control mechan-
isms. Feedback inhibition is one of the methods by which
such control may be achieved; an enzyme which catalyses a
primary reaction may have this action inhibited by one of
the downstream products of the reaction. We propose that
such a mechanism is involved in the regulation of vascular
sprout formation during tumour-induced angiogenesis, and
develop a simple mechanistic mathematical model to
describe the determination of sprouting sites along an
existing blood vessel.

Angiogenesis, the growth of new blood vessels from an
existing vasculature, is a critical process in the formation of
solid tumours. Before reaching an angiogenic stage, such
tumours may exist for some time as dormant, avascular,
masses of limited size (up to approximately 2mm in
diameter). Growth of these masses is restricted by the need
to obtain oxygen and nutrients by diffusion. If the
tumorous mass switches to an angiogenic phenotype, a
e front matter r 2007 Elsevier Ltd. All rights reserved.
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new blood vessel network is formed between the existing
vasculature and the tumour, providing a source for oxygen
and nutrients. Rapid growth of the tumour is consequently
enabled. Formation of the new blood vessel network is
guided by a complex interplay of both pro- and anti-
angiogenic molecules produced by a variety of sources
including tumour cells, endothelium, extracellular matrix,
pericytes, and plasma clotting products (see, for review,
Araujo and McElwain, 2004; Mantzaris et al., 2004). This
paper is concerned with the products and processes
involved in the initiation of angiogenic sprouting. We
present a mathematical model based on the hypothesis that
sprouting is initiated by a threshold concentration of
angiogenic growth factor, and that antiangiogenic products
synthesized in the immediate vicinity of each new sprout
will act locally to prevent the overwhelming formation of
new sprouts. This feedback inhibition process is similar to
that described by Karihaloo et al. (2001) in which it is
proposed that the antiangiogenic factor, endostatin, plays a
role in preventing unchecked outgrowth of the growing
ureteric bud.
Previous modelling work includes that of Orme and

Chaplain (1996), who developed a model of sprout
formation which is based upon phenomena occurring
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within the parent vessel. They develop a three species
model: endothelial cells, matrix, and adhesive sites. Using
this model and a stability analysis, they argue that a
natural spacing appears with the space between sprouts
determined from these equations in a manner similar to
Turing instabilities. They do not include any feedback
mechanism. Levine et al. (2001) have also developed a
model for the onset of capillary formation. Their model,
based upon the theory of reinforced random walks, uses
the assumption that angiogenic factor is transformed into a
proteolytic enzyme that enables a sprout to form. Their
model makes predictions about the aggregation of en-
dothelial cells, and the perforation of the basement
membrane that allows the formation of a new sprout.
Again there is no feedback of the form discussed in our
current work.

An alternative approach to vascular network growth
modelling is adopted by Gazit (1996, Chapter 5), who uses
numeric simulations on a square lattice, typically
128� 128. The network is initiated with a single seed and
then extends in response to a diffusible growth factor
produced by a source outside the network. Optionally,
local amplification can occur at an activated network site
and this, in turn, produces further diffusible growth factor.

Before presenting the mathematical model we discuss
antiangiogenic products which are found in the vicinity of
the tumour-induced angiogenesis, and which may act to
influence the patterns of sprouting.

1.1. Formation of antiangiogenic molecules during tumour-

induced angiogenesis

The search for endogenous antiangiogenic molecules
produced within the microenvironment of a tumour was
initially prompted by observations that excision of a
primary tumour can often lead to rapid growth of its
previously dormant metastases. The suppression of sec-
ondary growths was thought to be due to antiangiogenic
factors, produced in the environment of the main tumour,
but acting at the site of distant metastases to prevent these
small masses of tumour attaining vascularisation.
Although proangiogenic factors are also produced by the
primary tumour, it was suggested that the antiangiogenic
molecules had a longer half-life in circulation, and so
became the dominant effect at the site of distant
metastases. Researchers have subsequently uncovered
many endogenous inhibitors of angiogenesis, including
tumstatin, arrestin, and canstatin, and most notably,
angiostatin and endostatin. We will discuss angiostatin
and endostatin briefly here. For recent reviews of these and
other antiangiogenic molecules, see Clamp and Jayson
(2005), Folkman (2005), Ruegg et al. (2006), Sim (1998).

Endostatin is an 18–22 kDa fragment of collagen XVIII,
which is notably present, amongst other collagens, in the
vascular and epithelial basement membrane (Saarela et al.,
1998). It has been shown to inhibit tumour-induced
angiogenesis, and to inhibit endothelial cell (EC) prolifera-
tion and migration, with the possible mechanism being
disruption of cell–matrix interactions. Cleavage of endo-
statin from collagen XVIII is mediated by some of the
matrix metalloproteases (MMPs) (Heljasvaara et al., 2005),
and, at low pH, by the protease, cathepsin L, independent
of MMP activity (Felbor et al., 2000). Production of
proteases such as cathepsin L and MMPs involved in the
production of endostatin are known to be upregulated in
the vicinity of tumour-induced angiogenesis (see, for
instance, Taraboletti et al., 2002; Felbor et al., 2000; Jones
et al., 1999). Additionally, it has been hypothesized that
endostatin plays a role in preventing unchecked outgrowth
of the developing ureteric bud. Karihaloo et al. (2001)
proposed that MMPs degraded the basement membrane at
the tip of the growing ureteric bud, resulting in an
accumulation of endostatin which then acted to inhibit
further branching. Felbor et al. (2000) also suggest that
endostatin acts in a feedback mechanism during angiogen-
esis. We hypothesize that such a mechanism contributes to
the prevention of unchecked sprouting from existing blood
vessels during tumour-induced angiogenesis.
Other possible candidates for a feedback control

mechanism of angiogenic sprouting include the molecule
angiostatin. Angiostatin is a 38 kDa protein, cleaved from
the serum protein plasminogen by the action of such
factors as tissue plasminogen activator (tPA) and several of
the matrix metalloproteases (MMPs) (Jurasz et al., 2003).
It has been shown to inhibit endothelial cell (EC) growth.
During tumour-induced angiogenesis, growth factors
secreted by the tumour initially cause hyperpermeability
in nearby blood vessels (Dvorak, 2003). This occurs before
spouting is initiated, before breakdown of the basement
membrane, and results in leakage of the blood plasma into
the surrounding extracellular matrix (ECM). This plasma
contains both plasminogen, from which angiostatin is
derived, and the factors which cleave plasminogen to form
angiostatin, such as tissue plasminogen activator and
MMPs. Tissue plasminogen activator and the MMPs
may also be present in the ECM during angiogenesis
through production by endothelial cells, or may be released
by tumour cells. Thus angiostatin may be formed in the
vicinity of blood vessels undergoing angiogenesis.
Sections 2 and 3 of this paper develop the mathematical

model, Sections 4 and 5 present an analysis of the model
with and without activator decay, results are discussed in
Section 6, and Section 7 discusses conclusions and
directions for future research.

2. Model domain

The domain of the mathematical model, shown in Fig. 1,
is based on the physical set up of an experimental
angiogenesis model known as the corneal pocket assay
(see, for example, Gimbrone et al., 1974; Asahara et al.,
1998). In these experiments a tumour fragment, or a pellet
impregnated with a growth factor, such as vascular
endothelial growth factor (VEGF), is implanted into
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Fig. 1. Model domain: (a) schematic of elements of the corneal pocket

assay; (b) measurement reference system.

Fig. 2. Images of angiogenesis during a corneal pocket assay reproduced

from Asahara et al. (1998), with permission: (a) Macroscopic photograph

of angiogenesis in a mouse cornea 6 days after implantation of a VEGF-

impregnated pellet during a corneal pocket assay. Reproduced from

Asahara et al. (1998), with permission; (b) BS-1 lectin fluorescent staining

of corneal limbal vessels undergoing angiogenesis in a corneal pocket

assay. The image was taken 6 days after implantation of a pellet

containing VEGF. Spacing of sprouts along the parent vessel is clear. The

image also displays the brush-border effect associated with repeated

capillary branching. Reproduced from Asahara et al. (1998), with

permission.

B. Addison-Smith et al. / Journal of Theoretical Biology 250 (2008) 1–15 3
a pocket created in the avascular cornea of a mouse or
rabbit. The implant engenders an angiogenic response in
nearby blood vessels—those in the limbus (periphery of the
cornea) closest to the pocket. The progression of the
angiogenic response through the normally avascular and
semi-transparent cornea is relatively easy to inspect. Fig. 2
reproduces images from Asahara et al. (1998) showing
angiogenic response in a mouse cornea 6 days after
implantation with a pellet containing VEGF.

Observations of angiogenesis relevant to this paper from
such assays can be summarized as follows: within a few
hours of implantation, the nearby limbal blood vessels
become hyperpermeable, and plasma leaks from the vessels
into the surrounding stroma; endothelial cells that line the
vessels produce enzymes which degrade the surrounding
basement membrane; the cells begin to migrate through the
gaps in the basement membrane, moving towards the
source of angiogenic factor. Endothelial cell division is also
upregulated.
Events such as endothelial cell migration and division

are outside the scope of the investigation of the present
paper as are further events such as tubular morphogenesis
(ECs roll up and join together to form tubes) and
anastomosis (tubes connect to form loops capable of
circulating blood).

3. Model development

The tumour implant or pellet used in the corneal pocket
assay is represented in our mathematical model by a point
source, located a distance from the limbus corresponding
to the centre of the implant (see Fig. 1). The limbus is
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modelled as a straight line. Fig. 1 shows the coordinate
reference system used, noting that the mathematical model
is developed here in cylindrical coordinates. The model
incorporates two species: an angiogenesis activator (con-
centration denoted by A), such as VEGF, which is
produced continuously by the tumour, and an angiogenesis
inhibitor (concentration denoted by I), such as endostatin
or angiostatin, which it is assumed is produced instanta-
neously at the initiation point of each new sprout. The
species do not interact. This modelling allows for first-
order removal of the angiogenic activator from the system,
representing either a natural decay process or other
removal which can be represented by a first-order decay.
For the purposes of this preliminary model, we assume that
consumption or decay of the inhibitor is negligible,
an assumption supported by observations, discussed is
Section 1.1, of the apparent long-range effects of anti-
angiogenic factors on distant metastases. Sprouts may
form at any point on the existing limbal blood vessel
subject to the following criteria:
�
 the activator concentration at that point must be greater
than or equal to a chosen trigger value, i.e. AXAtrig;

�
 the inhibitor concentration at that point must be less

than or equal to a chosen inhibitor threshold, i.e.
IpI thresh.

The modelling begins as activator is released from the
tumour into an empty domain. The first sprout occurs on
the blood vessel at a point closest to the activator source,
henceforth called the midpoint, and a ‘puff’ (instantaneous
point source) of inhibitor is initiated. Subsequent sprouts
occur symmetrically about the line connecting tumour and
blood vessel, each new sprout adding an instantaneous
point source of inhibitor.

3.1. Governing equations for inhibitor and activator

For the angiogenic factor, A, the governing equation is
assumed to be

qA

qt
¼ Dar

2A� laA, (1)

where Da is the diffusion coefficient, and la the decay
coefficient, both taken as constant. Modelling the tumour
as a continuous point source, we seek a solution of this
equation in two dimensions in cylindrical coordinates, with
radial symmetry. That is, we wish to solve Eq. (1) in an
infinite 2D domain subject to the initial condition
Aðra; 0Þ ¼ 0:0, where ra is radial distance from the source,
of strength q. This is found by integrating a decaying
instantaneous point source solution with respect to time, to
give,

Aðra; tÞ ¼
q

4pDa

Z t

0

1

u
exp

�r2a
4Dau

� lau

� �
du. (2)
In the situations where decay is negligible, that is la ¼ 0,
the solution may be written as

Aðra; tÞ ¼
q

4pDa

E1
r2a

4Dat

� �
, (3)

where E1ðxÞ is a form of the special integral function EnðxÞ

with n ¼ 1, given by

E1ðxÞ ¼

Z 1
x

e�u

u

� �
du. (4)

When decay is significant (laa0), numeric integration
must be used to evaluate expression (2).
Considering the system with activator decay, an expres-

sion for the activator steady state may be found in the form
of a modified Bessel function of the second kind, namely,

AðraÞ ¼
q

2pDa

K0 ra

ffiffiffiffiffiffi
la

Da

s !
. (5)

There is no steady state for the activator without decay.
The concentration of inhibitor, I, subject only to Fickian

diffusion, is governed by the conservation equation

qI

qt
¼ Dir

2I , (6)

where Di is the diffusion coefficient, assumed constant.
To model an instantaneous point source of inhibitor in

two-dimensional cylindrical coordinates with radial sym-
metry, a Dirac delta function of strength p is applied at the
point and time of origin of the source, Iðr; 0Þ ¼ pdðrÞ.
The solution of Eq. (6) for a point source of strength p at

r ¼ 0 may then be written

Iðr; tÞ ¼
p

4pDit
exp

�r2

4Dit

� �
.

This expression may be used for each of the inhibitor
sources (sprouts), and summed so that the general
expression for the inhibitor concentration within the
domain may be written as

Iðr; tÞ ¼
XNs

n¼1

p

4pDiðt� tnÞ
exp �

ðr� rnÞ
2

4Diðt� tnÞ

� �
Hðt� tnÞ,

(7)

where H is the Heaviside function, and we consider that
there are Ns sprouts, and sprout n is initiated at time tn,
position rn. There is no steady state solution to the
inhibitor equation.
In this study, we have assumed that the inhibitor

production occurs as soon as the appropriate conditions
have been met. It may well be that there is a delay before
the inhibitor is produced, and this point is mentioned in
Section 7.



ARTICLE IN PRESS
B. Addison-Smith et al. / Journal of Theoretical Biology 250 (2008) 1–15 5
3.2. Non-dimensionalisation

We adopt the non-dimensionalisations:

r� ¼
r

L
; t� ¼

t

t
; t ¼

L2

4Da

; A� ¼
A

Â
; Â ¼

qt
pL2

,

I� ¼
I

Î
; Î ¼

p

pL2
; b ¼

Di

Da

; g ¼ lt,

where L is the shortest distance between tumour and blood
vessel.

The scaling for A may be thought of as an average of the
concentration of activator released in time t, over a circular
area of radius, L. Similarly, the scaling factor for I

represents an average concentration of the amount of
inhibitor released by one sprout, spread over a circular area
of radius L.

t, the non-dimensionalisation for time, has been chosen
for convenience, but corresponds with the definition of
root mean squared length of diffusion in two dimensions,
4Dt (given in Segel, 1980): thus L2 would be the root mean
squared distance a particle diffuses over time t, in a two-
dimensional system.

Applying these transformations, the non-dimensiona-
lised expressions for activator and inhibitor may be
rewritten as

A�ðr�a; t
�Þ ¼

Z t�

0

1

u
exp

�r�a
2

u
� gu

� �
du (8)

and

I�ðr�; t�Þ ¼
XNs

n¼1

1

ðt� � t�nÞ
b exp �

ðr� � r�nÞ
2

t� � t�n
b

� �
Hðt� � t�nÞ,

(9)

where b ¼ Da=Di is the ratio of diffusion coefficients, and
g ¼ lat. Scaling the activator and inhibitor values by their
respective non-dimensionalised source strengths reduces
the number of parameter estimations required for the
model. Continuing with the nondimensionalisation, ex-
pression (3) for activator concentration under conditions of
no decay, may be rewritten as

A�ðr�a; t
�Þ ¼ E1

r�a
2

t�

� �
. (10)

The non-dimensionalised expression for the activator
steady state (with decay) may be written as

A�ðr�aÞ ¼ 2K0ðr
�
a

ffiffiffiffiffi
4g

p
Þ. (11)

Note that r� is measured from the position of the first
sprout, r�a is measured from the tumour, and they are
related in the non-dimensional system by r�a

2 ¼ 1þ r�2. For
the remainder of the paper, star notation will be dropped,
and distances will be expressed as a function of r, the non-
dimensionalised (linear) distance along the blood vessel
from the position of the first sprout or midpoint.
3.3. Parameter values

Values or estimates are required for the parameters b, g,
for the (scaled) trigger levels of both activator and
inhibitor, and for values of L and Da, used in the non-
dimensionalisation. For the purposes of this paper we
chose L ¼ 2mm, which is consistent with the experiment
described in Section 2.

3.3.1. Ratio of diffusion coefficients, b
Finding an accurate estimate for the ratio of diffusion

coefficients is somewhat difficult. An initial estimate can be
made based on the molecular weights of the species
involved. Use of the Einstein–Stokes formula (Shaw and
Williams, 2003) for calculating diffusivity of a molecule in
solution would lead to the ratio of diffusion coefficients of
the two molecules being inversely proportional to the ratio
of their hydrodynamic radii. We assume that the hydro-
dynamic radius is approximately proportional to the cube-
root of the molecular weight (m). The ratio of the diffusion
coefficients of inhibitor to activator is then proportional toffiffiffiffiffiffiffiffiffiffiffiffiffi

ma=mi
3
p

. Endostatin has a molecular weight of around
22 kDa, tumstatin 28 kDa, and angiostatin 57 kDa.
Although VEGF has several different isoforms, the most
commonly found active forms have molecular weights
ranging from 34 to 45 kDa (Dvorak, 2002). Using these
molecular weights would suggest b values ranging from 0.5
to 1.2, approximately. Many other factors could impact the
ratio of diffusion coefficients, and for these reasons a range
of values for b has been investigated. As well as finding the
ratio of diffusion coefficients, we require an estimate for
the diffusion coefficient of the activator, Da, in order to
estimate the characteristic time, t. We have used a value of
0:864mm2=day (10�7 cm2=s) for Da based on the figure
calculated by Ambrosi et al. (2005) using the Einstein–
Stokes formula. Although Mac Gabhann and Popel (2005)
use a slightly higher value in their paper, our predictions
are not sensitive to the choice of this parameter.

3.3.2. Activator decay rate, g
An initial analysis of the model is made without decay of

the activator (g ¼ 0), and this yields some interesting
results. In this version of the model, however, the activator
level at the midpoint shows monotonic increasing beha-
viour for all time. Thus any chosen activator level will
eventually be met, and hence the model without decay
cannot predict a physical limit to the distance between
tumour and limbus for initiation of sprouting, although
such a limit is a notable feature of corneal pocket
angiogenesis experiments. This point is well illustrated in
the paper by Folkman and Klagsbrun (1975) which
examines the angiogenic and immune system responses to
the implantation of a fragment of Brown–Pierce carcinoma
in the cornea of a rabbit. Diagrams from the publication,
which are reproduced in Fig. 3, show growth and
regression of both tumour and neovasculature in an animal
not previously immunized against this carcinoma. We use
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Fig. 3. Sequence of vascularisation of a tumour implanted into a rabbit

cornea. Due to the immune system response to the tumor, two separate

stages of vascularisation occur, shown in (B) and (D), both restricted to an

area of the limbus closest to the tumour mass. Regression of the tumour

shown in stages (C) and (E) is caused, in this case, by the immune system,

and is not relevant to this study, but is included for completeness.

Reprinted from Folkman (1974) with permission from Elsevier.
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this experiment as a reference, not for the immune system
response, but because during the process, formation of an
angiogenic network occurred twice. In either case angio-
genesis was restricted to an area of the limbus closest to the
current tumour mass, and most importantly, Folkman and
Klagsbrun report that angiogenesis did not occur at any
stage of the experiment until an edge of the tumour had
grown to within 2mm of the limbus.

Restriction of angiogenesis to a portion of the limbus
may be modelled by the inclusion of activator decay. In this
model the concentration of the activator protein will reach
a steady state value throughout the domain. If this value is
lower than the activation level at all points along the
limbus, sprouting will not occur at all, a point to which we
will return later.
It is likely, therefore, that activator decay plays an

important role in determining the patterns of angiogenic
sprouting. An estimate for the value of the decay
coefficient, la, has been calculated from an in vitro half-
life of VEGF, found by Serini et al. (2003) to be 64� 7min.
Behaviour of the model for a range of decay rates around
this value has been investigated and is discussed in Section
5. Fig. 4 shows that activator levels are closely coupled to
the decay rate: halving or doubling the decay rate changes
activator levels along the limbus by more than an order of
magnitude.

3.3.3. Activator trigger level

As discussed previously, angiogenic sprouting does not
spread around the entire limbus, but is confined to an area
of the limbus on either side of the site of the first sprout.
The steady-state level of activator at the outermost sprout
may therefore be taken to be the lowest level of activator
for which spouting may occur, and this may be used as the
activator trigger level. Fig. 4 may be used to find the
appropriate activator trigger level for each of the given
decay rates, having chosen a limit for sprouting. This
method of choosing the activator trigger level does not
work when the model is considered without decay (there is
no activator steady state). In this case an estimate for the
activator trigger level may be made using experimental
data on time until appearance of the first sprout. By the
time the sprout is visible, the activator level at the midpoint
should have passed the trigger level (due to a lag between
reaching the trigger level and a sprout becoming visible),
and an estimate for the trigger level may be made.
However, having estimated the time of emergence of the
first sprout, calculations of subsequent patterns of sprout-
ing may be made without finding the activator trigger level,
using Eq. (13).

3.3.4. Inhibitor threshold

Values for the inhibitor threshold level may be chosen to
give different regimes of sprouting along the limbus, and a
number of these are discussed in the results section.

4. Analysis of model with no decay

4.1. Simplification of sprouting conditions

Neglecting decay of the activator enables an interesting
preliminary analysis of the model. The analysis is greatly
simplified by firstly showing that sprouts only form at
points where concentrations of both activator and inhibitor
are equal to their respective trigger levels, i.e. that the
inequalities of the conditions for sprouting may be changed
to equalities.
Clearly the first sprout forms as soon as A ¼ Atrig at

r ¼ 0. By symmetry, the second and subsequent sprouts
will occur in pairs, equally spaced about the midpoint of
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Fig. 4. Steady state non-dimensionalised activator levels (log scale) vs non-dimensionalised distance along limbus, r, for three different decay rates, gs

(light line), gs=2 (dotted line), and 2gs (heavy line), where gs is the non-dimensionalised version of the decay rate given in Serini et al. (2003). The dashed

vertical line may be used to find steady state values at a distance along the limbus equal to 0:6 of the distance from tumour to limbus. Note that changing

the decay rate by a factor of two changes activator levels at any point on the limbus by more than an order of magnitude. As discussed in Section 3.3.3, this

has a large impact on the chosen activator trigger level.

B. Addison-Smith et al. / Journal of Theoretical Biology 250 (2008) 1–15 7
the domain. Therefore, for convenience, discussion will be
focussed on events in the right (positive r) half of the
domain unless otherwise noted. The second sprout will
form at the first point on the limbus to satisfy both AXAtrig

and IpI thresh, and we show graphically that this occurs
when both A ¼ Atrig and I ¼ I thresh. In Fig. 5, we have
t̂ ¼ t� t1 as the ordinate and r as the abscicca. The area for
which ðr; t̂Þ satisfies AXAtrig is hatched, and the area for
which ðr; t̂Þ satisfies IpI thresh, is shaded. Each of these areas
is bounded by a line showing the appropriate contour, A ¼

Atrig and I ¼ I thresh. For sprouting we require the minimum
ordinate (t̂) value for which the hatched and shaded areas
overlap, and this clearly occurs where the contour lines
intersect, that is where A ¼ Atrig and I ¼ I thresh.

This finding may be extended to the position of the third
and further sprouts, and to the model with activator decay
included.

Once this property of the system is established, the
activator constraint for sprouting under conditions without
decay may be rewritten as follows:

E1
r2a
t

� �
¼ Atrig. (12)

Since E1ðxÞ is a single-valued function for positive reals, all
solutions for which A ¼ Atrig correspond to the same value
of r2a=t. This value may be found using the time of
emergence of the first sprout (t1), since it occurs at a known
location (the midpoint), where ra ¼ 1. Thus, the activator
condition may be further simplified to

r2a
tn

¼
1

t1
. (13)

4.2. Second and further sprouts, no decay

The position and time of formation of the second sprout
may be found analytically since at this stage there is only
one source of inhibitor (the first sprout), so the inhibitor
condition for sprouting reduces to

I thresh ¼
b
t̂2

exp �
r22
t̂2
b

� �
, (14)

where t̂2 ¼ t2 � t1. Recalling that r2a ¼ 1þ r2, Eq. (13) may

be manipulated to give r22=t̂2 ¼ 1=t1, and this may be

substituted into Eq. (14). The position of the second sprout
may then be found by solving

r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

t1I thresh

exp
�b
t1

� �s
. (15)

As a visualisation of the solution space after formation of
the first sprout and before formation of the second, Fig. 6
shows contours of the concentration of inhibitor from the

first sprout, in the r� t̂ plane (with b ¼ 1:0). Overlaid on
this plane are three curves of constant 1=t1, each curve

corresponding to ðr; t̂Þ pairs that satisfy the activator
condition for a given value of t1. The second sprout is
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Fig. 5. The hatched area shows distribution in the r� t̂ plane of activator levels greater than Atrig—where the activator condition for sprouting is met. The

shaded area shows distribution of inhibitor levels less than Ithresh—where the inhibitor condition for sprouting is met (inhibitor levels from the first sprout

only). Any area of overlap fulfills both conditions, and this happens for the first time at a point where A ¼ Atrig and I ¼ Ithresh. In this figure, b ¼ 1 and

t1 ¼ 1. The ordinate value used is time since formation of the first sprout t� t1, denoted t̂. This figure was generated using Eqs. (12) and (9) with n ¼ 1.

Fig. 6. Contours of inhibitor from the first sprout plotted in the r vs t̂ plane, for b ¼ 1:0. Overlaid on this plot are curves of constant 1=t1, along which the

activator condition for sprouting will be met (for the model without activator decay). The second sprout is predicted to form when the appropriate 1=t1
line intersects the contour corresponding to the chosen inhibitor threshold value, Ithresh. This figure was generated using Eqs. (13) and (9) with n ¼ 1.

B. Addison-Smith et al. / Journal of Theoretical Biology 250 (2008) 1–158
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predicted to form at a point in this plane where the
appropriate 1=t1 curve crosses the contour of the chosen
inhibitor threshold value. Further sprouts will occur along
curves of constant 1=t1, but the inhibitor contours will
change on addition of each new sprout. Solutions for
further pairs of sprouts are found numerically.

5. Analysis of the model with activator decay

As discussed in Section 3.3.2, it is likely that decay of the
activator plays a significant role in determining the patterns
of angiogenic sprouting. The decay rate reported by Serini
et al. (2003) is large enough to make a significant difference
to our analysis. With g40, the expression for activator
concentration, Eq. (8) has no closed form solution. Thus
the En function solution and the finding that sprouts will
occur along curves of constant r2a=t are both invalid for the
model in this form. However, once the time for emergence
of the first sprout, t1, is found, the ratio r2a;n=tn for each
further sprout will always be less than 1=t1, where ra;n is the
distance from the tumour to the point of emergence of
sprout n. This relation may be used to calculate the
minimum time to sprouting at any point on the limbus.

5.1. Activator concentration

Although a closed form solution for the integral in
Eq. (8) has not been found, we can find the exact solution
to the integral for one, quite useful, value of t. This solution
comes from an interesting property of the integral which
may be demonstrated as follows: using the substitution
w ¼ r2a=gu and dropping star notation, we may transform
Eq. (8) to obtainZ 1

r2a=gt

1

w
exp �

r2a
w
� gw

� �
dw.

Since choice of the integration variable, w, is arbitrary, we
may replace it with u, and writeZ t

0

1

u
exp �

r2a
u
� gu

� �
du ¼

Z 1
r2a=gt

1

u
exp �

r2a
u
� gu

� �
du.

(16)

Thus the amount of activator at any location, ra, at a given
time, t, is equal to the amount of activator which will
accumulate at that location between time r2a=gt and u ¼ 1,
the steady state. It follows that at any location, ra, at time
t ¼ ra=

ffiffiffi
g
p

,Z ra=
ffiffi
g
p

0

1

u
exp �

r2a
u
� gu

� �
du ¼

Z 1
ra=
ffiffi
g
p

1

u
exp �

r2a
u
� gu

� �
du,

and so the level of activator will have reached half
of its steady-state value. Our steady-state value is in the
form of a modified Bessel function (see Eq. (11)),
so we obtain the following exact relation for activator
level at t ¼ ra=
ffiffiffi
g
p

,

A ra; t ¼
raffiffiffi
g
p

� �
¼ K0ðra

ffiffiffiffiffi
4g

p
Þ. (17)

It also follows from relation (16) that an approximation (or
value for) the integral at any time, t, will also yield an
approximation or value for the integral at time r2a=gt, which
may be expressed as follows:

Aðra; tÞ ¼ ĀðraÞ � A ra;
r2a
gt

� �
, (18)

where ĀðraÞ is the steady-state value for the activator at ra.
We have found the following relationships to be useful

approximations to the activator concentrations for our
parameter space, and leave discussion of the derivation of
these ans€atze to the Appendix.
For t4ra=

ffiffiffi
g
p

, we use

Aðra; tÞ ¼ ĀðraÞ
1

1þ e�2z

� �
, (19)

where z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
ffiffiffi
g
p
=ra

p
ðt� ra=

ffiffiffi
g
p
Þ.

For tora=
ffiffiffi
g
p

, we apply Relation (18) to Eq. (19), to give

Aðra; tÞ ¼ ĀðraÞ 1�
1

1þ e�2y

� �
, (20)

where y ¼
ffiffiffiffiffiffiffiffiffiffi
ra

ffiffiffi
g
pp
ðra=

ffiffiffi
g
p

t� 1Þ.

6. Results

The model both with, and without, decay is able to
predict a variety of sprout formation patterns. However,
since it is clear that decay of the activator plays an
important role in restricting the extent of sprouting,
discussion of results will focus on the model with decay.
Figs. 7 and 8 illustrate typical sprout positions part-way
through both a solution to the model with activator decay,
and a solution to the model without decay. The value
of t1, the time of the first sprout, is the same for both
simulations. The shaded area shows positions that satisfy
both activator and inhibitor conditions for sprouting, with
the contribution to local inhibition from the most recent
sprouts showing as circular indentations in the contour
(more obvious in Fig. 7). We include animations of these
figures over time as supplementary material.

6.1. Variation of parameters, model with activator decay

Different sprouting patterns may be obtained by
variation of the model parameters. The condition for no
sprouting at all to occur is achieved simply by setting the
activator trigger level to a value less than the activator
steady state value at the midpoint. With the activator
trigger level set above this value, the model will always give
a first sprout at the midpoint. Depending on other
parameter values, the next sprout may occur anywhere
from very close to the midpoint to a point very close to the
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Fig. 8. Model without activator decay (Eqs. (9) and (10)). Sprout

positions (black dots) and area satisfying both activator and inhibitor

condition (shaded light grey) at non-dimensionalised t ¼ 0:430. A new

sprout is predicted to form when the shaded area contacts the blood vessel

(horizontal grey line). Non-dimensionalised parameter values are b ¼ 1:0,
Ithresh ¼ 20, t1 ¼ 0:30306.

Fig. 7. Model with activator decay (Eqs. (8) and (9)). Sprout positions

(black dots) and area satisfying both activator and inhibitor condition

(shaded light grey) at non-dimensionalised t ¼ 0:430. A new sprout is

predicted to form when the shaded area contacts the blood vessel

(horizontal grey line). Non-dimensionalised parameter values are g ¼ 10,

b ¼ 1:0, Ithresh ¼ 20, sprouting radius of 0:5. First sprout appears at

t1 ¼ 0:30306.
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limit of sprouting. Fig. 9 shows sprouting positions for
various sets of parameter values. In general, away from the
limit of sprouting, the effect of increasing parameters is to
decrease the inter-sprout spacing. The exception to this is
the ratio of diffusion coefficients, b. As b increases from
very small values to values greater than 1, the distance
between sprouts increases, reaches a maximum, then
decreases, even for sprouts close to the midpoint. However,
we estimate that the ratio of diffusion coefficients will be of
the order of unity, around which point the general trend is
for decreasing inter-sprout distance with increasing b. Since
inhibitor levels must be below the threshold for sprouting
to occur, increasing the inhibitor threshold relaxes the
condition on sprouting, and sprouts will form closer
together. Increasing the decay rate whilst keeping the same
limit of sprouting effectively decreases the required trigger
level for sprouting, also making it easier for sprouts to
occur, and hence sprouts form closer together as the decay
rate increases. Increasing the limit of sprouting also directly
decreases the activator trigger level, and, once again,
sprouts will occur closer together as the limit of sprouting
is increased.
In Fig. 9(d) clustering of sprouts at the limit of the

domain, and occasionally near the midpoint, may be
observed. Reasons for this and applicability of the model
to small intersprout spacings is discussed in the following
section.

6.2. Long term behaviour of the model

In this section we consider the long term distributions of
activator and inhibitor. We note that the initiation of
sprouts during more advanced angiogenesis falls well
outside the scope of our model, since molecular and
cellular events, including changes in the parent vessel and
in the extracellular matrix, would introduce many new
considerations. It may be that in fact, by the time the later
sprouts are initiated, the capillaries generated from the
early sprouts would have already reached the tumour, and
the dynamics of angiogenic factor production would be
affected. Our model would not be valid in that regime.
Our first note on the long term behaviour of the model

concerns inhibitor levels in the middle of the domain.
Inhibitor is produced in a discrete amount at each
sprouting point, and is subject to diffusion over an infinite
plane, so the contribution to inhibitor level from a single
source will tend to zero. Sprouting begins at the midpoint
and progresses outwards symmetrically. Inhibitor is
produced from all sprouts, but with increasing time, the
inhibitor concentration falls in the middle of the domain.
In contrast to this, the activator concentration always
increases, and consequently, there exists a t such that
AXAtrig and IpI thresh again in the middle of the domain.
The trend may be observed in the animations we include as
additional material.
To avoid this problem in generating the current results,

we have demanded that no new sprouts form between
existing sprouts. Early on in the process, this condition is
not required, since the inhibitor levels stay above the
threshold for the parameter values chosen. We refrain from
predicting when sprouts would form between existing
sprouts since this is outside the framework of our current
modelling.
Our second comment concerns imposing a lower limit to

the intersprout spacing. In its current form the model has
no restrictions on the spacing of sprouts, treating the
limbal blood vessels as a single continuous entity. How-
ever, since blood vessels are composed of cells which will
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Fig. 9. Model with activator decay (Eqs. (8) and (9)). Variation of sprouting positions with model parameters. Black dots indicate predicted sprout

positions. Dotted grey line in subfigure (b) follows the position of the third pair of sprouts as the inhibitor threshold varies. Dotted grey line in subfigure

(d) follows the position of the second pair of sprouts as the limit of sprouting varies. Note that subfigure (d) shows sprouts up to the limit of sprouting

(rlim), while the other subfigures show the first 9 sprouts only. Base parameter values are as follows: b ¼ 1:0, rlim ¼ 0:7, g ¼ gs, and Ithresh ¼ 20:0. Except
near the limit of sprouting, increases in Ithresh or g and in the activator trigger level tend to result in decreases in the inter-sprout spacings, whilst the

response to b varies. (a) Ratio of diffusion coefficients; (b) inhibitor threshold; (c) activator decay rate; (d) activator trigger level.
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react as discrete units to angiogenic stimuli, it follows that
this model is not applicable to scales of the order of one
endothelial cell length and below (less than approximately
10mm or 5� 10�3 in our non-dimensional system). This
particularly applies when determining the position and
time of the outermost pair of sprouts. Without applying
this caveat, sprouting would continue indefinitely just short
of the limit of sprouting. Once this condition is applied,
sprouts may still cluster slightly at the limit of sprouting
under some, but not all, parameter sets. (For example,
there is clustering in Fig. 9(d), but not in Fig. 9(b) for low
values of I thresh).

We conclude this section with a discussion of the
mathematics behind sprout spacings at the limit of
sprouting in the absence of an imposed restriction to the
intersprout spacing. For this it may be best to consider the
progress of the activator trigger level contour along the
blood vessel. Sprouts must occur at points where
this contour intersects the blood vessel, and the slower
the contour moves, the closer the sprouts will be spaced
together (the inhibitor has time to diffuse away). In the
Appendix we derive an expression to approximate the
speed of the activator trigger level contour at the limbus as
it approaches the limit of sprouting, finding that the speed
of this contour is proportional to its distance from the limit
of sprouting. Therefore, very close to the limit of sprouting,
the speed of the contour along the blood vessel can become
very slow indeed. Inhibitor produced by sprouts in this
area always has sufficient time to diffuse away before the
activator trigger level contour has moved far, giving rise to
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very closely spaced sprouts. According to this relationship
(Eq. (A.7)), the activator trigger level contour would take
infinite time to reach the limit of sprouting, and so sprouts
will keep forming. This effect can also tend to decrease the
inter-sprout spacing in the approach to the limit of
sprouting, although this depends on other parameters
and in particular on the number of sprouts already formed
and hence the amount of inhibitor present.

7. Conclusions and directions for future research

We have shown that a simple mechanistic mathematical
model with two, non-interacting, species can predict a
variety of sprout initiation patterns. The model is able to
show conditions under which no sprouting will occur (see
Section 6.1), a notable feature of the experiments by
Folkman and Klagsbrun (1975). Results may be used to
provide initial capillary positions for more extensive
models of angiogenesis, including those with a stochastic
basis.

We conclude this section with a discussion of directions
which may be taken to refine the model.

We have attempted to relate the spacings in the model to
experimental data on spacings, but we have been unable to
find directly relevant investigations. One testable prediction
of this model is that if the tumour is close to the limbal
vessel, then the sprouts will be spaced closer together. In
addition, the model predicts that, if the limit of limbal
sprouting was defined by a given activator concentration,
then the closer the tumour is to the limbal vessel, the larger
the sprouting region.

One of the most notable features of tumour-induced
angiogenic sprouting is the formation of a dense region of
new capillaries close to the tumour, known as the brush
border. Anderson and Chaplain (1998) have developed a
model for the generation of new sprouts in the brush
border region, relating this to the age of the current sprout,
the existence of sufficient space locally for a sprout to form,
and a requirement that the endothelial sprout density is
greater than a threshold level that is inversely proportional
to the local attractant concentration. We note that such a
brush border effect could be predicted with the present
model naturally if the quantity of inhibitor produced by
formation of new sprouts in this area were less than the
quantity of inhibitor produced on formation of sprouts
from the limbal vessels. For example, sprouts in this area
would be forming on other, relatively newly formed blood
vessels, rather than on the mature vessels of the limbus.
Perhaps less basement membrane will have formed around
these immature blood vessels, leading to a lower produc-
tion of endostatin on sprouting. It is also possible that
lower densities of plasma clotting products occur around
the newer vessels (particularly since the flow of blood in
these vessels can be very low), and consequently a
reduction in plasminogen production could feasibly occur.
Proposing specific mechanisms for a reduction in inhibitor
products in the area of the brush border is highly
speculative, particularly since we do not necessarily
attribute inhibition of sprouting to any single product,
however the possibility of such occurrences is not
unreasonable.
We have greatly simplified the biology that is involved in

the initiation of angiogenesis, and mention here a few of
the processes that bear consideration for inclusion in the
mathematical model. One such process is the removal of
activator and inhibitor proteins by the existing vasculature.
Both angiogenic and antiangiogenic products have been
isolated from the circulation, and so it may be necessary to
incorporate a sink for either or both species at the limbus.
It is also worth considering whether uptake of these
proteins by the endothelial cells themselves could be
included in the mathematical model.
Another biological consideration is that of the involve-

ment of receptor proteins in the cellular response to
angiogenic events. It may be too simplistic to argue that
activation of angiogenesis is linked to the local concentra-
tion of a protein. Perhaps the accumulation of a number of
bound receptors acts as the trigger, and this may not
correspond to the local concentration of the activator. The
consideration of receptor binding opens a very large area
for modelling including the examination of such processes
as the upregulation of receptor expression by activated
cells, internalization of bound receptors, and receptor
kinetics.
It has been shown that VEGF accumulates in the tissue

surrounding solid tumours, and such accumulation would
affect the nature of our diffusion term. Leakage of plasma
at the site of new capillary sprouts may also affect diffusion
of proteins, and the clotting itself may act as a source for a
non-diffusing type of local inhibition. All of these factors
bear consideration for inclusion in the model.
Mathematically, modifications could include replace-

ment of such physical impossibilities as the instantaneous
point source, with, for example, a distributed, time
dependent version. It would also be of interest to model
a time-delay between activation of the endothelial cells and
release of inhibitor proteins.
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Appendix A

A.1. Derivation of hyperbolic tangent ansätze

To perform a mathematical analysis on the model with
activator decay included, we considered a variety of
standard techniques to approximate the integral in



ARTICLE IN PRESS
B. Addison-Smith et al. / Journal of Theoretical Biology 250 (2008) 1–15 13
Eq. (8). The most elegant approximation, a hyperbolic
tangent function, was suggested by the shape of the
relation between activator concentration and time, plotted
from quadrature results. A sample of these is shown in
Fig. A.1. We use the following form for the hyperbolic
tangent approximation,

Aðra; tÞ ¼ 0:5½1þ tanhfmðt� nÞg�ĀðraÞ. (A.1)

In this form, the activator concentration at ra reaches half
of its steady-state value at time t ¼ n, and at this point,
qA=qt ¼ 0:5mĀðraÞ. From the results in Section 5.1, we
know that the activator concentration at any point,
ra, always reaches half of its steady state value at
time t ¼ ra=

ffiffiffi
g
p

. We also know that, at t ¼ ra=
ffiffiffi
g
p

,
qA=qt ¼

ffiffiffi
g
p
=ra expð�2ra

ffiffiffi
g
p
Þ. This gives us n ¼ ra=

ffiffiffi
g
p

,
and m ¼ 2

ffiffiffi
g
p

expð�2ra
ffiffiffi
g
p
Þ=ĀðraÞra. To simplify the value

for m we use the following approximation to the modified
Bessel function:

K0ðxÞ �
expð�xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=pÞx

p ,

for large x. This gives an approximation to the steady state
value of

ĀðraÞ ¼
expð�2ra

ffiffiffi
g
p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ra
ffiffiffi
g
p
=p

p . (A.2)

Substituting back into the expression for m we get

m ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
ffiffiffi
g
p
=rap

p
, however we have found that this fits less
Fig. A.1. Comparison of quadrature and hyperbolic tangent approximation. A

first sprout, and r ¼ 0:5, (upper). Quadrature results shown by light grey circles

line. These results are for g ¼ gs.
well than choosing m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
ffiffiffi
g
p
=ra

p
due to differing curva-

tures of the two functions. The slightly lower value for m

has not been rigorously determined, but has been found to
operate very well for our parameter space. Substituting
these values for m and n into Eq. (A.1) gives us

Aðra; tÞ ¼ 0:5 1þ tanh

ffiffiffiffiffiffiffiffiffi
g
ffiffiffi
g
p

ra

s
t�

raffiffiffi
g
p

� � ! !
ĀðraÞ, (A.3)

and this approximation is shown in Fig. A.1 together with
the results of quadrature.
Rewriting this using the exponential form for the

hyperbolic tangent leads to Eq. (19), given in Section 5.1.
This approximation works best for values above t ¼ ra=

ffiffiffi
g
p

,

so we use Relation (18) to give an approximation for
tora=

ffiffiffi
g
p

, given by Eq. (20).
A.2. Progress of activator trigger level contour along blood

vessel

To develop an expression for the speed of progress of
the activator trigger level along the blood vessel we use the
approximation, Eq. (19), and the approximation to the
steady state given by Eq. (A.2). We use Eq. (19), which
applies to the upper portion of the integral, since we
are particularly interested in behaviour as the contour
approaches the limit of sprouting, noting that this limits
the following discussion to t4ra=

ffiffiffi
g
p

.

ctivator concentration vs time at r ¼ 0:0 (lower). Note this is the site of the

, and corresponding hyperbolic tangent approximation by unbroken black
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Substituting the activator trigger level into Eq. (19), and
rearranging to find a relationship between time, tc, and
displacement, rac for points that fall on the activator trigger
level contour, we have

tc ¼
racffiffiffi
g
p �

1

2

ffiffiffiffiffiffiffiffiffi
rac

g
ffiffiffi
g
p

r
ln

ĀðracÞ

Atrig

� 1

� �
. (A.4)

Since the activator trigger level, Atrig, may be taken to be
the activator steady-state value at the limit of sprouting
(represented here by ralim), Atrig may be replaced by ĀðralimÞ.
Using the exponential approximation to the modified
Bessel function given by Eq. (A.2), we manipulate and
rewrite

ln
ĀðracÞ

Atrig

� 1

� �
¼ ln expð�2

ffiffiffi
g
p
ðralim � racÞÞ

ffiffiffiffiffiffiffiffiffi
ralim

rac

r
� 1

� �
.

As the activator contour approaches the limit of sprouting,
rac approaches ralim, so the fraction

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ralim=rac

p
becomes

very close to unity, and may be disregarded. Also, since
ðralim � racÞ is small, we may approximate the exponential
using a first-order Maclaurin series, giving

lnðexpð�2
ffiffiffi
g
p
ðralim � racÞÞ � 1Þ � lnð�2

ffiffiffi
g
p
ðralim � racÞÞ.

Our simplified expression for tc becomes

tc ¼
racffiffiffi
g
p �

1

2

ffiffiffiffiffiffiffiffiffi
rac

g
ffiffiffi
g
p

r
lnð�2

ffiffiffi
g
p
ðralim � racÞÞ. (A.5)

This may be differentiated to find

qtc

qrac

¼
1ffiffiffi
g
p � 1=4 lnð2

ffiffiffi
g
p
ðralim � racÞÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
racg3=2

p
þ 1=2

ffiffiffiffiffiffiffiffi
rac

g3=2

r
ðralim � racÞ

�1. ðA:6Þ

Close to the limit of sprouting, this expression is dominated
by the last term. Hence, by dropping the first two terms
and inverting, we have an expression indicative of the
behaviour of the activator trigger level contour along the
blood vessel as rac approaches ralim

qrac

qtc

/ 2
ffiffiffiffiffiffiffiffiffi
g
ffiffiffi
g
p

q
ralim � racð Þffiffiffiffiffiffi

rac
p . (A.7)

In short, the closer the contour comes to ralim, the slower it
moves.

Appendix B. Supplementary material

Supplementary data associated with this article can
be found in the online version at doi:10.1016/j.jtbi.
2007.08.030.
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