
R

D

D
a

b

c

a

A
R
A

K
C
E
E
M
P
R

1

c
f
m
e
m
t
∼
b
b
T
d

t
f

1
d

Computational Biology and Chemistry 33 (2009) 269–274

Contents lists available at ScienceDirect

Computational Biology and Chemistry

journa l homepage: www.e lsev ier .com/ locate /compbio lchem

esearch Article

irectional persistence and the optimality of run-and-tumble chemotaxis

an V. Nicolau Jr. a,b, Judith P. Armitagec, Philip K. Mainia,c,∗

Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX1 3LB, United Kingdom
Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94708, United States
Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom

r t i c l e i n f o

rticle history:
eceived 30 March 2009
ccepted 17 June 2009

eywords:
hemotaxis
volution
. coli
odelling

ersistence
andom walk

a b s t r a c t

E. coli does chemotaxis by performing a biased random walk composed of alternating periods of swimming
(runs) and reorientations (tumbles). Tumbles are typically modelled as complete directional randomisa-
tions but it is known that in wild type E. coli, successive run directions are actually weakly correlated,
with a mean directional difference of ∼63◦. We recently presented a model of the evolution of chemo-
tactic swimming strategies in bacteria which is able to quantitatively reproduce the emergence of this
correlation. The agreement between model and experiments suggests that directional persistence may
serve some function, a hypothesis supported by the results of an earlier model. Here we investigate the
effect of persistence on chemotactic efficiency, using a spatial Monte Carlo model of bacterial swimming
in a gradient, combined with simulations of natural selection based on chemotactic efficiency. A direct
search of the parameter space reveals two attractant gradient regimes, (a) a low-gradient regime, in which
efficiency is unaffected by directional persistence and (b) a high-gradient regime, in which persistence
can improve chemotactic efficiency. The value of the persistence parameter that maximises this effect
corresponds very closely with the value observed experimentally. This result is matched by independent

simulations of the evolution of directional memory in a population of model bacteria, which also predict
the emergence of persistence in high-gradient conditions. The relationship between optimality and per-
sistence in different environments may reflect a universal property of random-walk foraging algorithms,
which must strike a compromise between two competing aims: exploration and exploitation. We also
present a new graphical way to generally illustrate the evolution of a particular trait in a population, in
terms of variations in an evolvable parameter.
. Introduction

In the paradigm run-and-tumble model of chemotaxis, bacterial
ells of E. coli or Salmonella drift towards spatial regions optimum
or growth and survival (e.g. with high nutrient concentration) by

eans of a motile system consisting of around six helical flagella,
ach with a rotary motor at its base, embedded in the cell wall. If the
otors turn counter-clockwise (CCW), the flagella come together

o form a spinning bundle and the cell swims forward (a run) for
1.0 s. If one or more of the motors turn clockwise (CW), the bundle

ecomes unstable and the cell turns in place at random (a tum-
le) for ∼0.1 s, with no net displacement (Berg and Brown, 1972).
he purpose of a tumble is to reorient the cell to a new (random)
irection. In the absence of an attractant gradient, this results in a

∗ Corresponding author at: Centre for Mathematical Biology, Mathematical Insti-
ute, University of Oxford, Oxford OX1 3LB, United Kingdom. Tel: +44 1865 280497;
ax: +44 1865 283882.

E-mail address: maini@maths.ox.ac.uk (P.K. Maini).

476-9271/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
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© 2009 Elsevier Ltd. All rights reserved.

diffusive random walk with a diffusion constant of ∼4 × 10−6 cm2/s
(Berg, 2003).

In the presence of a gradient of attractant (or repellent), the
bacteria use temporal comparisons of the attractant concentration
over the preceding ∼3–4 s to determine if conditions are improving
or deteriorating (Clark and Grant, 2005; Hazelbauer et al., 2008).
If the former, tumbles are suppressed, increasing the mean run
length, and the cells drift in their current, favourable direction
(within limitations due to Brownian forces). Conversely, when con-
ditions deteriorate, the cell increases its chances of moving in a
favourable new direction by tumbling. This combination of run-
and-tumble swimming and bias control leads to a drift velocity (in
steep gradient of attractant) of around ∼7 �m/s (Berg and Turner,
1990). The response to attractant gradients is consistent with the
Weber–Fechner law and gives a constant bias change in exponential

gradients (Dahlquist, 2002).

A detail often omitted from most mathematical models of E. coli
chemotaxis (e.g. see the review by Tindall et al., 2008) is that during
a tumble, reorientation is not perfect or complete, i.e. the new direc-
tion is not chosen completely at random; instead, the bacterium is

http://www.sciencedirect.com/science/journal/14769271
http://www.elsevier.com/locate/compbiolchem
mailto:maini@maths.ox.ac.uk
dx.doi.org/10.1016/j.compbiolchem.2009.06.003
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ore likely to reorient within the forward hemisphere, so that the
verage angle between successive runs is not 90◦ (corresponding
o orthogonality and therefore complete reorientation) but ∼63◦

Berg and Brown, 1972). This was computed by tracking swimming
acteria, recording the directional bearing during each individual
traight swim (run) and computing the absolute mean difference
etween successive run directions. Recently, Locsei (2007) anal-
sed a model of run-and-tumble with directional persistence and
ound that, in the weak chemotaxis limit, this so-called ‘persistence
f direction’ can increase the drift velocity of a bacterium up an
ttractant gradient by up to 38% relative to the memoryless case.

However, it was also found in this analysis that the ‘persistence
arameter’ ˛ that maximises the drift velocity (˛ = 0.78) is larger by
factor of more than 2 compared with the value observed in live E.

oli (˛ = 0.33). This is intriguing, since in the absence of other influ-
nces, one might expect evolution to have optimised the search
trategy so that the persistence observed in E. coli is close to the
heoretically determined value that maximises the drift velocity (if
ersistence confers some selective advantage). A possible explana-
ion for the discrepancy may be that increasing drift velocity is not
he only determinant of optimal foraging. The in vivo persistence
f direction may reflect a compromise between two (potentially
ompeting) aims, (1) to move quickly towards nutrients and (2) to
pend most of the time in regions of high nutrient density (Locsei,
007), once these are located. While drift velocity is important for
1), it says nothing at all about (2). A more balanced measure of the
fficiency of the chemotactic strategy is the overall (or mean) quan-
ity of nutrient located over time. In this paper we investigate the
ffect of directional memory on the optimality of run-and-tumble
hemotaxis by using this measure.

A further piece of evidence in favour of directional persistence
erving some function is that, in E. coli, the rate of signal termi-
ation and adaptation is larger than would be expected through
ephosphorylation alone. The chemotactic pathway directly inter-
enes, via the protein CheZ, to terminate the signal ‘early’ (Bren et
l., 1996). Since longer tumble times lead to more randomization
less persistence), terminating the chemotactic signal early may
e a way to enforce a shorter tumble time, thus implementing a
articular value of directional persistence.

Thinking of evolution as a process of stochastic optimisation
that is, optimisation that incorporates probabilistic elements,
ither in the problem data or in the algorithm itself through random
arameter values or random choices) over the fitness landscape
Edwards, 1987) leads to the natural question of when this ‘algo-
ithm’ is able to find the optimal solution to such an optimisation
ask. In general, due to the constraints on evolution, it is not guar-
nteed that evolution would in fact visit the global optimum of this
andscape (or remain there if this occurred). This would depend on

number of factors such as the ruggedness and structure of the
andscape, mutation-selection balance, the mutation or replication
ate, the distribution of mutational jump distances on the land-
cape, competition with other species and stochasticity (drift). We
herefore suggested recently (Nicolau et al., in preparation) that an
volutionary strategy might be called evolutionarily optimal if it is
ptimal up to the limitations imposed by evolution as an optimisa-
ion strategy. Our investigation of the role of directional persistence
s also motivated by this concept of the evolutionary (as opposed
o global) optimality of a biological strategy.

To gain insight into the evolution of directional persistence in E.
oli chemotaxis, and to understand its relationship to the optimal
hemotactic strategy, we here pursue two complementary analyses.

e firstly use direct Monte Carlo simulations of a model of run-and-

umble chemotaxis to determine the effect of directional memory
n the efficiency of run-and-tumble in environments with different
ttractant gradients. We then simulate the evolution of directional
emory (in isolation from other chemotactic mechanisms) in the
y and Chemistry 33 (2009) 269–274

same environments and compare the results with those from the
direct simulation.

2. Methods

Our simulations in this paper are based on the model of bacte-
rial chemotaxis proposed by Segall and Block (1986) and Schnitzer
(1993). n bacteria are initially placed (and oriented) at random in
the 2D simulation space. An attractant is also placed in this space,
with a linear gradient so that the attractant concentration at the
point (x, y) is given by

C(x, y) = max{cmax − k
√

(x − x0)2 + (y − y0)2, 0} (1)

where k is the gradient, (x0, y0) is the origin and cmax is the con-
centration of attractant at the peak of the gradient. We assumed a
linear gradient because the slope k is a constant, allowing different
steepnesses of gradient to be directly compared. Simulations run
with a Gaussian attractant confirm that this does not change the
findings reported here.

At each pass of the algorithm, each bacterium is visited in
turn, similarly to the algorithm described for molecular motion
in Nicolau et al. (2007). In modelling chemotaxis, we follow the
approach of Clark and Grant (2005). The cells compare their aver-
age receptor occupancy, approximated by the values of C, between 4
and 1 s in the past, 〈c〉1–4, to the average receptor occupancy during
the past 1 s, 〈c〉0–1, to produce the biaser b = 〈c〉0–1 − 〈c〉1–4. If b > 0,
the cell reduces the tumbling rate � tumble from the ambient value
� 0 by an amount dependent on b: � tumble = � 0 − �f(b), where f(b)
is a monotonically increasing function of b and � is a sensitivity
coefficient that is positive for positive chemotaxis and negative for
negative chemotaxis. Following Clark and Grant (2005), we assume
here a linear relation, i.e. f(b) = b. We show in recent work (Nicolau
et al., in preparation) that simulations of the evolution for a digital
genotype coding for chemotactic swimming strategy indicate that
the characteristic time period of integration (the recent and distant
windows) is optimised by evolution to compensate for environ-
mental noise. Here we assume the scale of temporal comparisons
experimentally determined for E. coli (1 and 3 s, for the recent and
distant windows respectively, see Nicolau et al., in preparation).
Without loss of generality, we set � , the sensitivity of the response
of the bacterium to changes in attractant concentration, to 1. If b < 0,
� tumble is retained at the ambient value � 0.

If a bacterium, i, is in a “run”, its orientation �i and position pi
are updated according to the system of equations:

�i(t + 1) = �i(t) + �Drot

pi(t + 1) = pi(t) + v

(
cos �i

sin �i

)
(2)

where Drot is the rotational diffusion coefficient (set to 0.15 rad2/s,
the value in a mammalian gut, see Strong et al., 1998), � = N(0, 1)
and v is the mean velocity of the bacterium (25 �m/s, Darnton et
al., 2007).

After each computation of the new position and orientation,
the simulation time t is incremented by an increment ıt (0.1 s in
this paper). A random number between 0 and 1, r, is compared to
1/� tumble. If r < 1/� tumble then the cell tumbles and chooses a new
direction:

�i(t + 1) = �i(t) + ϑtumbleDrot (3)
where ϑtumble is the persistence of direction parameter. Note that
the difference between (3) and the reorientation in Eq. (2) is in the
magnitude of ϑtumble. Persistence is defined differently here than
in Locsei (2007) because of the different modelling approaches in
the two studies. If ϑtumble = 0 then the new direction is identical to



Biology and Chemistry 33 (2009) 269–274 271

t
r
(
s
c

3

3

t
s
s
m
r
t
fi

e
a
∼
t
t
i
b
m
1
b
c
o

b
n
a
(
e
l

F
a
d
t
t
n
t

D.V. Nicolau Jr. et al. / Computational

he previous direction (no reorientation). Large values of ϑtumble
esult in the new direction being independent of the old direction
perfect reorientation). In E. coli, the mean angle between succes-
ive run directions has been found to be ϕ ≈ 63◦ (Locsei, 2007),
orresponding to a directional persistence of ≈1.1 rad in our model.

. Results

.1. Direct Simulation

We first investigated the effect of ϑtumble on the mean quan-
ity of attractant located by a population of n bacteria (Fig. 1). All
imulation results presented here are obtained with n = 200. The
imulations were run for 1000 s of real time (based on the swim-
ing speed and body size of WT E. coli). Both of these values

eflect a compromise between numerical accuracy and computa-
ional resources. Unless otherwise stated, all data points in the
gures are averages taken over the bacterial population.

The results show a transition between two regimes. If the gradi-
nt is shallow (so that attractant is relatively evenly spread), above
characteristic threshold value of ϑtumble (greater than 1.0 rad or
55◦), all strategies are approximately equal. Above this value, the

otal attractant acquired plateaus at a level dependent mainly on
he gradient. This threshold value varies very weakly with increas-
ng gradient. Variations in efficiency at high ϑtumble are dominated
y simulation stochasticity. At high gradients, however, a maxi-
um efficiency is reached for values of ϑtumble between 0.9 and

.1 rad. Values larger than this result in reduced efficiency. The effect
ecomes increasingly important as gradients become steeper. The
rossover between the two regimes takes place at gradient values
f around 1.5 units of concentration per bacterial body diameter.

These data (Fig. 1) indicate that in environments characterised
y shallow gradients, a preference for the forward hemisphere is

either beneficial nor harmful as long as the reorientation during
tumble ensures a minimum average reorientation, ϑtumble > 1.0

or ∼55◦ between runs). Looking at the effect from the opposite
nd, perfect reorientation is neither necessary nor harmful at shal-
ow gradients. On the other hand, in steep-gradient environments,

ig. 1. Attractant acquired by a population (as a proportion of the maximum attain-
ble) versus the persistence parameter used by individuals in that population in
ifferent gradient environments (denoted “grad”). A minimum degree of reorien-
ation (with a persistence parameter greater than a threshold of ∼1.0) is necessary
o maximise efficiency; after this point, increasing the degree of reorientation does
ot improve efficiency and in steeper gradient environments, it reduces it relative
o the optimal value. All values are means over the population.
Fig. 2. Efficiency of chemotactic swimming predicted for WT E. coli, i.e. with a mean
of around 63◦ between successive runs, relative to the complete reorientation case,
as a function of varying directional persistence parameter ϑtumble. All values are
means across the population.

complete reorientation reduces the amount of attractant located.
Similarly to the low-gradient case, a minimum amount of reori-
entation must be ensured but in contrast, if the gradient is large,
tumbles causing extreme reorientation are harmful.

To further gain insight into this behaviour, we compared the
relative performance of the optimal directional persistence strat-
egy (ϑtumble = 1.1, or ∼60◦ between runs), denoted Effpersistence with
the perfect reorientation strategy (ϑtumble large, corresponding to
a mean of 90◦ between runs), denoted Eff. The results are shown
in Fig. 2 and confirm that in shallow gradients, directional memory
has no impact on the efficiency of chemotaxis while in high gradi-
ents, it outperforms perfect reorientation by around 40–50%. The
transition between these two regimes occurs in a small gradient
interval between 1.75 and 2 concentration units per bacterial body
length.

3.2. Evolutionary Model

We now describe a variation of the model that was used to
simulate the evolution of directional persistence. Instead of fixing
the persistence parameter ϑtumble in each simulation experiment,
each bacterium i is initially assigned an individual value of ϑtumble
(denoted ϑtumble,i) of 0, corresponding to a complete inability to
tumble. We then allow the values of the persistence parameter to
evolve by natural selection over 100 generations. In the first gen-
eration, the simulation is run in the same way as described above
(tmax = 1000 s of real time based on the swimming speed of WT E.
coli, n = 200). At the end of the generation, the bacteria that have
acquired more attractant than the mean taken over the population
are allowed to survive and divide once. The other 50% of the popula-
tion is removed from the simulation. This method ensures constant
population size, for simplicity.

Each daughter cell is identical to the parent except that, to sim-
ulate mutation, its persistence is incremented by a random amount

ϑtumble,child = ϑtumble,parent + �m (4)

where as above, � = N(0, 1) and m is a positive parameter controlling

the rate of mutation. We chose m = 0.4, a value that keeps simula-
tion times manageable but the mean mutation in the persistence
parameter to less than 0.25 per generation. Varying this value in
the range 0.1–0.6 does not change the outcome of the evolution but
affects the speed of the process (the number of generations required
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or a stable strategy to emerge); we therefore chose a relatively large
alue in order to reduce simulation time.

If, due to the stochastic value of the mutation term in (4), the
ersistence parameter of an offspring is ever negative, then it is set
o 0, since in a real bacterium or moving particle, the persistence
an only take a positive value. This cycle is then repeated over 100
enerations, keeping track in each generation of the mean amount
f attractant acquired and the mean value of the persistence over
he population.

.3. Results of In Silico Evolution

Evolutionary sequences were run for different gradient values.
ig. 3 (top) shows the evolution of the mean population direc-
ional persistence. The results are broadly consistent with those
f the direct simulations. In shallow gradients, because long tum-
les are not harmful but short tumbles below the threshold of

◦

tumble > 1.0 (corresponding to a mean angle between runs of ∼55 )
re detrimental, individuals with large reorientation strategies are
ot disfavoured while those with tumbles below this threshold are,
orrespondingly, less able to locate attractant. Selection thus results
n an upwards drift of the mean persistence value, which diverges.

ig. 3. Evolution of populations placed in different attractant gradients. Top: Evolu-
ion of persistence in a population with zero initial persistence. Bottom: Attractant
cquired during each generation. All values are means across the population taken
t the end of individual generations.

Fig. 4. Evolutionary characteristic plot: the scatter pattern of a biological function
output (attractant acquired, in this case) against an evolved parameter (persistence,

in this case), showing the size of the genotypic space explored (horizontal width
of each scatterplot), fitness-genotype sensitivity (vertical height of each scatterplot)
and the self-limiting nature of a continuous mutation-selection evolutionary process
(size and shape of the cluster at the tail of each scatterplot).

In steep gradients, however, overly reorienting tumbles are detri-
mental (see Figs. 1 and 2). There, the tug-of-war between these
two effects, namely (1) the need for a minimum randomisation of
direction during a tumble and (2) the benefits obtained from lim-
iting the length of tumbles, results in a self-limiting evolutionary
trajectory and the mean population persistence plateaus at a value
of around ϑtumble = 1.1 (corresponding to a mean angle between
runs of around ∼60◦) after many generations. Fig. 3 (bottom)
shows the mean amount of attractant found in each generation.
At shallower gradients, where variations in persistence are not cru-
cial, a plateau is reached very quickly, while in steeper gradients,
the emergence of the optimum strategy requires more genera-
tions.

4. Discussion

4.1. Qualitative Features of the Evolutionary Runs

A different way to visualise the evolution data is to plot persis-
tence on one axis and the efficiency (attractant found) on the other,
as in Fig. 4. These series (which we call “evolution characteristics” in
what follows) contain three important pieces of information. Firstly,
the total length of each characteristic in the horizontal direction
shows the digital “genotype space” explored by the population.
Thus a horizontally short characteristic indicates a self-limiting
evolutionary process with a (finite) optimal genotype, as is the case
in the large-gradient case here (bottom characteristic). A long char-
acteristic indicates no equilibrium (corresponding to a global or
local optimum) was found in the evolutionary run (but that does
not mean that one does not exist).

Secondly, the vertical size of each characteristic is an indication
of the sensitivity of the fitness (attractant found, in this case) to the
genotype (persistence, in this case) over the generations. Consis-
tently with the discussion above, the sensitivity of the efficiency on
the reorientation strategy is highest in steep gradient environments

(bottom characteristic, shown with vertical braces) and lowest in
shallow gradient environments (top curve).

Thirdly, each characteristic shows two regimes along the hor-
izontal axis, (a) an initial rapid increase in the population mean
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ersistence from 0 (points scattered along the x-axis) and (b) a
luster of points, indicating the emergence of a stable or quasi-
table equilibrium in the population. The elongation of this cluster
s an indication of the sensitivity of selection associated with digi-
al genotype changes near the equilibrium. Thus, the equilibrium
luster for the high-gradient case is the most compact, because
ndividuals with ϑtumble > 1.25 or ϑtumble < 0.9 are very unlikely
o reproduce (x-direction) and because small changes in ϑtumble
ear the equilibrium ϑtumble result in large changes in fitness (y-
irection).

.2. The Role of Persistence and Exploration versus Exploitation

We report that in a model of run-and-tumble chemotaxis in the
resence of a linear attractant profile, a moderate directional per-
istence is beneficial (in sharp gradient environments) or at least
eutral (in shallow gradient environments) as long as the randomi-
ation during a tumble is above a threshold value of ∼55◦. These
esults are consistent with the conclusions of Locsei (2007), namely
hat directional persistence is beneficial, presumably by increas-
ng drift velocity. We find that, in the former regime, the optimal
alue of ϑtumble = 1.1 ± 0.15, corresponding to ϕ = 63◦ ± 9◦ between
uns, while in E. coli, ϕ ≈ 63◦ between runs. This finding is sup-
orted independently both by the in silico evolution data and by
direct brute force search through the range of possible values of
tumble. These results suggest that persistence of direction not only

ncreases chemotactic drift in isolation from any other aims of the
hemotactic strategy (such as remaining in a region of high nutrient
oncentration, once having drifted there), but is in fact both evo-
utionarily and globally optimal in the context of run-and-tumble
nd specifically at a parameter set very near to that found in vivo
nd identified by simulations of the model. Its effect is substantial
ut moderate: even in the steep-gradient regime (k = 2–2.5), 45%
ore attractant is located with a ϑtumble = 1.1 strategy than with a

tumble = 5 (complete reorientation) strategy. This is consistent with
he analysis of Locsei, who found a difference of 38% in mean drift
elocity up a gradient between the two equivalent cases (Locsei,
007). In the shallow-gradient regime, we report that, in the frame-
ork of our model, persistence of direction is neither beneficial nor
etrimental, so long as a minimum amount of reorientation takes
lace during a tumble.

These results are not counter-intuitive. If persistence of direc-
ion is a means of increasing chemotactic drift velocity, then one
ould expect its impact to be greatest in steep-gradient environ-
ents, in which this function is more important. More generally, in

hallow-gradient environments, the specific chemotactic strategy
nd chemotactic ability in a broad sense, would not be expected to
e as important as in steep-gradient environments. This point can
e illustrated by noting that in the limit as the gradient tends to
, an organism with no chemotactic ability (e.g. an immotile bac-
erium diffusing at random) would locate as much attractant as one
ith a highly efficient and sophisticated chemotaxis mechanism.
onversely, in the limit as the gradient becomes large, differences

n attractant concentration become large over small distances and
ence the ability to move to favourable regions quickly becomes

ncreasingly important.
Why might evolution select for directional memory, i.e. why

ight directional memory increase chemotactic efficiency? A
traightforward answer is that since tumbles that reorient to a
evel just above the minimum threshold (Fig. 3) result in maxi-

um efficiency, there is no selective advantage from spending large

mounts of time in unnecessarily long reorienting tumbles without
et displacement in a favourable direction. Therefore minimally

ong tumbles may simply be a way to partition swimming time
ore efficiently (since tumbles result in little net displacement and

herefore no favourable drift).
y and Chemistry 33 (2009) 269–274 273

It has also recently been shown using a continuous mathe-
matical model of E. coli chemotaxis that persistence of direction
increases drift velocity up a gradient (Locsei, 2007). However, we
speculate that this is not the only direct (as opposed to indirectly
increasing efficiency by reducing tumbling time) reason. Firstly, our
simulation times are so large (1000 s) compared with the average
drift time (tens of seconds for the gradients used here) that the
vast majority of the simulation time is spent near the maximum,
drifting up and down a narrow portion of the gradient, where this
effect would be small. Secondly, increasing drift velocity would be
expected to have a larger effect when the typical gradient distance
is large (shallow gradients) and a smaller one when the width is
smaller (sharp gradients). In contrast, our results indicate that the
directional persistence function is only useful in sharp-gradient
environments, where again this effect would be less important.

We propose that another effect is at play in addition (not in oppo-
sition) to increased drift velocity. This is based on the observation
that a very large value of persistence (reorientation) is associated
with a significant probability of choosing a new direction that is
close to the old direction due to the periodicity of direction; that
is, reorienting for a long time is more likely to result in a new
direction close to the previous direction, than reorienting for a mod-
erate time. Thus, a slight preference for the forward hemisphere
decreases the chance of choosing such a direction and paradoxi-
cally may be better at producing reorientation steps that result in a
new direction that is on average perpendicular to the old direction
(i.e. complete orthogonal reorientation). This may lead to a more
efficient algorithm for partitioning the search space (Hanson et al.,
2006).

It is intriguing that the optimal value of ϑtumble varies very
weakly with attractant gradient. In the shallow gradient regime,
the ϑtumble threshold above which tumbles are sufficiently dis-
orientating is also a weak function of the gradient. Over all the
cases considered here, we find (both through in silico evolution and
direct Monte Carlo simulation) that 0.95 < ϑtumble < 1.25 is always
optimal. This is a rather narrow window, corresponding to only a
∼15◦ difference in forward hemisphere preference. One possibility
is that the optimal range would be different for different attrac-
tant profiles. However, in our simulations, using different gradient
forms (e.g. Gaussian, quadratic, etc.) does not considerably affect
the results. Using randomly placed multiple, additive, sources of
attractant with these forms also does not alter our findings (data
not shown).

We speculate that the slimness of this optimal range results from
a compromise between two different aims of spatially “blind” for-
aging strategies (without the ability to compute gradients locally,
relying instead on temporal comparisons) and that it is a univer-
sal property of such algorithms in two dimensions. The first of
these two aims is to explore as much of the available space as
possible in the shortest time possible. This is maximised by trav-
eling in a straight line with no reorientations, ϑtumble = 0 (ballistic
motion). The second aim is to explore (or occupy) space locally once
a favourable region has been found. This is achieved with frequent
reorientations and large values of ϑtumble and in the limit as this
parameter tends to infinity, leads to pure diffusion or sub-diffusion.

These two aims are competing. The region between the two
limits corresponds to superdiffusion, a diffusion-like process char-
acterised by the mean squared distance of a particle (organism)
from its starting site varying with a fixed power of time called the
anomalous exponent (usually denoted ˛), with 1 < ˛ < 2 (Nicolau et
al., 2007). If small changes in the exploration strategy (captured by

the anomalous exponent) lead to large changes in the respective
benefits obtained independently from these two functions (explo-
ration and exploitation), then the region of compromise would be
expected to be narrow. This in turn would translate, in the case
of superdiffusion by directional memory (as opposed to e.g. Levy
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ights), into a narrow region for ϑtumble. Measurements of ϑtumble
r comparable parameters for other foraging systems would con-
rm (or deny) this supposition. For example, Hanson et al. (2006)
eport that filamentous fungi exploring microconfined geometries
aunch daughter hypha at ∼70◦ to the parent hypha – not 90◦, which

ould maximise the efficiency of spatial partitioning.
Deviations from diffusive search behaviour to subdiffusion or

uperdiffusion appear to be ubiquitous at all biological scales
Viswanathan et al., 1999) including cell membranes (Nicolau et
l., 2007) and human travel (Brockmann et al., 2006). These strate-
ies have presumably evolved in order to maximise the efficiency
f searching in different kinds of environments. Understanding the
elationship between the distribution of a resource of interest in
he environment and the evolved search strategy (and its super-,
espectively, sub-diffusivity) is an important challenge in the study
f foraging behaviour and its evolution.

In recent work (Nicolau et al., in preparation) we show how a
un-and-tumble-like chemotactic swimming strategy can emerge
aturally from simulations of an evolutionary process and how in
ilico evolution can reproduce the observed properties of E. coli
hemotaxis and related bacteria down to fine quantitative details
uch as the scale of temporal comparisons, running and tumbling
imes and the persistence-of-direction property. Given these find-
ngs and the very high efficiency predicted here for run-and-tumble
hemotaxis, we might expect that all bacteria employ this forag-
ng strategy. There are myriad factors not considered in this crude

odel, including energy consumption, bacterial size, turbulence
n the environment and number of attractant or repellent sources.
everal different chemotaxis strategies for bacteria have been iden-
ified to date, including run-and-stop and run-and-reverse (Porter
t al., 2008). Presumably these have arisen because different envi-
onments place different pressures on foraging micro-organisms.

A challenge for the future is to shed light on the factors that con-
ribute to the efficiency of a foraging strategy in a particular type of
nvironment. For example, are strategies that use directional mem-
ry or superdiffusion efficient in a patchy food environment? If so,
ow does the optimal anomalous exponent or directional memory
arameter vary with the patch density and size distribution? Are
he efficiencies of run-and-tumble, run-and-reverse and run-and-
top different relative to the characteristic environments in which
he respective bacteria live?

. Conclusions

We considered the variation in chemotactic efficiency as a func-
ion of the persistence of direction (and its evolution) for model
acteria resembling E. coli. We used a simplified version of a detailed
arlier model to investigate this in depth by directly representing
ersistence of direction as a parameter in the model rather than
s an effect due to time spent tumbling. A brute force search of
he persistence parameter space shows that a minimum value of

◦
ersistence of direction of ∼60–65 is required to achieve optimal
hemotaxis in shallow gradients but that in steep gradients there is
small penalty associated with overly reorienting tumbles. Evolu-

ionary simulations confirm these findings and show that a digital
opulation evolves a persistence corresponding to that measured
y and Chemistry 33 (2009) 269–274

in E. coli only in steep gradients but that in shallow gradients large
reorientations are favoured. We speculate on the reasons why a
preference for the forward hemisphere might arise from an evolu-
tionary process, concluding that three factors may be at play, with
the effects of these being roughly additive: (a) minimising the time
spent tumbling (which is not being used to explore new areas), (b)
increasing drift speed up a gradient and (c) optimally partition-
ing the search space to find a compromise between exploration
and exploitation. We present a new method of graphically visualis-
ing the evolution of a biological trait or function, which we call an
evolutionary characteristic.
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