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Reaction-diffusion models for biological pattern formation have been studied
extensively in a variety of embryonic and ecological contexts. However, despite
experimental evidence pointing to the existence of spatial inhomogeneities in various
biological systems, most models have only been considered in a spatially homogeneous
environment. The authors consider a two-chemical reaction-diffusion mechanism in
one space dimension in which one of the diffusion coefficients depends explicitly on
the spatial variable. The model is analysed in the case of a step function diffusion
coefficient and the insight gained for this special case is used to discuss pattern
generation for smoothly varying diffusion coefficients. The results show that spatial
inhomogeneity may be an important biological pattern regulator, and possible
applications of the model to chondrogenesis in the vertebrate limb are suggested.

Keywords: diffusion-driven instability, pattern isolation; inhomogeneous environ-
ment; developmental hierarchy.

1. Introduction

Reaction-diffusion theory for pattern formation was first proposed by Turing (1952)
in his seminal work on the chemical basis for morphogenesis. Turing demonstrated
that, in certain systems, diffusion could give rise to spatial inhomogeneities (Turing
structures) in the concentration of reacting chemicals (termed morphogens). With
the hypothesis that cells differentiate according to local morphogen concentration,
this prepattern in morphogen concentration would then be translated into a spatial
pattern of cell differentiation. This is the fundamental concept underlying the
application of reaction-diffusion models to morphogenesis: for a review see, for
example, the books by Meinhardt (1982) and Murray (1989). Although experimental
evidence for the existence of morphogens in biological systems is, at present, tenuous,
Turing structures have recently been found in chemical systems (Castets et al., 1990;
Ouyang & Swinney, 1991).

An alternative model for pattern formation is the gradient model proposed by
Wolpert (1969, 1981) and applied to skeletal patterning in the vertebrate limb. The
basic hypothesis of this model is that a gradient in morphogen concentration is set
up along the anterior-posterior (AP) axis of the developing limb bud. With the
further hypothesis that there are a series of threshold levels for differentiation, this
model exhibits patterns which are consistent with those observed in chondrogenesis
in the limb. However, although gradients in the concentration of certain retinoids
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have been shown to exist in the developing chick limb (Thaller & Eichele, 1987),
their role in pattern formation remains controversial (Wanek et al., 1991; Noji et al^
1991). Moreover, although positional information in the gradient model is set up by
a simple mechanism, its interpretation is via a complex series of arbitrary thresholds
for which detailed mechanisms have not been proposed. In contrast, the mechanism
of spatial patterning in Turing systems, although much more complex, is well
understood, and its interpretation is via a simple single threshold level.

Turing models have been proposed as possible pattern generators in a variety of
biological situations. However, in the particular application to the developing limb
bud there are a number of drawbacks to this model (Maini & Solursh, 1991). Firstly,
it has been shown that solutions of Turing models are sensitive to initial conditions
(Bard & Lauder, 1974) and that to generate the sequence of bifurcations observed
in skeletal patterning in the limb requires the parameters of the system to evolve in
a very precise and complex manner (Dillon et al., 1992). These properties are obvious
drawbacks of a model for a robust patterning mechanism such as that in the limb.
Recently, however, it has been shown that the choice of mixed boundary conditions
can greatly influence the patterning properties of the Turing model and one can, in
fact, generate the sequence of bifurcations observed in the limb bud in a robust and
simple manner (Dillon et al., 1992).

Another criticism of Turing systems is that the patterns produced are scale
dependent. In the developing chick limb, recent experiments (Wolpert & Hornbruch,
1990) show that a recombinant limb bud consisting of the anterior halves of two
different limb buds develops two humeri, yet is the same size as a normal limb bud,
which only produces one humerus. This clearly contradicts the standard Turing
model which predicts an identical number of elements in limbs of the same size.

A further criticism of Turing models for limb development is that they produce
spatial patterns which are symmetric along the AP axis of the limb bud. The skeletal
elements in the limb, however, are not symmetrically situated along this axis (see e.g.
Walbot & Holder, 1987: Chap. 18). Moreover, the patterns generated by the standard
Turing model cannot, in general, distinguish between distinct skeletal rudiments such
as the different types of digit, because the amplitude of oscillations is constant
throughout the solution profile.

The reason for these inconsistencies with experimental observation may be that
most apphcations of Turing systems assume that the background environment is
spatially homogeneous, that is, all model parameters are assumed constant across
the domain. However, there is experimental evidence to suggest that in some
biological systems environmental inhomogeneity may be an important regulator of
pattern. This was recognized by Turing himself, who, in his 1952 paper, wrote that
'most of an organism, most of the time, is developing from one pattern into another,
rather than from homogeneity into a pattern'. In this paper we consider how an
underlying spatial prepattern in diffusion coefficients modifies the pattern forming
properties of a reaction-diffusion model. In developmental biology, spatial variation
in morphogen diffusivity may be controlled by the concentration of a regulatory
chemical which, for example, affects morphogen transport by binding to the
morphogen or by modulating gap junction permeability (Othmer & Pate, 1980,
Hunding & Serenson, 1988; Brummer et al., 1991). Several authors have investigated
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numerically the effects of spatially varying reaction terms in reaction-diffusion
systems (Gierer & Meinhardt, 1972; Hunding et al., 1990, Lacalli, 1990) and the
effects of spatially varying diffusion (Hunding, 1987, 1989). Auchmuty & Nicolis
(1974) and Herschkowitz-Kaufman (1975) analyse a system in which one of the
reaction terms depends explicitly on space. However, we are not aware of any
analytical studies of the effects of spatially inhomogeneous diffusion coefficients.

We present a two-step reaction-diffusion model for pattern formation. The first
step establishes a prepattern in diffusion coefficients which then modifies the
pattern-forming properties of the overlying reaction-diffusion mechanism. Such a
system is not mathematically tractable in general, but can be analysed when the
spatial variation in diffusion coefficients is piecewise constant. In Section 2 we present
a linear analysis for a system in which one of the diffusion coefficients is a step
function in space with only one point of discontinuity, while the other is constant
across the domain. In Section 3 we present numerical solutions of the full nonlinear
model and show that the predictions from linear analysis compare well with the
solutions of the nonlinear problem. We also show that the model can exhibit highly
asymmetric and isolated patterns. Although a discontinuity in diffusion coefficient is
biologically implausible, this simple case provides an understanding of how spatial
inhomogeneities can modulate pattern in more realistic systems. In Section 4 we
consider a more biologically realistic two-step model in which the spatially hetero-
geneous distribution of a regulatory chemical sets up a smooth gradient in one of
the diffusion coefficients of the reaction-diffusion model. This composite model
essentially incorporates the gradient model with the classical Turing model. We
discuss the possible application of our composite model to chondrogenesis in
Section 5.

2. Linear analyse

A reaction-diffusion system is said to exhibit diffusion-driven instability (Turing,
1952) if a uniform steady state is stable to spatially homogeneous perturbations, but
unstable to spatially inhomogeneous perturbations. When diffusive instability is
possible, stable spatially heterogeneous solutions of the model equations may exist
Therefore, our primary interest is to determine the parameter domain in which
diffusion-driven instability may occur, and we begin by summarizing necessary and
sufficient conditions for the generation of pattern in a homogeneous domain.

We consider the standard dimensionless two-species Turing model in one space
dimension:

^ Yf(u,v) + ^ (2.1a)
ot ox
dv d2v
— = yg(u, v) + D —
dt dx

D—. (2.1b)

Here y is a scale factor proportional to the length of the domain, and / and g are
the reaction kinetics for which there exists a positive homogeneous steady state
("o, v0). In this model it is assumed that morphogen diffusivity is constant throughout
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the domain, so that the ratio D of diffusion coefficients is a positive constant We
further assume that the spatial domain has been nondimensionalized to [0 , 1], and
we impose zero-flux boundary conditions. Standard linear analysis shows that
diffusion-driven instability may occur in this system for parameters lying in the Turing
space denned by

a + d < 0, (2.2a)

ad > be, (2.2b)

where
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du
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(2.3)

For a detailed derivation of these results, see, for example, the book by Murray
(1989). The above results hold in higher dimensions but in the rest of this paper we
restrict our attention to one dimension. The one-dimensional geometry facilitates
analytical investigation and, moreover, for the particular application to the limb bud
discussed below, this is a relevant approximation and is widely used (see, for a review,
Maini & Solursh, 1991). It follows from (2.2a-c) that both ad and be must be negative,
so that, to within an arbitrary relabelling of species, there are essentially two kinds
of reaction-diffusion models capable of exhibiting diffusion-driven instability, having
kinetic matrices taking one of the following forms:

pure activator-inhibitor model cross activator-inhibitor model

In the former case, the steady-state solutions are always in phase, whereas those in
the latter are in antiphase, at least in the vicinity of primary bifurcation points (Dillon
et al., 1992). In both cases, along primary bifurcation branches, the model solutions
are characterized by an approximately equal spaced succession of peaks and troughs
of constant amplitude spread across the domain (Fig. 1), such that increases in the
length of the domain lead, in general, to more complicated patterns with a greater
number of peaks and troughs. An important property of these solutions is the
sensitivity of pattern polarity to initial conditions. This may be seen analytically for
the linearized system, for whenever (rt, 0) = (u — u0, v — v0) is a solution of

fl, = Lu + fj + *„, 6, = gj + 0j + DC^ (2.4)

then (—13, — 6) is also a solution. The solution of the linearized model is therefore
given by either u = uQ + u\v = v0 + C or u = u0 — u\v = v0 — 0. The actual solution
is determined by the initial conditions, so that different sets of initial conditions may
determine solutions with opposite polarity. This multiplicity of solutions is also
exhibited by the full nonlinear system.

We now outline the derivation of the conditions for diffusion-driven instability in
an inhomogeneous environment in which one of the diffusion coefficients is a step
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FIG. 1. (a) and (b) show, respectively, typical steady-state solution profiles of a cross activator-inhibitor
model (Gierer & Meinhardt, 1972) and a pure activator-inhibitor model (Schnackenberg, 1979). In (a)
the morphogen concentration profiles u and v are approximately in antiphase; in (b) they are in phase. In
both cases the horizontal line ( ) shows the position of the homogeneous steady state (u: ; v. ).

function in space with a single point of discontinuity (see Benson et al., 1992, for full
details). In particular, we consider the model equations (2.1) with the diffusion term
in (2.1b) replaced by (d/dx)[£>(x) dv/dx], where

(2.5)

D i= £>+, and <J e (0, 1). Clearly, the conditions for the steady state to be stable to
spatially homogeneous perturbations are the same as in the case of homogeneous
environment (D~ = D+), that is (2.2a) and (2.2b). To derive the analogues of (2.2c)
and (2.2d) for the inhomogeneous case, we linearize the model about the steady state
and look for solutions to the linear system of the form u — uo = (exp Xt)Xu(x),
v — v0 = (exp Xi)Xv(x). Substituting these expressions into the linearized model gives
rise to a pair of coupled ordinary differential equations in Xu and Xv:

Xn
u + (a- X)XU + bXv = 0,

(D(x)X'u)' + cXM + (d - X)XV = 0,

(2.6a)

(2.6b)

where a prime denotes d/dx.
Since our model divides the domain into two parts on which the diffusivity of u

is the same but that of v is different, we initially consider equations (2.6) on the
interval [0 , £). On this interval, adding (2.6a) to s,"/D~ times (2.6b) for i = 1,2, leads
to the pair of equations

D J\ a - k + cst ID

where sl and s2 are chosen to be the roots of the quadratic

-x,) = o,

cs2 - bD~ = 0.

(2.7)

(2.8)
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This reduces (2.7) to two equations in Xu + s^Xc which may be solved subject to
the zero-flux boundary conditions at x = 0 to give

X.(x) = — L - (<r- + * r - > * cos gl-x - ( r" + *F'K cos a2-x\ (2.9a)
s2 — st \ cos £at cos £a2 /

Xv(x) = — -[——-^-?cosa2x- ——-i^cosajx . (2.9b)
s2 — sx \ cos (JaJ cos ia1 )

Here xe[0,£), a," = a — X + cs[/D~ for i = 1, 2 and the variables rB and /j,
represent Xu(^) and Xv(£) respectively. Similarly, on the interval (£, 1],

s2
+ - st

+ \cos(l - ^ a ^ cos(l -
( 1 9 d )

By design the solutions (2.9) are continuous at x = <!;. In addition, however, they
must also satisfy the conditions for continuity of flux at this point, namely

lim X'u(x) = lim X'u(x) and lim ^ " ^ ( x ) = lim D + X'c(x). (2.10)

Substituting the solutions (2.9) into these limits, we obtain the following simultaneous
equations for FM and Fo:

= o, R(X)rH + S(X)rv = o,
where

P(X) = (sfTT - S;T;)/(S; - s;) + (Sl
+r2

+ - S2
+T7)/(S2

+ - Sl
+),

(r2- - 7T)/(s2- - sr) + S ^ ^ T ? - 7?)/(s2
+ - Sl

+),

i - 77)/(s2- - sf) + i5+(7T - ^)/(s2
+ - «i+),

r7T - s2-7I)/(s2- - sf) + D\s\TX - s^)/(si - sf),

and TJ = aj" tan &J and J/" = aj1" tan(l — <J)a/ f°r 7 = U 2. From the solutions
(2.9), rH = ro = 0 implies A"u = Xv = 0. Hence, for nontrivial solutions in Xu and Xv,
we require

= P(X)S(X) - Q(X)R(X) = 0. (2.11)

Here F(X) represents the dispersion relation relating the rate of growth of linear
instabilities to a given set of parameter values. The Turing space is therefore described
by the inequalities (2.2a) and (2.2b) and the conditions that guarantee a solution of
(2.11) with positive real part. Note that in deriving the dispersion relation (2.11) we
have assumed that each of si" — s^, and cos &J and cos(l — QaJ for j = 1 or 2,
are nonzero. Under these conditions, for D~ # D+, the solutions for u and v cannot,
in general, satisfy continuity of flux at x = £. Hence, except in very special
circumstances, our assumptions are valid.



PATTERN FORMATION IN REACTION-DIFFUSION MODELS

4

t 1

1 O

203

-3H

- 4

I
/

-100
\

1

100 260

FIG. 2 A typical functional form of the dispersion relation F(X), defined in (211), for Schnackenberg
kinetics (3.1), with parameter values X = 1040, A = 0.1, B = 0.9, D~ = 7, D* = 12, { = 0.5. To better
illustrate the infinities of F(X), we plot sign (F(X)) log(l + |F(A)|) on the vertical axis. For this particular
set of parameters there are two unstable modes, with approximate linear growth rates X = 34.9 and
X = 104.4. For all parameter values, a straightforward calculation shows that F(X) = O(X) as X -» 00.

In general, solutions of (2.11) will be complex valued. However, for homogeneous
diffusion coefficients, all roots of the dispersion relation with positive real part can
be shown to be real valued. In the inhomogeneous case, extensive numerical
simulations of the full nonlinear system show that the spatially uniform solution
always evolves to a steady state rather than a temporally oscillating solution,
suggesting that the uniform solution bifurcates through real eigenvalues. Therefore
we restrict our investigations to real values of k. In contrast to the homogeneous
case, the dispersion relation (2.11) cannot be solved analytically when D~ ^D+.
However, straightforward algebra shows that whenever k is real, F(k) is real valued
and therefore amenable to simple numerical calculation. Typical forms of the
dispersion relation are illustrated in Fig. 2.

3. Numerical solutions of the nonlinear model

To apply the analysis of the previous section, we take, as a specific example, the
simplest of the family of cross activator-inhibitor models proposed by Schnackenberg
(1979). When appropriately nondimensionalized in one space dimension with a step
function in the diffusion coefficient of the activator chemical v, the model equations
take the form

(3.1a)

( 3 1 b )

for x e (0, 1). Here D(x) is the step function defined by (2.5), y is the scale factor,
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FIG. 3. The parameter space for the reaction-diffusion system (3.1). The diffusion coefficient of the species
u is constant throughout the domain, while that of v has the constant value D~ on [0, f) and D+ on
(i, 1]. The region of interest is D~ < D+; the shaded region is therefore ignored. In region I, patterns
are either type B isolated patterns or (for larger values of Z)*) nonisolated patterns; the division between
these types is arbitrary. In region II, D+ < D^u and thus the system does not exhibit diffusion-driven
instability. For parameters in region III, diffusion-driven instability grves rise to type A isolated patterns
(see text for details). Parameter values are y - 1040, ( = 0.5, A = 0.1, B = 0.9. Solutions at the points
indicated are shown in Fig. 4. To better illustrate the behaviour for D~ small, we use a magnified linear
horizontal scale on 0 < D~ < 0.5.

and A and B are positive constants. We impose zero-flux boundary conditions. This
system has a unique homogeneous steady state, at u = A + B, v = B/(A + B)2, which
is stable to homogeneous perturbations provided (A + B)3 > B — A; all numerical
simulations we present use values of A and B satisfying these inequalities.

Using the dispersion relation (2.11) we can determine numerically the parameter
space in which this system exhibits diffusion-driven instability. As expected intuitively,
diffusion-driven instability is observed whenever both D~ and D+ exceed Dcril, where
DcrU is the critical value which D must exceed for diffusion-driven instability in the
homogeneous case D+ = D~ = D. Moreover, our results imply that when D~ lies
below £)crll in [0, £), the value of D+ must exceed some critical value D^ t which is
larger than D^, in (£, 1]. The variation of Dc

+
rit

 w ' t n D~ i s illustrated in Fig. 3. We
thus define the Turing space by (2.2a, b) and the following conditions:

(1) D
(2) D

D~ > D
crit,

a n d
D + > £>c

+
rlt > Dc

tii.

It is important to note that these conditions depend crucially on the fact that a > 0.
For a < 0 the inequalities are essentially reversed so that the Turing space is defined
by the conditions (2.2a, b), Dcrit >D+ > D',D+ > Dcrll, and Dcrll > D~rit > D~.

Figure 4 shows that the key qualitative features of the patterns generated by the
full nonlinear model (3.1) are generally captured by the solutions of the linearized
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Fio. 4. Comparison of the steady-state solution profiles of the Schnackenberg system (3.1) with the linear
solution (19) in different regions of parameter space for initial conditions of small random perturbations
about the uniform steady state: (a) a type-B isolated pattern, with D~ = 7 and D* = 10; (b) a nonisolated
pattern, with D~ = 8.4 and D+ = 8.9; (c) a type-A isolated pattern, with D~ = 0.1 and D* - 92. The
other parameter values are A = 0.1, B •= 0.9, y = 1040, { = 0.5. The location of these solutions in the
D'-D+ parameter space is illustrated in Fig. 3. As the morphogen concentrations grow, linear analysis
is no longer valid. However, in each case the qualitative behaviour of the full nonlinear pattern is captured
by the linear solution. For sufficiently large D+, the uniform steady state becomes unstable to several
modes with similar growth rates, and different initial conditions result in qualitatively different patterns.
Note that the patterns for u and v are out of phase (u: ; v: ).
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system described by (2.9). As in the homogeneous case, when more than one solution
of the linear system has a positive rate of growth, the nonlinear spatial pattern is, in
many cases, well approximated by the solution corresponding to the largest real root
of the dispersion relation (2.11). Moreover, this result is not specific to Schnackenberg
kinetics, but is, in general, true for any cross or pure activator-inhibitor reaction
diffusion model (Benson et al, 1992).

The crucial difference between the patterns illustrated in Fig. 4 and those obtained
from reaction-diffusion models in a homogeneous environment is that, in the former
case, pattern can be isolated in specific parts of the domain. By appropriately
subdividing the domain any spatial pattern can be said to be restricted to a particular
subdomain. However, in the inhomogeneous environment case, this restriction is
independent of the scale parameter y. This is in marked contrast to the homogeneous
case, where varying the scale parameter alters the number and position of concen-
tration peaks so that, for appropriate values of y, pattern may occur in any
subdomain.

Mathematically we can divide the isolated patterns of our model into two
categories:

Type A: as the scale parameter y varies (but is large enough for diffusion-driven
instability to occur), the steady-state solution profiles are always monotonic in one
part of the domain, but in general oscillatory in space elsewhere.

Type B: as y varies, the steady-state solution profiles are generally oscillatory in space
throughout the domain, but with much greater amplitude in one part of the domain
than elsewhere.

Using the solutions (2.9) of the linearized model, one can derive conditions for the
existence of type A isolated patterns in the Turing space (Benson et al., 1992). In
particular, it can be shown that type A solutions, in which the pattern predominates
in the interval (£ , 1], exist for sufficiently small values of the diffusion coefficient on
[0, £); specifically, for D~ < Dc~rit, where D~lt is the smaller root of the equation
D2a2 + 2(2bc - ad)D + d2 = 0.

4. Smoothly varying diffusion coefficient

In the above, we simply imposed a piecewise continuous spatial dependence on the
diffusion coefficients in the reaction-diffusion model. This is, of course, a biologically
unreasonable assumption. In this section, therefore, we consider how a realistic
spatially varying coefficient could be set up. There are several ways in which this can
be done, and here we focus on one possibility.

The composite model that we consider is one in which the spatial variation in
diffusion coefficients is controlled by a regulatory chemical c. In our model we assume,
as before, that the diffusion coefficient of u is constant, but we now assume that the
diffusion coefficient of v is modulated by c. This could, for example, reflect an increase
in gap junction permeability for v due to the presence of c (Othmer & Pate, 1980).

We consider a mechanism for the production of c, in which c is secreted at one
end of the domain, diffuses and is degraded throughout the domain, but does not
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flow through the other boundary. The appropriate nondimensionalized equation for
c is

ct = v2
Cxx-6

2c (4.1)

subject to the boundary conditions

cx(0, t) = 0, c(l, t) = c0, (4.2)

where v2 and 02 are, respectively, the nondimensionalized diffusion coefficient and
the rate of linear degradation of c.

If we assume that this reaction-diffusion equation reaches a stable equilibrium on
a fast timescale during which insignificant changes in morphogen concentration take
place, then the equilibrium distribution of c is c0 cosh fo/cosh <5, where <5 = 0/v. A
further assumption that the diffusivity of u is independent of the concentration of c,
while that of v is directly proportional to it, implies that the ratio D of diffusion
coefficients now takes the form

D(x) = ac0 cosh fo/cosh 5,

where a is the constant of proportionality. Our model equations then become

u, = yf(u, v) + u

v, = yg(u, v) +

(4.3)

(4.4a)

(4.4b)

where D(x) is given by (4.3). Henceforth we shall refer to D(x) as the diffusion
coefficient for v, so that (4.3) represents a smoothly increasing diffusion coefficient
for v. As before, we impose zero-flux boundary conditions on u and v.

Although this system cannot be analysed using the method of linear analysis
discussed in Section 2, it can be solved numerically. Figure 5 shows typical solutions
for the Schnackenberg reaction kinetics. These simulations suggest that, as in the
simple step function diffusion coefficient case, diffusion-driven instability occurs when
either D(x) exceeds Dcril everywhere in the domain, or D(0) = <xc0/cosh <5 is less than
Dcrlt and D(l) = ac0 is greater than some critical value D(l)crlt, where £>(l)crit > Dcril

0.2 0.4 0.6 0.8 1.0
x

(a)

1.0

Fio. 5. (a) and (b): Solutions of (4.1)-(4.4) for Schnackenberg reaction kinetics with parameter values
A = 0.1 and B •= 0.9. With a = 1, D{x) = c0 cosh <5x/cosh 6, where 5 and c0 are chosen such that in (a)
D(0) = 1 and 0(1) = 15 and in (b) D(0) = 6 and D(l) = 15. The values of y are, respectively, 1000 and
2000 (u: ; v: ).
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and depends on D(0), CQ, a, and <5. (Here Dcril is the critical diffusion coefficient that
D must exceed for pattern generation in the case of spatially homogeneous diffusion
coefficients.) Moreover, for appropriate parameter values, the solutions of the model
equations (4.4) with (4.3) reveal qualitatively similar patterns to those predicted by
the simpler model analysed in Section 2. In particular, patterns can be isolated in
specific parts of the domain, and where the solution is oscillatory in space, the pattern
does not have a constant amplitude of oscillation. This phenomenon does not depend
critically on the steady-state distribution of c; other smoothly varying distributions
produce similar results. Our analysis for the simple step function in diffusion
coefficient therefore provides a valuable understanding of how spatial inhomogeneities
in dispersal terms affect pattern generation for a range of more biologically realistic
systems.

5. Biological applications

We illustrate the application of the composite model by considering two experimental
observations which contradict the predictions of the standard Turing model, namely
the AP asymmetry of skeletal elements in the limb and the results of the experiments
on double anterior limbs (Wolpert & Hornbruch, 1990), which show that one can
produce more complex skeletal patterns while keeping the domain size constant

The results of Sections 2-4 show that reaction-diffusion systems with spatial
variation in diffusion coefficients may produce isolated patterns and asymmetric
oscillatory patterns. Moreover, they show that, in the composite model, the position
and amplitude of peaks in concentration are influenced by the underlying spatial
pattern in control chemical. In limb morphogenesis, therefore, the positional infor-
mation supplied by the solution profiles could lead, via cell differentiation, to the
specification of asymmetrically patterned elements, whose position within the domain
would be controlled by the spatial distribution of c. This is in contrast to the standard
Turing system with spatially uniform parameters, which produces identical and
equally spaced elements. The patterns produced by (4.1)-(4.4) are therefore more
consistent with those observed in certain developmental processes, for example digit
patterning in the vertebrate limb, than those exhibited by the standard modeL This
is illustrated in Fig. 6 where, for a suitably chosen parameter set, the composite model
exhibits a steady-state solution with three peaks in concentration which, in contrast
to the standard model, have different amplitudes of oscillation. For a suitable choice
of threshold concentration, our model would therefore specify three skeletal elements
which are intrinsically distinct because of the varying concentrations of morphogen
to which they are each exposed.

The asymmetry in the solution profiles of the composite model is a consequence
of the spatially inhomogeneous background environment. Clearly, the developing
chick limb bud is such an environment. At the posterior margin of the developing
limb bud, known as the zone of polarizing activity, or ZPA (Saunders & Gasseling,
1968), there is a group of specialized cells that controls skeletal patterning along the
AP axis. When a donor ZPA is grafted to different positions along the AP axis of a
host chick limb, growth along this axis is stimulated and additional digits are formed
(Smith & Wolpert, 1981). If we apply our composite model to this duplication
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FIG. 6. (a) The solution of (4.1H4.4) on the domain [ 0 , 1 ] . (b, c) Solutions on the domain [ 0 , L ]
where L = \ and }, respectively, with boundary conditions c(0, i) = c(L, t) = c^ In these cases the
distribution of chemical concentration in c is mirror symmetric. The corresponding diffusion coefficients
for v are, for a = 1, (a) D(x) = c0 cosh fo/cosh <5, (b) D(x) = c0 cosh 6(x - j)/cosh J5), and (c) D(x) =
c0 cosh 5(x — J)/cosh |5. The values of c0 and i5 are chosen so that, in (a), D(0) = 6 and D(l) = 12; the
other parameter values are A = 0.1, B = 0.9, and y = 1700. For a fixed threshold concentration ( ),
the prepattem in (a) specifies three elements which are intrinsically distinct. With this fixed single threshold
concentration, (b) predicts a complete duplication of six elements, two of each kind specified in (a). The
prepattem in (c), on a smaller domain, specifies only five elements. In both (b) and (c) the distribution
of the elements is mirror symmetric about x = \.

experiment, and assume that the ZPA is the source of the regulatory chemical, c,
then grafting a donor ZPA onto the anterior margin of the limb corresponds to
creating a new source of c at x = 0. As this graft stimulates growth, the control
chemical c satisfies (4.1) with boundary conditions

c(0, t) = c(0, L) = c0, (5.1)

where L is the new domain length. The distribution of the control chemical, and
hence the diffusion coefficient of v, is now given by

D(x) = ac0 cosh 8(x - iL)/cosh \bL. (5.2)
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For the case in which the domain increases by 50%, Fig. 6 shows that the system
can generate a mirror symmetric pattern which has six concentration peaks of varying
amplitude. Together with the same threshold mechanism as before, the model predicts
the formation of a duplicate set of additional digits, which is consistent with
experimental results (see Maini & Solursh, 1991, for a review of experimental results).
On smaller domains (corresponding to transplanting donor ZPA to a more posterior
site) the model predicts the formation of fewer digits (Fig. 6), as is also observed
experimentally. Note that the standard Turing model also predicts that additional
digits will form if the domain size is increased, but it cannot specify which digits
are duplicated. In contrast, the composite model exhibits a prepattern in mor-
phogen concentration which can distinguish between the different types of digit
formed.

Another important property of the composite model is that spatial patterns may
be restricted to specific parts of the domain. Figure 7 shows that, for certain parameter
values, solution profiles have a single concentration peak isolated in one-half of the
domain. In limb development, our model could therefore predict the formation of a
single skeletal element which is specified asymmetrically along the AP axis. Moreover,
as the position and number of concentration peaks is influenced by the distribution
of the regulatory chemical c, spatial patterns specifying two skeletal structures can
be produced by imposing symmetric boundary conditions (5.1) for c and keeping
the domain fixed in size. In this case, the composite model therefore predicts increases
in pattern complexity without it being necessary to increase domain size. This is

£• 0.9

- ~ \
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0.8-

o.*

0.2 0.4 0.6
x

(a)

0.8 1.0 0.2 0.4 0.6
x

(b)

0.6 1.0

FIG. 7. (a) The solution of the coupled partial differential equation system (4.1)-(4.4) for Schnackenberg
kinetics with parameter values A = 0.1, B = 0.9, and y = 1040. For simplicity, the constant of propor-
tionality a is set equal to 1. Thus, the diffusivity function D(x) has the form c0 cosh Sx/cosh S. Here c0 and
5 are chosen so that D(0) = 2 and D(l) = 14. (b) Solution of the model equations (4.4) for a prepattern
in diffusivity which is symmetric about x = $: In this case, the diffusion coefficient D(x) is identical to that
in (a) in the interval (J, 1]; D(x) is c0 cosh <5(1 — *)/cosh <5 in [0, i) and c0 cosh 6(1 — x)/cosh 5 in ( i , 1].
All other parameter values are unaltered. For a suitable choice of the threshold concentration ( ) the
prepattern in (a) may specify a single structure in the interval f j , 1), and the prepattern in (b) may specify
two elements symmetrically placed about x = i. In the two-step model, therefore, one can generate more
complex patterns without changing domain size or parameter values. This is in contrast to the standard
Turing model wherein patterns are entirely scale dependent.
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consistent with the results of recent experiments (Wolpert & Hornbruch, 1990) which
show that double anterior composite limbs give rise to two humeral elements without
there being a significant increase in the normal length of the AP axis. Note that in
the standard Turing model one would predict, at least for low mode numbers, that
the pattern'complexity would remain unchanged for a fixed domain size (Dillon
et al., 1992).

6. Discussion

Development of spatial pattern in the early embryo results from the interaction of
several processes in a complex hierarchy of mechanisms. Most models for morpho-
genesis to date have, however, focused on a particular mechanism. Although such
models are capable of capturing some aspects of development, they are inconsistent
with key experimental observations. In this paper we have analysed a two-step
hierarchy of patterning mechanisms in which the spatial pattern of a control chemical
regulates morphogen diffusivity in the overlying reaction-diffusion mechanism. We
have shown that such a system can produce isolated asymmetric spatial patterns,
and that it is capable of producing patterns of increased complexity without a change
in domain size. These properties are consistent with experimental observations that
contradict the standard Turing model.

In both our model and the standard Turing model, the polarity of certain solutions
is determined by the initial conditions. This is, of course, a drawback as most
developmental processes are robust. Recently, Dillon et al. (1992) have shown that
imposing the appropriate boundary conditions on a reaction-diffusion system can
lead to more robust pattern generation. In our framework, this specialized differen-
tiation of the boundary cells constitutes another level in the developmental hierarchy.
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