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Abstract. The gregarious behavior of individuals of populations is an im-
portant factor in avoiding predators or for reproduction. Here, by using a

random biased walk approach, we build a model which, after a transforma-
tion, takes the general form ut = [D(u)ux]x + g(u). The model involves a
density-dependent non-linear diffusion coefficient D whose sign changes as the
population density u increases. For negative values of D aggregation occurs,
while dispersion occurs for positive values of D. We deal with a family of de-
generate negative diffusion equations with logistic-like growth rate g. We study
the one-dimensional traveling wave dynamics for these equations and illustrate
our results with a couple of examples. A discussion of the ill-posedness of the
partial differential equation problem is included.

1. Introduction. By using a random walk approach and assuming that the in-
dividuals of a population have the same probability of moving from one point to
another, i.e., the habitat is isotropic, Skellam [38] derived the reaction-diffusion
equation ut = D∇2u + g(u), for u(~r, t), the population density at the point ~r at
time t, where D > 0 and g is the net rate of growth. This model has been criti-
cized (see [7], [16] and [39]) because it does not take into account, for instance, the
non-homogeneity of space and the different behavioral features of the individuals
of the population. Several models have been proposed to take into account differ-
ent factors which determine the spatio-temporal distribution of populations within
their habitat. Among these are positive density-dependent diffusion models which
describe the avoidance of crowded areas by individuals of a population. This type
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of behavior is well documented in the literature from both ecological and modeling
points of view (see [6], [25] and [28]). Some of these proposed models are degenerate
in the sense that at some value of the population density the partial differential
equation (PDE) degenerates into an ordinary differential equation (ODE). This
leads to interesting phenomena when the traveling wave behavior is analyzed (see
[36] and [37]).

On the other hand it is also known that individuals of a population can aggre-
gate. The gregarious behavior of species is well documented in the literature. This
can be motivated by the need for survival, reproduction or to overcome a hostile
environment, etc. Furthermore, this behavior can increase the animal’s chance of
avoiding capture by a predator (see [32], [42] and [44] for instance). Attraction
between individuals of the same species can occur in two different ways:

1. Indirect. By this we mean the case in which a second agent produces (or
facilitates) some attractive substance, i.e., individuals can be attracted by
diffusing mediators produced from individuals of another species. Some au-
thors have described the indirect aggregation phenomenon in terms of dif-
ferent taxis mechanisms, such as chemotaxis, phototaxis, etc., and they in-
corporate them in different ways into diffusive models. One example is the
so-called chemotaxis-reaction-diffusion system (see [24], [40] and references
therein) which in one dimension, for the simple case where the individuals
(with density u) produce their own attractant with concentration ρ, takes the
form:

ut = [D1ux − uχ(ρ)ρx]x + f(u)
ρt = D2ρxx + g(u, ρ),

(1)

where D1 and D2 are positive real numbers, χ is the chemotactic sensitivity
factor, f and g are the kinetic terms. Different spatial patterns (e.g. spiral
waves, traveling waves) have been predicted by analyzing the higher dimen-
sional versions of these types of models ([13], [19], [24], and [40]), particularly,
for example, the aggregation of the amoeba Dictyostelium discoideum.

2. Direct. Here the individuals of the species, due to social behavior (mating,
settlement, etc.) or defense against predators, etc., attract other individuals
of the same species (conspecific). The purely aggregative phenomena have
been studied by proposing different models. By way of example we address a
few of them:

The following diffusion-convection equation was proposed in [26]:

∂u

∂t
=

∂

∂x

[

mum−1∂u

∂x
+ Ψ

(
∫ x

−∞

u(s, t)ds

)

, u

]

, (2)

wherem > 1, with initial condition u(x, 0) = u0(x) where u0 is a non-negative,
bounded and integrable function on IR and Ψ(r) is a smooth function in r.
Ecologically the second summand in the right hand side of equation 2 can
be interpreted as a dehomogenization process1 due to a transport process
which depends upon the population density on the range from −∞ to the
point x. In addition to analyzing the existence and uniqueness of the solution
for this problem, the authors also proved the existence and the convergence
of the solution to a solitary traveling wave as a pattern of aggregation of
the population. An intuitive understanding of why such solutions exist is as

1By this we mean the opposite of a strictly diffusive process.
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follows: the spatial dynamics of the population is given by two factors: one
(the diffusive) tends to homogenize, while the other (the convective) tends to
aggregate. Thus, as both are present as time increases one can suspect that
a balance among them could arise, leading to the solitary wave aggregation
spatial pattern.

A model which generalizes 2 is given by the partial-integro-differential equa-
tion

∂u

∂t
=

∂

∂x

[

D(u)
∂u

∂x
+

∫

IR

K(u(x), s)u(x+ s)ds

]

, (3)

where D is such that D(0) = 0 and a strictly positive function for all positive
values of u, and K is an odd kernel. Different types of kernels having an
ecological interpretation have been proposed (see [4]).

In [12] the authors use the Ginzburg-Landau free energy approach to derive
the fourth order diffusion equation:

∂u

∂t
=

∂

∂x

[

χ(u)
∂u

∂x
− µ(u)

∂3u

∂x3

]

, (4)

where χ(u) = (D1 + 3D2u
2) is the attractivity coefficient and µ(u) = D3 > 0.

The above equation takes into account long range diffusion. These authors
have shown that equation 4, with logistic growth, has spatially inhomogeneous
steady state solutions. Some extensions of this approach have been carried
out (see [23]) to describe an aggregation phenomenon in a plant-herbivore
interaction.

In [9], the author assumes that competition between the individuals of a
species (intra-specific) at a point depends not only on the population density
at that point, but also on the weighted spatial average population density at
neighboring points, given by,

v(x, t) =

∫ +∞

−∞

1

2
ce−c|x−y|u(y, t)dy.

This leads to a modified logistic model with constant diffusion coefficient plus
an equation for v, i.e., the system

ut = u[1 + αu− (1 + α)v] + uxx

0 = c2(u− v) + vxx
(5)

∀ (x, t) ∈ (−∞,+∞) × IR
+ with the initial conditions u(x, 0) = u0(x) and

v(x, 0) = v0(x). The author states conditions on the positive parameters c
and α in 5 under which aggregation can occur.

Cantrell and Cosner (see, for example, [10] and [11]) have extensively
worked on modeling spatial effects in ecology and population dynamics by
using reaction-diffusion models. In particular, concerning the aggregation
process of a population with density u(x, t), these authors (see [10]) proposed
and studied the following mathematical model

∂u

∂t
= ∇ · [d(x, u)∇u] + λ

[

m(x)u − cu2
]

in Ω × (0,∞), (6a)

u = 0 on ∂Ω × (0,∞), (6b)
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where m(x) is a spatially varying local intrinsic growth rate, c measures the
strength of logistic self-limitation, the diffusivity d(x, u) depends on the popu-
lation density and position, and λ measures the ratio of the respective rates of
population growth and dispersal throughout Ω. The homogeneous Dirichlet
boundary condition reflects the lethal character of the exterior. The tendency
for the population to aggregate is modeled by assuming that the diffusion
rate remains strictly positive but at low densities decreases with population
density. The model allows for the diffusion rate to increase in response to
overcrowding. The above authors give an example in which the model pre-
dicts a type of conditional persistence analogous to that found in models with
an Allee effect.

In the model of Cantrell and Cosner, however, since the population dy-
namics is assumed to be logistic, the effect is induced only because of the
aggregative density-dependent dispersal. This example is important because
unlike non-spatial logistic models or logistic models augmented by dispersal
via passive diffusion their model can predict extinction for populations with
low initial densities but persistence for populations with high initial densities.
They hypothesize that a biological interpretation of the mechanism is as fol-
lows: at low population densities individuals disperse rapidly and are likely to
encounter the hostile exterior of their habitat, at slightly higher densities they
disperse less rapidly and thus experience reduced mortality due to dispersal
into hostile environments.

In [30] the author introduces a model for an aggregating population taking
the form

∂u

∂t
=

∂

∂x

[

φ(u) − λf(u) + λ
∂u

∂x

]

+ f(u), (7)

where the function φ determines the migration rate. Homogeneous Neumann
boundary conditions are imposed for a bounded domain in IR

n, and the case
examined is that where this migration function φ is bounded and non-negative
and given by φ(u) = uψ(u) where, since 7 describes aggregating populations,
ψ is decreasing. A further requirement imposed is that f(u) = uσ(u)describes
the Allee effect. Conditions on 7 for the survival (recovery) of a species in
danger of extinction can be given.

Standard initial boundary value problems of the class

ut = ∇2φ(u) + f(u) (8)

are ill-posed when φ′(u) is negative for positive values of u. In [30] the author
discusses a way to overcome this difficulty by replacing 8 by

ut = ∇2J + f(u), (9)

where J(x, t) :=
∫

Ω
K(x, y)φ(u(y, t))dy and K(x, y) is non-negative and zero

flux boundary conditions on J are required in order to assure the isolation of
Ω.

For a particular choice of J it is shown that problem 9 is equivalent to 7
with its associated boundary conditions.

Other approaches to deal with 8 being ill-posed for positive values of u
have been proposed. For example, in [29] a model for aggregating populations
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with migration rate ψ and constant population is studied. The functional
differential equation this author proposed is

∂u

∂t
= ∇2 {ψ(u(x, [t/τ ]τ))u(x, t)} , (10)

with boundary conditions

~n · ∇ {ψ(u(x, [t/τ ]τ))u(x, t)} = 0, x ∈ ∂Ω, t > 0,

where ~n is the normal vector at ∂Ω, Ω is a bounded domain in IR
n and [θ]

denotes the greatest integer less than or equal to θ. Padrón [29] assumed that
the density dependent dispersal coefficient ψ(u) gets actualized (up-dated)
at certain pre-determined intervals of time, thus allowing them to overcome
possible ill-posedness for the functional differential equation 10. He showed
existence and uniqueness for the initial value problem 10 (with associated
boundary conditions), and discussed aggregating behavior exhibited by the
solutions.

The analysis of the classical mathematical problems (existence, uniqueness, con-
tinuity with respect to initial conditions, etc.) for partial-integro-differential equa-
tions such as 3 is a difficult task (see [5], [26] and [27] for instance). For this
reason we suggest that the theory of diffusive models to describe aggregation can
result in an easier problem. This paper deals with this approach in order to de-
scribe the direct aggregation phenomenon of individuals of one species living in a
one-dimensional habitat.

The possibility of describing such aggregative phenomena by using non-linear
negative degenerate diffusion equations has already been considered (see [4] and
[7]). However, these authors do not provide any derivation of the negative diffusion
equation, neither do they include any analysis. As far we know the first model
which took into account the mutual attraction and repulsion of conspecifics was
that constructed by Taylor and Taylor [41]. Because of both the formalism in its
derivation and its predictions, this model was criticized (see [3] and [42]). A more
consistent model was derived by Turchin (see [43]). He used a biased random walk
approach to derive a model which is based on the following assumptions:

1. When there are no other individuals at adjacent positions, each animal moves
randomly.

2. If there is a conspecific at an adjacent position, the animal moves there with
conditional probability k (conditioned on the presence of the other animal),
or ignores the neighbor with conditional probability (1 − k).

3. When the local population density is low we can ignore the probability of
having more than one conspecific in the immediate vicinity of each moving
individual.

Under these assumptions Turchin derived a model for a population with density
u(x, t), of the form

∂u

∂t
=

∂

∂x

[

(µ

2
− 2k(u)u

) ∂u

∂x

]

, (11)

where he then assumed that

k(u) = k0

(

1 −
u

ω

)

,
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where k0 is the maximum degree of gregariousness (at u = 0) and ω is the critical
density at which movement switches from aggregative to repulsive. In this way, he
obtained the aggregation-diffusion equation2 for low population density, i.e., in the
case where the probability, p, that one individual of the population is at point x at
time t, satisfies p << 1:

∂u

∂t
=

∂

∂x

[

φ′(u)
∂u

∂x

]

, (12)

where φ(u) = (µ/2)u − k0u
2 + (2k0)/(3ω)u3. Turchin used the above equation

to describe the aggregative movement of Aphis varians, a herbivore of fireweeds
(Epilobium angustifolium). He also discussed the ill-posedness of an initial and
boundary value problem associated with 12. Depending on the actual profile of φ,
Turchin also classified in terms of weakly aggregative and strongly aggregative the
different types of aggregation.

In this paper we provide an alternative derivation (for low population density)
of the equation by considering the dependence of k on p prior to arriving at the
diffusion approximation. The result is a slightly different equation to that derived
by Turchin. In Section 2, we use a biased random walk approach to build a model to
describe a direct aggregation phenomenon among individuals of one species living
in a one-dimensional habitat. In Section 3 we study the existence of traveling wave
solutions (t.w.s.) for a purely negative or zero diffusion equation with a logistic
rate of growth. Here we include some numerical simulations on the phase portrait
of the traveling wave variables. In section 4 we solve numerically a couple of initial
and boundary value problems associated with two nonlinear equations where the
density-dependent diffusion term is less than or equal to zero and the reactive part
describes logistic growth. In Section 5 we discuss the well- and ill-posedness of cer-
tain boundary conditions associated with some purely negative diffusion equations
with logistic-like kinetic part. These problems come from the analysis of existence
of t.w.s. for these equations. The paper ends with section 6 where we present some
conclusions and discussion.

2. Construction of the model and a comparison. Here we consider one species
living in a one-dimensional habitat. To derive the model we follow a biased random
walk approach plus a diffusion approximation. Thus we firstly discretize space in a
regular manner. We let the distance between two successive points of the mesh be
λ, and we denote by p(x, t) the probability that any individual of the population is
at the point x at time t. During a time period τ an individual which at time t is at
position x, can either:

1. move to the right of x to the point x+ λ, with probability R(x, t), or
2. move to the left of x to the point x− λ, with probability L(x, t) or
3. stay at the position x, with probability N(x, t).

Because we allow no other possibilities of movement we have

N(x, t) +R(x, t) + L(x, t) = 1. (13)

As a consequence of the above assumptions in [43], we have:

2It should be noted that in [43], k(u) was introduced after the derivation of the diffusion

approximation. However, including it before the approximation leads to a different form of equation
to that derived in [43].
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R(x, t) =
1

2
r(x, t) + kp(x+ λ, t)

L(x, t) =
1

2
r(x, t) + kp(x− λ, t),

where r is the random component of the movement.
The meaning of the product kp in the above expressions is as follows: Let us

considerR(x, t): given that there is one conspecific to the right, kp(x+λ, t) measures
the probability of occurrence of the event: the individual moves and does so to the
right.

In the above terms, the probability p(x, t) can be written as follows:

p(x, t) = N(x, t−τ)p(x, t−τ)+R(x−λ, t−τ)p(x−λ, t−τ )+L(x+λ, t−τ )p(x+λ, t−τ).
(14)

Now, by using Taylor series, we obtain the well-known equation (see [28]) for p:

τ
∂p

∂t
= −λ

∂

∂x
{β(x, t)p(x, t)} +

λ2

2

∂2

∂x2
{µ(x, t)p(x, t)} +O(λ3), (15)

where β(x, t) ≡ R(x, t) − L(x, t) and µ(x, t) ≡ R(x, t) + L(x, t) are, respectively:
the bias and the motility. The above equation is sufficiently general to describe
different types of random-biased movements. In order to arrive at an equation
which describes the more specific movements in which we are interested, we must
write the probabilities R and L into β and µ, in such a way that they take into
account the assumptions stated above. In particular, the conditional probability, k,
must depend on p, i.e., k = k(p). In ecological terms, the function k must reflect
the behavioral aspects of the individuals of the species. In our derivation we assume
that k is a sufficiently smooth function of p. Thus, the probabilities R and L can
be re-written as follows:

R(x, t) =
1

2
r(x, t) + k(p(x+ λ, t))p(x + λ, t) (16)

and

L(x, t) =
1

2
r(x, t) + k(p(x− λ, t))p(x − λ, t), (17)

respectively. Thus the bias and the motility are transformed as follows:

β(x, t) = R(x, t)−L(x, t) = k(p(x+λ, t))p(x+λ, t)− k(p(x−λ, t))p(x−λ, t) (18)

and

µ(x, t) = R(x, t)+L(x, t) = r(x, t)+k(p(x+λ, t))p(x+λ, t)+k(p(x−λ, t))p(x−λ, t).
(19)

Now we expand k and p in Taylor series (around (x, t)) up to the linear terms in
both previous expressions. Thus, we have the following linear approximations:

β(x, t) = 2λ
∂

∂x
[k(p(x, t))p(x, t)] (20)

and
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µ(x, t) = r(x, t) + 2k(p(x, t))p(x, t), (21)

respectively. Now, we substitute 20 and 21 into 15, use the diffusion approximation,
i.e., we assume that λ2/(2τ) → D > 0 (finite) as τ, λ → 0, and writing down the
result in a more tractable and transparent form, we obtain the aggregation-diffusion-
equation

∂p

∂t
= D

[

r − 2p2 dk

dp

]

∂2p

∂x2
− 2D

[

2p
dk

dp
+ p2 d

2k

dp2

] (

∂p

∂x

)2

+D

(

2
∂p

∂x

∂r

∂x
+ p

∂2r

∂x2

)

.

(22)
This equation differs from that derived in [43] as we claimed before (see footnote
2).

Nevertheless (for comparison with our calculations carried out in previous para-
graphs and with Turchin’s) note that if we keep a constant random component, r,
then equation 22 reduces to

∂p

∂t
= D

[

r − 2p2dk

dp

]

∂2p

∂x2
− 2D

[

2p
dk

dp
+ p2 d

2k

dp2

](

∂p

∂x

)2

, (23)

which, by setting D(p) = D
[

r − 2p2 dk
dp

]

, can be written as the more familiar

density-dependent diffusion equation (see [36] and [37])

∂p

∂t
= D(p)

∂2p

∂x2
+ D′(p)

[

∂p

∂x

]2

=
∂

∂x

[

D(p)
∂p

∂x

]

. (24)

This equation contains, as a particular case, that used in [43] to describe the aggre-
gation of Aphis varians. In fact, one can verify that taking k(p) = a ln p− bp+ c1,
where a, b are such that Da = k0, Db = k0/ω, Dr = µ/2 and c1 is any positive
number, one obtains 12. Note that choosing k in this way, the “density-dependent
diffusion coefficient” D(p) = D[r − 2ap+ 2abp2] is negative for all p ∈ (p1, p2) and
positive otherwise, where p1 and p2 are the roots of D.

To draw a closer comparison with our equation, we now briefly review Turchin’s
derivation. One of the key differences between our derivation and that given by
Turchin is that he does not substitute both linear approximations 20 and 21 of β
and µ, respectively, into 15 before carrying out the diffusion approximation. In fact,
he only substitutes 20 into 15 to obtain

τ
∂p

∂t
= −2λ2

{

[

kp+ p2 dk

dp

]

∂2p

∂x2
+

[

k + 3p
dk

dp
+ p2 d

2k

dp

] (

∂p

∂x

)2
}

+
λ2

2
{µ(x, t)p(x, t)} +O(λ3). (25)

After some calculation this equation can be written as

τ
∂p

∂t
= −2λ2

{

[

−
µ

4
+ kp+ p2 dk

dp

]

∂2p

∂x2
+

[

k + 3p
dk

dp
+ p2 d

2k

dp2

] (

∂p

∂x

)2
}

+
λ2

2

{

2
∂p

∂x

∂µ

∂x
+ p

∂2µ

∂x2

}

+O(λ3). (26)
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To pass to the diffusion approximation, we assume that λ2

τ
→ D > 0 (finite), as λ

and τ tend to zero. Equation 26 then becomes

∂p

∂t
= 2D

[

µ

4
− kp− p2 dk

dp

]

∂2p

∂x2
− 2D

[

k + 3p
dk

dp
+ p2 d

2k

dp2

] (

∂p

∂x

)2

+
D

2

{

2
∂p

∂x

∂µ

∂x
+ p

∂2µ

∂x2

}

. (27)

Consider the particular case in which we have space independent motility, i.e.,
µx ≡ 0. Then equation 27 reduces to

∂p

∂t
= 2D

[

µ

4
− kp− p2 dk

dp

]

∂2p

∂x2
− 2D

[

k + 3p
dk

dp
+ p2 d

2k

dp2

] (

∂p

∂x

)2

. (28)

If we write k(p) = b + mp with b > 0 and m < 0 (as in Turchin’s paper) this
equation becomes

∂p

∂t
=

[

Dµ

2
− 2Dbp− 4Dmp2

]

∂2p

∂x2
+ [−2Db− 8Dmp]

(

∂p

∂x

)2

, (29)

or,

∂p

∂t
=

∂

∂x

[

D(p)
∂p

∂x

]

, (30)

where D(p) = Dµ
2 − 2Dbp− 4Dmp2. Equation 30 coincides with Turchin’s model

by putting D = 1. Again, this equation has the general form 24.
Also note that equation 30 has an important feature for appropriate values of

the parameters: For positive values of b satisfying b2 > −2mµ, equation 30 has
negative density-dependent diffusion coefficient for all p ∈ (p1, p2) where p1 and p2

are the roots of D(p), i.e., they are given by3

p1, p2 =
1

4m

{

−b±
√

b2 + 2mµ
}

. (31)

In fact equation 30 degenerates at p = p1, p2.
In addition to the aggregation or spread factors one can consider a non-linear

growth rate g to obtain the equation

∂u

∂t
=

∂

∂x

[

D(u)
∂u

∂x

]

+ g(u). (32)

Whenever D(u) < 0 we call 32 a reaction-aggregation equation, while if D possesses
both (positive and negative) signs we will call it a reaction-aggregation (D < 0)-
diffusion (D > 0) equation.

In section 3 we will focus on equations whereD ≤ 0 within the domain of interest.

3Given the ecological interpretation of p the negative root has no sense. We mention it for
completeness.
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3. On the existence of aggregative traveling waves. Among the possible spa-
tial patterning models for aggregation, here we study the existence of traveling wave
solutions (t.w.s.) u(x, t) = φ(x − ct) ≡ φ(ξ) connecting the stationary and homo-
geneous states4 u(x, t) ≡ 1 and u(x, t) ≡ 0 for the degenerate reaction-aggregation
equation

∂u

∂t
=

∂

∂x

[

D(u)
∂u

∂x

]

+ g(u), ∀ (x, t) ∈ IR × IR
+, (33)

where D and g are defined on [0, 1] and satisfy the following conditions:

1. g(0) = g(1) = 0, g(u) > 0 ∀ u ∈ (0, 1),
2. g ∈ C2

[0,1], g′(0) > 0, g′(1) < 0,

3. D(0) = 0, D(u) < 0 ∀ u ∈ (0, 1],
4. D ∈ C2

[0,1], D
′(u) < 0 ∀ u ∈ (0, 1], and D′′(u) < 0 ∀ u ∈ [0, 1]. In addition

we distinguish the following two cases: a) D′(0) = 0 with D′(u) < 0 for all
u ∈ (0, 1] and b) D′(u) < 0 for all u ∈ [0, 1].

We also require the conditions: u(x, 0) = u0(x) with 0 ≤ u0(x) ≤ 1 ∀ x ∈ IR,
0 ≤ u(x, t) ≤ 1 ∀ (x, t) ∈ IR × IR

+.
Note that the condition 0 ≤ u0(x) ≤ 1 ∀ x ∈ IR on the initial data comes from

the physical interpretation of the steady and homogeneous states 0 and 1. For
example, from an ecological point of view, we can interpret the state u(x, t) ≡ 1
as a measure of the maximum population density sustainable in the medium while
u(x, t) ≡ 0 is the state where there is no population. Hence we require the restriction
0 ≤ u(x, t) ≤ 1 ∀ (x, t) ∈ IR × IR

+ on the state variable u. As we will see, this
condition does not hold for any positive value of c.

We also note that, because of assumption 3., the non-linear diffusion equation 33
is no longer of parabolic type. This can be seen by noting that the function

F

(

u,
∂u

∂x
,
∂2u

∂x2

)

≡ D(u)
∂2u

∂x2
+D′(u)

[

∂u

∂x

]2

+ g(u),

is not elliptic with respect to its third argument. Therefore the non-linear operator

L[u] ≡ F

(

u,
∂u

∂x
,
∂2u

∂x2

)

−
∂u

∂t
,

4This imposes the following boundary conditions limξ→−∞
φ(ξ) = 1 and limξ→+∞

φ(ξ) = 0.
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is not parabolic5. Also equation 33 degenerates at u = 0. It is a simple degeneration
whenD(0) = 0 but D′(0) 6= 0 and double doubly degenerate whenD(0) = D′(0) = 0.
By using the above we can conclude that Turchin’s equation 12 is not of parabolic
type on the interval (p1, p2) and has simple degeneracy at u = p1, p2. Here p1 and
p2 are the roots of φ′ in equation 12.

We can now begin the one-dimensional t.w.s. analysis for equation 33 by stating
that if this equation possesses a traveling wave connecting the homogeneous sta-
tionary states u(x, t) ≡ 1 and u(x, t) ≡ 0, then c > 0. This can be shown in a
similar way to that in [36].

By assuming that for c > 0, u(x, t) = φ(x − ct) is a solution of 33 we substitute
it into that equation to obtain the non-linear second order ODE

D(φ)φ′′(ξ) +D′(φ)[φ′(ξ)]2 + cφ′(ξ) + g(φ) = 0, ∀ ξ ∈ (−∞,+∞), (34)

where the dash on D denotes derivative with respect to φ while the dash on φ
denotes derivative with respect ξ, with the boundary conditions φ(−∞) = 1 and
φ(+∞) = 0. In addition, we require 0 ≤ φ(ξ) ≤ 1 for all ξ. Now we follow
the classical approach in investigating the existence of t.w.s. of a PDE introduced
by Kolmogorov et al. ([21]). This consists of re-stating the problem 33 in terms
of finding the set of parameters for which there exist homoclinic or heteroclinic
trajectories of an ODE system. Thus, by setting φ′ = v the above equation can be
written as the following singular (at φ = 0) ODE system

φ′ = v
D(φ)v′ = −cv −D′(φ)v2 − g(φ).

(35)

Here we remove the singularity by using a standard reparametrization (see [6] and
[36]) of the above system, which preserves the orientation of the corresponding
trajectories. Let τ be such that

dτ

dξ
= −

1

D(φ(ξ))
. (36)

In terms of τ , system 35 can be written as the following non-singular system

φ̇ = −D(φ)v ≡ f1(φ, v)
v̇ = cv +D′(φ)v2 + g(φ) ≡ f2(φ, v),

(37)

where the dot on φ and on v means derivative with respect to τ .

5For this characterization we have used a standard classification for second order PDEs, in
particular for nonlinear equations of the form considered in this paper. This is the precise definition
(see [31]).

Let F (~x, t, u, ~p, ~R) be a continuous differentiable function of its n2 + 2n + 2 variables. F is

elliptic with respect u(~x, t) at a given point (~x, t) if, for all real vectors ~ξ = (ξ1, ξ2, · · · , ξn), we
have

n
∑

i,j=1

∂F

∂rij

ξiξj > 0, for ~ξ 6= ~0,

where pi = ∂u/∂xi and rij = ∂2u/∂xi∂xj . Accordingly, the nonlinear operator

L[u] ≡ F

(

~x, t, u,
∂u

∂xi

,
∂2u

∂xi∂xj

)

−
∂u

∂t
,

is said to be parabolic whenever F is elliptic.
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Depending on the local profile (at u = 0) of the diffusion coefficient D, the system
37 has different dynamics. We consider two separate cases:

Case 1. g satisfies 1-2 and D satisfies 3-4a). Here 37 has two “finite” equilib-
rium points: P0 = (0, 0) and P1 = (1, 0). Note that for D′(0) = 0, (0,+∞) is also
an equilibrium for 37.

Local Analysis:
Given that the eigenvalues of the Jacobian, J [f1, f2](0,0), of the system 37 at P0

are λ1 = 0 and λ2 = −c, then this equilibrium is a non-hyperbolic point. The
corresponding eigenvectors are

~v1 = (1,−g′(0)/c)T and ~v2 = (0, 1)T .

The implication of the non-hyperbolicity of P0 is that, because of the Hartman-
Grobman theorem, the local dynamics (around P0) of 37 is not topologically equiv-
alent to the dynamics of the linear system defined by J [f1, f2](0,0) (see [8]). In such
a case, the local phase portrait of 37 can be obtained by carrying out a non-linear
local analysis, which is based on the center manifold theorem. This, in addition
to other things, says that the local dynamics around a non-hyperbolic equilibrium,
is determined by the dynamics around the center manifold of the system. The
existence of such a center manifold is also guaranteed. Here we are not including
the details as the basic ideas of the analysis can be seen elsewhere ([35]). For our
purposes, it is sufficient to say that the non-linear local analysis shows that P0 is
a non-hyperbolic saddle-like point for all c > 0 where the unstable non-hyperbolic
manifold is the vertical axis and the one-dimensional center manifold (which is
stable) is locally tangent to ~v1.

The linear analysis implies that P1 is a hyperbolic point with different features
depending on the speed c. In fact, we have:

1. For c2 ≥ 4g′(1)D(1), P1 is an unstable node. Here the eigenvalues of the

Jacobian matrix, J [f1, f2](1,0) are λ1 =
(

c+
√

c2 − 4g′(1)D(1)
)

/2 and λ2 =
(

c−
√

c2 − 4g′(1)D(1)
)

/2. The corresponding eigenvectors are

~v1 = (1,−λ1/D(1))T and ~v2 = (1,−λ2/D(1))T .

Note that for c2 = 4g′(1)D(1) the point P1 is a degenerate node. Con-
sequently we have a damped (non-oscillatory) behavior around P1 implying
that the condition 0 ≤ φ(ξ) ≤ 1 for all ξ is violated.

2. For c2 < 4g′(1)D(1), P1 is an unstable focus. In this case, the local phase
portrait of system 37 consists of oscillatory trajectories around P1. Again, the
bounds on φ do not hold for these values of c.

Global Analysis:
For this end we need the null-clines of the system 37. The horizontal (φ̇ = 0) null-
cline consists of the vertical (φ ≡ 0) and the horizontal (v ≡ 0) axes. The vertical
(v̇ = 0) null-cline has two branches:

V1(φ) =
−c+

√

c2 − 4D′(φ)g(φ)

2D′(φ)
and V2(φ) =

−c−
√

c2 − 4D′(φ)g(φ)

2D′(φ)
. (38)



DIRECT AGGREGATION AND TRAVELING WAVE DYNAMICS 467

For this case we have: limφ→0+ V1(φ) = 0, V1(1) = 0, V1(φ) < 0 ∀ φ ∈ (0, 1).
limφ→0+ V2(φ) = +∞, V2(1) = −c/D′(1), V2(φ) > 0 ∀ φ ∈ (0, 1).

Additionally, one can verify that in both cases (1 and 2), for positive values, c1
and c2, of c with c1 < c2, the corresponding branches V

cj

i with i, j = 1, 2 are related
as follows: V c1

1 (φ) < V c2

1 (φ) and V c1

2 (φ) < V c2

2 (φ) for all φ ∈ (0, 1].
For Case 1 the qualitative behavior of V1 and V2 as c changes is as shown in

Figure 1.
Now let us consider the coordinate system generated by the basis {~v1, ~v2} at

P1. This set of vectors generates the main directions on the phase portrait. For
all positive values of c such that c2 > 4g′(1)D(1), the trajectories of 37 leaving P1

have ~v2 as tangent vector. Actually, we are only interested in those trajectories of
37 which, once they have left P1, enter the region R = {(φ, v)|0 ≤ φ ≤ 1, v ≤ 0}.
Moreover, let us consider that trajectory of 37 whose path can be approximated
(around P1) by the linear relationship v(φ) = − λ2

D(1) (φ − 1). It can be seen that

this trajectory leaves P1 below the graph of V1. In a small neighborhood of P1, the
path of v and the graph of V1, are close for sufficiently large values of c.

Given that for all positive values of c, P1 is unstable (node or focus), it follows
that the system 37 has no heteroclinic trajectory coming from P0 and ending at P1.
For the same reason there is no trajectory coming from (0,+∞) and ending at P1.

By considering all the above analysis, we are at the point of drawing an analogy
between the t.w.s. analysis for the classical Fisher-KPP equation ut = uxx + g(u)
and ours. For this goal, the key result is the following proposition.

Proposition 1. The system 37, with D and g as in Case 1, has a heteroclinic
trajectory connecting P1 with P0 (in this order) for c > 0 if and only if the system

φ̇ = D(φ)v
v̇ = −cv −D′(φ)v2 − g(φ),

(39)

for the same value of c, has a heteroclinic trajectory connecting P0 with P1 (in this
order).

Proof. Suppose that for c > 0, (φc(τ), vc(τ)) is the trajectory of 37 connecting
P1 with P0, i.e., satisfying the boundary conditions (φc(−∞), vc(−∞)) = (1, 0)

and (φc(+∞), vc(+∞)) = (0, 0). We claim that the trajectory (φ̃c(τ), ṽc(τ)) ≡
(φc(−τ), vc(−τ)) is the corresponding trajectory of the system 39 connecting P0

with P1. It is easy to verify that (φ̃c(τ), ṽc(τ)) is a solution of the system 39.
Moreover, given that time for this system is in the reverse sense compared with
that of 37, the boundary conditions for (φ̃c(τ), ṽc(τ)) are as they are stated in the
proposition. One can verify the reverse reasoning in a straightforward way. Hence
the proof follows.

Recall that, in the classical Fisher-KPP t.w.s. analysis on the appropriate phase
portrait, for each c ≥ c0 = 2

√

g′(0) it is possible to choose a positive number
m in such a way that the triangle T with boundaries: the segments 0 ≤ φ ≤ 1,
v0 ≤ v ≤ 0, and v(φ) = −mφ where v0 = v(1) = −m, is a positive invariant set for
the ODE system φ′ = v, v′ = −cv − g(φ). Therefore, by a direct consequence of
the Poincaré-Bendixson theorem, for each c ≥ c0 the trajectory leaving P1 (which
is a hyperbolic saddle point for all c > 0) through the left unstable manifold and

entering the set T , ends at P0 (which, for c > 2
√

g′(0), is a stable node) as ξ tends
to +∞.
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Figure 1. Behavior of the vertical null-clines of 37 for Case 1, as c
changes. The dashed line is that of V2 for four values of c; the solid
line corresponds to that for V1 for the same values of c. Here we
consider D(φ) = −φ2 and g(φ) = φ(1 − φ). (a) For small values of
c (c = 0 and c = 0.1). (b) For larger values of c (c = 0.2, 0.8). Note
that the graph of V1 tends to the horizontal axis for large values of
c.
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In our case, the positions of the equilibria are not the same (they are inverted
compared with the Fisher-KPP equation) but the required local behavior and all
the additional properties of the vertical null-cline, the relative position of the main
direction and the vertical null-cline at P1 (in terms of Proposition 1) are the same.
Additionally, because of the stronger non-linearities in our system, we do not suspect
that the positive invariant set for 39 will be as simple as a triangle. To construct the
appropriate set, let us consider a C1

[0,1] function f , such that: a) f < 0 ∀ φ ∈ (0, 1),

f(0) = v0 < 0, f(1) = 0, b) f ′ > 0 ∀ φ ∈ [0, 1] with f ′(1) > −λ2/D(1).
The following reasoning is close to that given by Hadeler (see [18]). For this we

define the region Rf as follows: Rf = {(φ, v)|0 < φ < 1, f(φ) ≤ v ≤ 0}. We have
the following proposition:

Proposition 2. For functions f with the properties listed above, there exist positive
values of c such that the region Rf is a positive invariant set for the system 39.

Proof. We denote by ~Nint = (−f ′(φ), 1) the normal vector to the graph of f at
(φ, f(φ)) pointing inwards towards Rf (see Figure 2).

Figure 2. Proof of Proposition 2. For appropriate function f , the
region Rf is a positive invariant set for system 39. See text for
details.

We now restrict the vector field defined by 39 on the graph of f . The restriction
results in the system

φ̇ = D(φ)f(φ)
v̇ = −cf(φ) −D′(φ)[f(φ)]2 − g(φ).

(40)

Given that on the segment 0 < φ < 1 the vector field defined by 40 points inwards
on Rf , the proposition follows if we choose values of c such that the inner product
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~Nint · (φ̇, v̇) is greater than or equal to zero on the graph of f for all φ ∈ (0, 1). A
simple calculation gives us

~Nint · (φ̇, v̇) = −(D(φ)f(φ)f ′(φ) + cf(φ) +D′(φ)(f(φ))2 + g(φ)).

We need ( ~Nint · (φ̇, v̇)) ≥ 0. This happens if, for φ ∈ (0, 1), we take c such that

c ≥ −
d

dφ
[D(φ)f(φ)] −

g(φ)

f(φ)
.

Moreover

c ≥ sup

{

−
d

dφ
[D(φ)f(φ)] −

g(φ)

f(φ)

}

,

where the supremum is taken on φ ∈ (0, 1). In fact, if now we consider the set of
functions f as above, the following condition on c characterizes the lowest value, c0,
of c for which Rf is a positive invariant set for 39,

c0 = inf sup

{

−
d

dφ
[D(φ)f(φ)] −

g(φ)

f(φ)

}

, (41)

where the infimum is taken on the set of functions f . Then the proposition
follows.

By using Propositions 1 and 2, we conclude:

Proposition 3. For each c > 0 such that c ≥ c0 where c0 satisfies 41 and for func-
tions D and g as in Case 1, the system 37 has a heteroclinic trajectory connecting
the equilibrium P1 with P0.

Remark 1. In order to remove the singularity at φ = 0 we have re-parametrized
the system 35. To make explicit the analogy with the Fisher-KPP t.w.s. analysis
we consider the system 39 whose trajectories run in opposite directions to those of
37. Note that we could have carried out a simple reparametrization for doing both
things simultaneously.

Remark 2. For a given f , a comparison between the values c0 and 2
√

g′(1)D(1)
can be useful to determine which type of connections the system 37 could have.
Our numerical simulations (see Examples 1 and 2) strongly suggest that the set
{

c > 0|c2 > 4g′(1)D(1)
}

is contained in the set {c|c ≥ c0}. Also, these simulations

show that the set
{

c|0 < c < 2
√

g′(1)D(1)
}

is part of the above mentioned set.

We can summarize the above analysis by stating the following lemma:

Lemma 3.1. If the functions D and g satisfy the conditions mentioned in Case 1,
then for each positive value of c such that c > c0, where c0 satisfies 41, the equation
33 has a t.w.s. which is:

1. of monotone decreasing front type connecting the states u(x, t) ≡ 1
and u(x, t) ≡ 0 if c satisfies the additional condition c2 > 4g′(1)D(1). Here φ
satisfies the condition 0 ≤ φ ≤ 1 for all values of its argument;

2. of oscillatory (around the state u(x, t) ≡ 1) type connecting the states u(x, t) ≡
1 and u(x, t) ≡ 0, for c > 0 satisfying the additional condition c2 < 4g′(1)D(1).
Here the bounds, 0 ≤ φ ≤ 1, for φ are violated;
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3. a damped (around u(x, t) ≡ 1) t.w.s. connecting u(x, t) ≡ 1 and u(x, t) ≡ 0 for
c > 0 satisfying the extra condition c2 = 4g′(1)D(1). Again, here the bounds
on φ are violated.

To illustrate the t.w.s. dynamics involved, we consider the following example:

Example 1. The simplest equation satisfying the conditions in Case 1 is

∂u

∂t
=

∂

∂x

[

−u2∂u

∂x

]

+ u(1 − u). (42)

The corresponding system 37 is

φ̇ = φ2v
v̇ = cv − 2φv2 + φ(1 − φ).

(43)

The phase portrait of system 43 is shown in Figure 3. This shows the different
heteroclinic trajectories of 43 as c varies.

Thus we have the different types of aggregation t.w.s. for equation 42, namely:
monotonic fronts (corresponding to the node-saddle-like heteroclinic trajectory),
damped fronts and damped oscillatory fronts (associated with the focus-saddle-like
connection), depending on the values of c. These are illustrated in Figure 3. Note
the damped behavior in the back of the t.w.s. in Figures 4(a) and 4(b).

Case 2. g satisfies 1-2 and D satisfies 3-4b). (see these conditions at the
beginning of Section 3) Here, in addition to P0 and P1, the system 37 has a third
equilibrium point: Pc = (0, vc) = (0,−c/D′(0)) which, because of the condition
D′(0) 6= 0, comes from (0,+∞) (see Case 1). Note that Pc moves away monotoni-
cally on the positive vertical axis as c increases.

Part of the analysis carried out in Case 1 holds here. Thus, except where there
are major differences, we do not go into great detail for this case.

Local Analysis:
The linear local analysis shows that for all positive values of c, Pc is a hyperbolic
saddle point where the eigenvalues of the Jacobian matrix J [f1, f2](0,vc) are λ1 = c

and λ2 = −c. The corresponding eigenvectors are ~v1 = (1, r/2c)T and ~v2 = (0, 1)T ,

where r =
[

D′′(0)c2

(D′(0))2 + g′(0)
]

. Note that, depending on the values of c, the local

unstable manifold of 37 at Pc has a different slope which varies as follows: it is zero

for c2 = −g′(0)(D′(0))2

D′′(0) , it is negative for c2 > −g′(0)(D′(0))2

D′′(0) and it is positive when

this last inequality is reversed.
P0 is a non-hyperbolic point. The non-linear local analysis around P0 implies

that this equilibrium is a saddle-node point with the saddle-like sector to the right
of P0 and the node-like region to the left. The behavior of the trajectories of 37
around P1 is the same as in Case 1, i.e., they depend on the values of c as was
stated in that case.

Global Analysis:
The φ null-clines are the same as in Case 1. One can verify: V1(0) = 0, V1(1) = 0,
V1(φ) < 0 ∀ φ ∈ (0, 1); meanwhile for V2, we have: V2(0) = −c/D′(0), V2(1) =
−c/D′(1) and V2(φ) > 0 ∀ φ ∈ (0, 1). Here the qualitative behavior of the v
null-clines 38 of the system 37 as c changes is shown in Figure 5.

The following proposition holds:
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(a)

(b)

(c)

Figure 3. Phase portrait for 43 for different values of c: (a) c =
0.5, (b) c = 2.0 and (c) c = 3.0. The heteroclinic connections in
(a) and (b) violate the bounds of φ. See text for details.
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Figure 4. Different aggregative t.w.s. of front type for equation
42: (a) oscillatory front, (b) damped front and (c) monotonic front.
The cases (a) and (b) violate the condition 0 ≤ φ(ξ) ≤ 1 on φ.
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Figure 5. Behavior of the v-null-clines of 37 for Case 2 as c
changes. Here, by way of example, we take D(φ) = −(2φ + φ2)
and g(φ) = φ(1 − φ). (a) For small values of c (c = 0, 0.1). (b) For
bigger values of c (c = 1, 2). For large c the graph of V1 (dashed
line) tends to the horizontal axis. The continuous line corresponds
to the graph of V2.
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Proposition 4. For functions D and g as above and for c = 0, the system 37 has
a homoclinic trajectory based at P0 which surrounds the equilibrium P1.

Proof. Firstly, we note that for c = 0 and D and g as above, the equilibrium Pc

collapses into P0, and P1 becomes a center. Secondly, if we multiply the right hand
sides of 37 by the strictly positive function −D(φ) with φ > 0, the resulting system
has the same dynamics as 37 on the first and fourth quadrants. Moreover, the
constructed system is Hamiltonian-like. One can verify that the Hamiltonian is

H(φ, v) =
1

2
[D(φ)v]2 +

∫ φ

φ0

D(s)g(s)ds,

where φ0 ∈ (0, 1). The path of the trajectory of 37 passing through P0 coincides
with the contour curve H(φ, v) = 0. By the properties of D and g apart from the

origin, its positive branch touches the horizontal axis at φ̃0 > 1 with a vertical
tangent vector. Since the contour curves of H are symmetrical with respect to
the horizontal axis, we have that the trajectory associated with this path is the
homoclinic connection of the proposition.

Remark 3. Corresponding to the homoclinic trajectory of the system 37 we have
a standing wave of pulse type for equation 33. This wave violates the stated bounds
for φ. Additionally, this trajectory is the boundary of a region on which the system
has a continuum of closed trajectories around P1.

Given that for c > 0 the equilibrium P1 is unstable (focus or node, depending on
c), there is no trajectory of 37 connecting Pc with P1 for all c > 0.

Now let us denote by θ(φ, v; c) the angle formed by the positive φ-axis (θ grows
in the counter-clockwise direction) and the vector field defined by 37 at the point
(φ, v) for the speed c. The following monotonicity property holds.

Proposition 5. For fixed (φ, v) with φ > 0 and all v 6= 0, θ(φ, v; c) is a monotonic
increasing function of c.

Proof. We have that

tan θ(φ, v; c) =
f2(φ, v)

f1(φ, v)
,

where f1 and f2 are the components of the vector field associated with system 37.
From the above equation

dθ

dc
(φ, v; c) =

−D(φ)v2

[D(φ)v]2 + [cv +D′(φ)v2 + g(φ)]2
> 0,

for all (φ, v) and c as in the proposition. Then the proof follows.

Now, we focus on analyzing the behavior of the right unstable manifold, Wu
c (Pc),

of 37 as c increases. For this aim, we denote by Wu
c1

(Pc1
) and Wu

c2
(Pc2

) the right un-
stable manifolds of 37 at Pc corresponding to the speed values c1 and c2, respectively
with c1 < c2. Then the following result holds:

Proposition 6. For any two positive values of c, c1 and c2 with c1 < c2:

1. Wu
c1

(Pc1
) runs below Wu

c2
(Pc2

) in the first quadrant as time increases,
2. Wu

c1
(Pc1

) runs above Wu
c2

(Pc2
) in the fourth quadrant, as time increases.
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Proof. By contradiction. Let us start with item 1. Suppose that for c1 and c2 as
in the statement, in a certain range Wu

c1
(Pc1

) runs above Wu
c2

(Pc2
). This means

that there exists at least one point, (φ∗, v∗), at which these manifolds intersect each
other. Although the argument is valid if the intersection occurs at any other point,
let us assume that this happens below the graph of the v-null-cline V2. At the
intersection point, the angles θ1 = θ1(φ

∗, v∗; c1) and θ2 = θ2(φ
∗, v∗; c2), are related

by θ2 < θ1 which contradicts Proposition 5. Therefore our supposition is false. The
same argument can be used in proving item 2. Hence the proof follows.

Let us take φ̃0 as in the proof of Proposition 4 and for c > 0 we denote by φ̃c

the point at which Wu
c (Pc) crosses the horizontal axis. The following proposition

holds:

Proposition 7. φ̃0 < φ̃c for all c > 0. Moreover, φ̃c increases monotonically on
the positive φ (horizontal) axis as c increases.

Proof. The monotonicity of φ̃c with respect to c is a consequence of the continuity
of the vector field 37 with respect to φ, v and c and Proposition 5. The existence
of φ̃c for all c > 0 follows from the behavior of the vector field defined by 37. For

example, for small c, namely such that c2 > −g′(0)(D′(0))2

D′′(0) , the trajectory Wu
c (Pc)

enters the second quadrant below the graph of V2, then the vector field 37 pushes up
until it reaches the graph of V2, where its tangent vector must be horizontal pointing
towards the right. Then Wu

c (Pc) is pushed down until it touches the horizontal axis

at φ̃c. Except for some qualitative and quantitative changes on the graph of V2 (see
Figure 3) which do not change the essential behavior of Wu

c (Pc), similar arguments
can be used to conclude that, for bigger values of c, Wu

c (Pc) touches the positive
φ-axis further away.

Once Wu
c (Pc) reaches the horizontal axis, where does it go as time increases?

The following two propositions contain part of the answer.

Proposition 8. If for some c > 0, Wu
c (Pc) connects the equilibrium Pc with P0

it does so in such a way that, except at the origin, it never crosses the existing
homoclinic trajectory of 37 for c = 0.

Proof. Follows by using continuity arguments and Propositions 6 and 7.

Proposition 9. For positive values of c satisfying c2 ≥ 4g′(1)D(1), Wu
c (Pc) does

not connect Pc with P0. Moreover, Wu
c (Pc) behaves such that φ is finite but v is

unbounded and negative, as time goes to +∞.

Proof. By Proposition 7 we have that for sufficiently large values of c, Wu
c (Pc)

crosses the positive horizontal axis far away from φ̃0. On the other hand, for those
values of c, the branch V1 of the v-null-cline is much closer to the horizontal axis
(see Figure 5(b)). Thus the vector field 37 pushes Wu

c (Pc) down leftwards with
decreasing vertical component. The norm of this component is bigger as v is more
negative.

To illustrate the t.w.s. dynamics studied in Case 2 we consider an example.
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Example 2. Consider the equation

∂u

∂t
=

∂

∂x

[

−(γu+ u2)
∂u

∂x

]

+ u(1 − u), (44)

where γ > 0. The corresponding system 37 is

φ̇ = (γφ+ φ2)v
v̇ = cv − (γ + 2φ)v2 + φ(1 − φ).

(45)

The phase portrait of the above system is shown in Figure 6 for different values
of c. Note the homoclinic trajectory based at P0 for c = 0, and the focus (P1) to
saddle-node (P0), and the node (P1) to saddle-node (P0), heteroclinic trajectories.

The above homo- and heteroclinic connections of 45 correspond to a standing
wave, an oscillatory front and monotonic front solutions, respectively, for equation
44. See Figure 6.

4. Numerical solutions. The degenerate diffusion term in equation 33 can lead to
problems for numerical simulation. To determine the origin of these problems, note
that the nonlinear density-dependent diffusion term —once the x-derivative in cal-
culated in 33— can be written as the sum of two terms: a strictly density-dependent
diffusive term and a convective term. When the convective term dominates the dif-
fusive term, oscillations or wiggles will appear in the numerical solution if classical
finite element, finite difference or finite box methods are used. This is caused by
the negative diffusion arising from the numerical discretization method.

There are several numerical techniques that can be used to treat these numerical
difficulties. Some of these are developed in [14] and [15]. A sufficiently fine spatial
grid may be useful but this strategy can prove to be computationally expensive.
Another method is to stabilize the discretization by adding numerical diffusion,

i. e. the addition of a diffusion term ǫ∂2u
∂x2 , where ǫ << 1, a common practice

to eliminate or reduce non-physical oscillations near discontinuities [1, 20]. This
method avoids the spread of errors in the calculation or accumulation of errors
leading to “blow up”. In particular the addition of the diffusion term leads to the
recovery of the stability conditions of the numerical scheme.

The difficulty with problems of this kind is the treatment of the numerical flux
and in setting up the problem to enable such treatment. We have chosen to use
an approach (by introducing a change of variable) that allows us to deal with the
degeneracy in equation 33 and then solve it by using a conventional method for
convection-diffusion equations.

In this section we present the numerical solutions of Examples 1 and 2. We used
the routine D03PSF from the NAG Fortran Library for convection-diffusion one
space dimension problems. D03PSF integrates the system of convection-diffusion
equations in conservative form:

N
∑

j=1

Pi,j

∂Uj

∂t
+
∂Fi

∂x
= Ci

∂Di

∂x
+ Si (46)

for i = 1, 2, ..., N (with N =number of equations), a ≤ x ≤ b, t ≥ t0, where Uj are
the state variables. In 46, Pi,j , Fi and Ci depend on x, t, and U ; where the vector
U denotes the solution of the initial and boundary value problem associated with
the PDE system; Di depends on x, t, U and Ux; and Si depends on x, t, and U .
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(a)

(b)

(c)

Figure 6. Phase portrait of system 45 illustrating different types
of connections for different values of c: (a) homoclinic trajectory
based on P0 for c = 0, (b) a focus to saddle-node connection for
c = 1.5 and (c) a node to saddle-node heteroclinic trajectory for
c = 3.0. In (a) and (b) the bounds on φ are violated. See text for
details.
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Figure 7. Numerical results showing how the initial and boundary
value problem associated with equation 42 evolves in time. The
profiles are shown at regular time intervals t = 0, 0.5, .... Boundary
condition u(0, t) = 1 is imposed at x = 0 and x = 100. Initial
conditions are u(x, 0) = 0.5

(

1 + tanh
(

0.4−x
0.1

))

.

Pi,j , Fi, Ci and Si must not depend on any space derivatives, and Pi,j , Fi, Ci and
Di must not depend on any time derivatives.

In order to use this numerical method, we must transform equations 42 and 44
to the conservative form 46, and we do this by means of a change of variable. In
Example 1, equation 42, by putting v = u3 (then ∂v

∂x
= 3u2 ∂u

∂x
) can be rewritten as

the algebraic-partial differential system

0 = v − u3

∂u

∂t
= −

1

3

∂2v

∂x2
+ u(1 − u).

We will then have that D in 46 is u3, C = − 1
3 and F = 0.

In a similar way to the previous example, for Example 2, equation 44 can be
rewritten by using v = − 1

3u
3 − 1

2γu
2, so ∂v

∂x
= −u2 ∂u

∂x
− γu∂u

∂x
= −(u2 + γu)∂u

∂x
.

Thus, the above equation results in the algebraic-partial differential system

0 = v +
1

3
u3 +

1

2
γu2

∂u

∂t
=

∂2v

∂x2
+ u(1 − u).
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Figure 8. Numerical results showing how the initial and boundary
value problem associated with equation 44 evolves with time. The
profiles are shown at regular time intervals t = 0, 0.5, .... Here
γ = 1, the boundary condition u(0, t) = 1 is imposed at x = 0 and
x = 100, as initial conditions, we take u(x, 0) =
0.5

(

1 + tanh
(

0.4−x
0.1

))

.

Numerical solutions of Example 1 (equation 42) can be seen in Figure 7, while
those for Example 2 (equation 44) can be seen in Figure 8. Profiles are shown at
regular time intervals. Traveling wave profiles can be seen in both examples. The
specific initial and boundary values are given in the corresponding figure captions.

Apart from being able to display the traveling wave behavior of the solutions, the
numerical results also contain data that can be used to compute the wavespeed. The
wavespeed of the t.w.s. of interest is bounded by the minimum wavespeed cmin (this
ensures we have positive solutions). Equations with known traveling wave solutions
raise the question of stability. Studies on the stability of these types of solutions
have already established a relationship between the stability of the wave and its
speed. For example, for the FitzHugh-Nagumo equation it was shown [33, 34] that
slow waves are unstable while faster waves are stable. These are the ones that can
usually be obtained numerically.

Time-asymptotic behavior of the traveling wave solutions of nonlinear equations
of Fisher type has also been previously considered [17, 22], making clear why typ-
ical numerical simulations of the Fisher-KPP equation result in a stable wavefront
solution with speed 2 (minimum speed).

For qualitative comparison, we draw the solution of the system 43 corresponding
to the speed c = 2.8. In Figure 11 the reader can see the pair of functions φc(τ), vc(τ)
which defines the heteroclinic trajectory connecting P1 and P0. The first component,
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Figure 9. Wavespeed of traveling wave solutions of 42, deter-
mined from the numerical solution in Figure 7. Solid line denotes
the wavefront and the dotted line is the best linear fit, suggesting
a wavespeed c of approximately 2.8.

φc(τ), has the same qualitative behavior of (the profiles of) the numerical solution
of the full PDE 42 with the appropriate initial and boundary conditions (Fig. 7).
Similarly, in the Figure 12 the corresponding case can be seen for the solutions of
the ODE system 45 and PDE 44.

From the PDE solutions we can approximate the wavespeed by selecting a point
on the solution profile, say u = u0, then we plot how it changes as a function of
time and compute its slope (see Figures 9 and 10). We now use this approximation
to produce the corresponding ODE profiles (see Figures 11 and 12). ODE profiles
were generated with MATLAB, using the software (pplane7) developed by John C.
Polking, Department of Mathematics, Rice University. The aim of presenting the
solution of the associated ODE systems (43 and 45) corresponding to the wavespeed
approximation is to compare it to the t.w.s. found numerically and point out the
qualitative agreement.

5. A note on the general approach. In section 3 we have used a phase portrait
analysis to prove the existence of different types of heteroclinic trajectories for two
families of autonomous ODE systems. Those give us the t.w.s. for equation 33 in
two main cases. Some of the t.w.s., for appropriate values of c, violate the bounds
0 ≤ φ ≤ 1 on φ which means that for those values of c the original problem (as
stated at the beginning of Section 3) does not have a solution. For this reason, the
analysis of existence of t.w.s. in the full PDE equation satisfying some prescribed
initial and boundary conditions and its re-statement in terms of looking for the
values of c for which there exist heteroclinic or homoclinic trajectories of an ODE
system in the t.w.s. variables, must be studied more carefully. This is the aim of
this section.
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y = 3*x − 4.9 Wave front
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Figure 10. Wavespeed of traveling wave solutions of 44, deter-
mined from the numerical solution in Figure 8. Solid line denotes
the wavefront and the dotted line is the best linear fit, suggesting
a wavespeed c of approximately 3.

Figure 11. Numerical solutions of the ODE system 43 with c =
2.8. Key: φ continuous line, v dashed line. Note that, qualitatively,
φ(τ) displays similar behavior as the profile of its PDE solution
counterpart (Fig. 7), for example for φ, φ(−∞) = 1 and φ(+∞) =
0 and therefore for u(x, t) conditions u(x, 0) = u0(x) with 0 ≤
u0(x) ≤ 1, x ∈ IR, 0 ≤ u(x, t) ≤ 1, (x, t) ∈ IR × IR

+, are met. See
equivalence of problems in Section 5.
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Figure 12. Numerical solutions of the ODE system 45 with c = 3.
Key: φ continuous line, v dashed line.

Part of the analysis here consists of investigating the relationship between the
following two problems:

Problem. [PROBLEM 1 (P1)] To search for the existence of t.w.s., u(x, t) =
φ(x− ct), of 33 satisfying the following conditions:

1. φ(−∞) = 1, φ′(−∞) = 0; φ(+∞) = 0, φ′(+∞) = 0,
2. u(x, 0) = u0(x), with 0 ≤ u0(x) ≤ 1 and 0 ≤ φ(ξ) ≤ 1 ∀ ξ ∈ IR.

Problem. [PROBLEM 2 (P2)] To search for the existence of solutions of the
boundary value problem:

φ̇ = −D(φ)v
v̇ = cv +D′(φ)v2 + g(φ),

with φ(−∞) = 1, v(−∞) = 0 and φ(+∞) = 0, v(+∞) = 0 with 0 ≤ φ(τ) ≤ 1 ∀ τ ∈
(−∞,+∞), where τ satisfies 36.

We introduce the following definition:

Definition 5.1. We say that P1(P2) implies P2(P1) whenever the existence of
a solution of P1(P2) implies the existence of a solution of P2(P1). When the
implication is in both senses we will say that problems P1 and P2 are equivalent.

Let us denote by CE the set of values of c for which P1 (5) has a t.w.s. u(x, t) =
φ(x− ct). The following proposition holds:

Proposition 10. If CE is a non-empty set, then for each c ∈ CE, P1 (5) implies
P2 (5).

Proof. For c as in the statement, let u(x, t) = φ(x − ct) be a solution of P1 (5).
Then φ satisfies

D(φ)φ′′(ξ) +D′(φ)[φ′(ξ)]2 + cφ′(ξ) + g(φ) = 0,
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plus the conditions 1. and 2. in P1 (5). If we set φ′ = v, then (φ(ξ), v(ξ)) is a
solution of the singular boundary value problem

φ′ = v
D(φ)v′ = −cv −D′(φ)v2 − g(φ),

φ(−∞) = 1, φ(+∞) = 0 and v(−∞) = 0, v(+∞) = 0 with 0 ≤ φ(ξ) ≤ 1.
Therefore, writing

φ(τ) ≡ φ(ξ(τ)) and v(τ) ≡ v(ξ(τ)),

where τ satisfies 39, and substituting into the above system we conclude that the
pair (φ(τ), v(τ)) is a solution of the non-singular boundary value problem P2 (5).
Hence the result follows.

Now we consider the converse: Let CS be the set of values of c for which problem P2
(5) has a solution. Our results, and the illustrative examples in the previous section,
show us that the above is a non-empty set. Because of the condition 0 ≤ φ(τ) ≤ 1 we
note that if problem P2 (5) has solution for each c ∈ CS , such a set must be included
in (or is equal to) the set

{

c|c2 > 4g′(1)D(1)
}

∩ {c|c ≥ c0}, where c0 satisfies 41.
We can prove the following proposition:

Proposition 11. For each c belonging to the set CS, P2 (5) implies P1 (5).

Proof. Let (φ(τ), v(τ)) be the solution of P2 (5) corresponding to c ∈ CS . Since

dξ

dτ
= −D(φ) > 0 for φ 6= 0,

the function ξ = ξ(τ) has an inverse τ = τ(ξ). Define

φ(ξ) ≡ φ(τ(ξ)) and v(ξ) ≡ v(τ(ξ)).

By using 39 we have

φ′(ξ) = −
φ̇

D(φ(ξ))
and v′(ξ) = −

v̇

D(φ(ξ))
.

Substituting φ̇ and v̇ into 40 we obtain the ODE system appearing in the proof of
Proposition 10. This was derived from the second order ODE in P1 (5). Conditions
1. and 2. in P1 (5) are also satisfied because of the conditions at the boundary in
P2 (5).

Remark 4. Clearly for c such that c2 ≤ 4g′(1)D(1) P2 (5) has no solution because
the damped behavior (with oscillations when the strict inequality holds or without
them in case of equality) around P1 violates the bound (0 ≤ φ(ξ) ≤ 1) of φ.

In light of Remark 4, it is necessary to analyze the eventual equivalence between
P1 (5) and P2 (5) in a more general context. In particular, we consider the case of
ill-posedness. Here we adopt the definition given in [2]:

Definition 5.2. A boundary or initial value problem for a partial differential equa-
tion is said to be ill-posed (or improperly posed) in the sense of Hadamard, if at
least one of the following conditions fails:

1. The existence of the solution,
2. The uniqueness of the solution,
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3. The continuity of the solution with respect to the prescribed initial data.

The problem is a well-posed one when the above conditions hold.

The above definition is made precise by indicating the space in which the solution
must belong and the measure in which the continuous dependence is desired.

In terms of the above definition we can re-state part of our results as follows:

Proposition 12. For functions D and g as in Case 1 or Case 2, and for each c > 0
such that c2 ≤ 4g′(1)D(1) the problem P2 (5), hence P1 (5)) is an ill-posed one.
Meanwhile for each c > 0 belonging to the set

{

c|c2 > 4g′(1)D(1)
}

∩{c|c ≥ c0} that
problem (hence P1 (5)) is well-posed.

6. Conclusions and discussion. By way of conclusion and discussion we address
the following items:

1. The analysis of the existence of t.w.s. u(x, t) = φ(x − ct) for equations of
the form 33 with D(u) ≤ 0 ∀ u ∈ [0, 1] and g(0) = g(1) = 0 with g(u) >
0 ∀ u ∈ (0, 1) satisfying some suitable initial and boundary conditions is less
understood than that for the case D(u) ≥ 0 (see [6, 26] and [27]). In fact,
some of these problems are ill-posed (see Section 5) and not well studied.

2. The description of direct aggregation phenomena by using negative diffusion
equations perhaps deals with relatively simple models but encounters problems
with ill-posedness.

3. The derivation of the aggregation equation 23 took into account the mu-
tual attraction between conspecifics. This has a clear interpretation. This
is an important difference between our model and other approaches, namely,
integro-differential equations or the Ginzburg-Landau equation, whose inter-
pretation is not derived from first principles at the level of individual behavior
within the population. Our derivation is motivated by the work of Turchin
and builds on it.

4. We have only treated the t.w.s dynamics of strictly negative diffusion equa-
tions for which, as far as we know, there is no stability theory available. The
analysis of the existence of t.w.s. for the case when the density dependent dif-
fusion coefficient changes sign would, we feel, also raise challenging problems.
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486 FAUSTINO SÁNCHEZ-GARDUÑO, PHILIP K. MAINI & JUDITH PÉREZ-VELÁZQUEZ

[5] W. Alt, Degenerate diffusion equations related with drift functional modelling aggregation,
Nonlinear Anal., 9 (1985), 811–836.

[6] D. G. Aronson, Density-dependent interaction systems, in “Dynamics and Modelling of Reac-
tive Systems,” W. H. Steward and W. H. Ray and C. C. Conley (eds.), New York: Academic
Press, 1980.

[7] D. G. Aronson, The role of the diffusion in mathematical biological population biology: Skel-

lam revisited, in “Lecture Notes in Biomathematics,” A. Fasano and M. Primicerio (eds.), 57,
Berlin Heidelberg New York: Springer, 1985.

[8] D. K. Arrowsmith and C. M. Place, “An Introduction to Dynamical Systems,” Cambridge
University Press, 1990.

[9] N. F. Britton, Aggregation and the competitive exclusion principle, J. Theor. Biol., 136 (1989),
57–66.

[10] R. S. Cantrell and C. Cosner, Conditional persistence in logistic models via nonlinear diffu-

sion, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 132 (2002),
267–281.

[11] R. S. Cantrell and C. Cosner, Spatial ecology via reaction-diffusion equations, in “Wiley Series
in Mathematical and Computational Biology,” John Wiley & Sons Ltd., Chichester, 2003.

[12] D. S. Cohen and J. D. Murray, A generalized diffusion model for growth and dispersal in a

population, J. Math. Biol., 12 (1981), 237–249.
[13] J. C. Dallon and H. G. Othmer, A discrete cell model with adaptative signaling for aggregation

of Dictyostelium discoideum, Phil. Trans. R. Soc. Lond. B, 352 (1997), 391–417.
[14] M. Dehghan, On the numerical solution of the one-dimensional convection-diffusion equation,

Math. Probl. Eng., 1 (2005), 61–74.
[15] H. J. Eberl and L. Demaret, A finite difference scheme for a degenerated diffusion equation

arising in microbial ecology, Sixth Mississippi State Conference on Differential Equation and
Computational Simulations, Electron. J. Differential Equations, Conference, 15 (2007), 77–95.

[16] W. S. C. Gurney and R. M. Nisbet, The regulation of inhomogeneous population, J. Theor.
Biol., 52 (1975), 441–457.

[17] P. Hagan, Travelling wave and multiple travelling wave solutions of parabolic equations, SIAM
J. Math. Anal., 13 (1982), 717–38.

[18] K. P. Hadeler, Travelling fronts and free boundary value problems, in “Numerical Treatment

of Free Boundary Value Problems,” J. Albretch and L. Collatz and K.H. Hoffman (Eds.),
Birkhauser-Verlag, 1982.
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