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Abstract By using asymptotic theory, we generalise the Turing diffusively-driven
instability conditions for reaction-diffusion systems with slow, isotropic domain
growth. There are two fundamental biological differences between the Turing con-
ditions on fixed and growing domains, namely: (i) we need not enforce cross nor pure
kinetic conditions and (ii) the restriction to activator-inhibitor kinetics to induce pat-
tern formation on a growing biological system is no longer a requirement. Our theoreti-
cal findings are confirmed and reinforced by numerical simulations for the special cases
of isotropic linear, exponential and logistic growth profiles. In particular we illustrate
an example of a reaction-diffusion system which cannot exhibit a diffusively-driven
instability on a fixed domain but is unstable in the presence of slow growth.
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1 Introduction

Reaction-diffusion equations (RDEs) have been widely proposed as plausible mod-
els of pattern generation processes Murray (2002). On fixed domains, Turing (1952)
derived the conditions under which a linearised reaction-system admits a linearly stable
spatially homogeneous steady state in the absence of diffusion and yet, becomes unsta-
ble under appropriate conditions in the presence of diffusion to yield a spatially vary-
ing inhomogeneous steady state. This process is now well-known as diffusively-driven
instability and is of particular interest in developmental biological pattern formation
as a means of initiating self organisation from a virtually homogeneous background.
Turing patterns were first observed by Castets et al. (1990) in a chloride-ionic-malon-
ic-acid (CIMA) reaction and Ouyang and Swinney (1991) were the first to observe a
Turing instability from a spatially uniform state to a patterned state. Although contro-
versial in a biological context for many years, recent experimental findings suggest this
may be a mechanism for the formation of repeated structures in skin organ formation
(Sick et al. 2006; Maini et al. 2006) and zebrafish mesoderm cell fates (Solnica-Krezel
2003).

On fixed domains, the properties of the autonomous Turing diffusively-driven
instability conditions require that the reaction kinetics should be of activator-inhibitor
form with the inhibitor diffusing faster, typically much faster, than the activator. This
gives rise to the standard paradigm of pattern formation via short-range activation
and long-range inhibition. Most applications of Turing’s theory have assumed fixed
domains; in the context of developmental biology, this requires the tacit assumption
that pattern forming processes occur on a different timescale to that of domain growth.
However, while growth is usually anticipated to occur at a slower rate than other bio-
logical processes, it nonetheless has an important dynamical role. For example, slow
domain growth will typically dictate the nature of the pattern that evolves as the domain
grows leading to a much greater robustness of pattern compared to the array of pat-
terning that can take place on a fixed domain. This is illustrated by Kondo and Asai
(1995) who predicted mode doubling in pigmentation patterns of the angelfish Pom-
acanthus as it grows. The juvenile Pomacanthus has three vertical stripes; once the
fish grows to twice its original size, new stripes emerge between the original stripes so
that the original wavelength is maintained. In contrast to the case of a fixed domain,
numerous different stripe and spot patterns occur depending on perturbations of the
initial conditions for the model. Further examples of studies of RDEs illustrating the
role of domain growth can be found in papers by Varea et al. (1999), Chaplain et al.
(2001), Liaw et al. (2001), Painter et al. (1999), Crampin et al. (2002, 1999), Oster
and Bressloff (2006), Madzvamuse et al. (2003, 2005), Madzvamuse (2005) and for
a review see Plaza et al. (2004).

In particular, the latter presented a framework to investigate the role of curvature and
growth in pattern formation and selection via the Turing instability. The correspond-
ing Turing analysis on growing domains was not attempted. Instead, they analysed
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Stability analysis of non-autonomous reaction-diffusion systems 135

equations that allow the separation of the geometrical spatial effects from those due to
domain growth with the assumption of isotropic linear growth. In all their simulations
they observed that the selection of the final pattern was dictated by the interplay of the
curvature and domain growth given fixed model parameter values. Transient patterns
were shown to be robustly selected due to the effects of either curvature and/or domain
growth, in complete agreement with previous results obtained in computational studies
by Crampin et al. (1999, 2002) and Madzvamuse et al. (2003), Madzvamuse (2005).

As the first step in considering a Turing instability analysis, it can be shown that
RDEs on a growing domain can be transformed into a RDEs on a fixed domain,
but with time-dependence in the diffusion and dilution terms Crampin et al. (2002).
These non-autonomous terms however typically invalidate standard linear stability
analysis via plane wave decompositions, even with the common simplification that
the domain growth is assumed to be isotropic, whereby the domain expands at the
same rate in all directions at all times. From a mathematical point of view, stability
conditions on fixed domains are typically derived from the calculation of the eigen-
values of a time-independent matrix governing the dynamics of perturbations in the
linear regime. Slow growth induces initially small but time-dependent and cumulative
changes in such matrices. However, eigenvalues can, in general, be very sensitive to
matrix perturbations (Golub and Van Loan 1996), and therefore it is unclear a priori
whether the standard conditions for a diffusively-driven instability will transfer even
in the presence of small growth.

Despite the above-mentioned studies and the simplifying assumption of isotropy,
there is only limited analytical work investigating the impact domain growth has on
pattern formation (see, for example Plaza et al. (2004)). Hence, this paper aims to
derive and present the Turing diffusively-driven instability conditions for RDEs on
continuously deforming growing domains restricted to the case of slow growth only.
In most biological systems that involve domain growth, such growth occurs slowly
and therefore our assumption is biologically relevant as detailed below. Linearising the
model equations around a time-dependent solution uS(t)we show that uS(t) is a solu-
tion of a non-autonomous system of ordinary differential equations. Using asymptotic
theory, we further derive and state the conditions that generalise the classic Turing
parameter space inequalities for the case of slow growing domains and we show that
these conditions are a function of the model parameters in the reaction terms and
the growth dynamics. Two fundamental biological differences between the Turing
conditions on fixed and growing domains are:

(i) One need not enforce cross nor pure kinetic conditions.
(ii) The restriction to activator-inhibitor kinetics to induce pattern formation on a

growing biological system is no longer a requirement.

In particular we observe below that an activator-activator mechanism may give rise to
what we will term domain-growth-induced Turing instability. Similarly, in the pres-
ence of growth, short-range inhibition, long-range activation can also generate a
diffusively-driven instability. Such mechanisms for pattern formation are impossible
on fixed domains because of the stability constraints imposed. Finally, to illustrate our
theoretical findings, we compute numerical results for the special cases of isotropic
linear, exponential and logistic growth profiles in one spatial dimension.
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136 A. Madzvamuse et al.

Hence, our paper is organised as follows: in Sect. 2 we present the model equations
derived from first principles on a continuously deforming domain. The resultant model
equations are then transformed, using a Lagrangian coordinate system, into a non-
conservative formulation. The derivation of stability conditions for diffusively-driven
instabilities using asymptotic theory for the case of slow growth is presented in Sect. 3.
To illustrate our theoretical findings, two examples are presented as shown in Sect. 4.
The first example is an activator-depleted model known to satisfy the cross/pure kinet-
ics conditions (Gierer and Meinhardt 1972; Prigogine and Lefever 1968; Schnakenberg
1979). The second example consists of reaction kinetics which do not satisfy any of
the cross/pure kinetics conditions. Our aim is to show that the effects of incorporating
domain growth does not necessarily restrict one to consider only a short range acti-
vator-long range inhibition mechanism, in distinct contrast to pattern formation on
fixed domains. Finally, in Sect. 5 we summarise, discuss and interpret the results of
our research and conclude.

2 Reaction-diffusion systems on continuously growing domains

Let Ωt ⊂ R
m (m = 1, 2, 3) be a simply connected bounded continuously deforming

volume at time t ∈ I = [0, tF ], tF > 0 and ∂Ω t be the surface boundary of the
continuously changing volume. Also let u = (u (x(t), t) , v (x(t), t))T be a vector
of two chemical concentrations at position x = (x(t), y(t), z(t)) ∈ Ωt ⊂ R

m . The
evolution equations for reaction-diffusion on a growing domain are readily obtained
from conservation of mass in an elemental volume using Reynolds transport theorem.
RDEs of the type studied for pattern formation generally exclude cross-diffusion and
are only coupled through the reaction terms. The growth of the domain x ∈ Ωt with
boundary ∂Ωt generates a flow velocity a(x, t). The non-dimensionalised governing
equations take the form (Crampin et al. 2002; Madzvamuse et al. 2003; Madzvamuse
2005)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut︸︷︷︸
Rate of change of u

+∇ · (a u)
︸ ︷︷ ︸

growth terms

= ∇2u︸︷︷︸
diffusion

+ γ f (u, v)
︸ ︷︷ ︸

nonlinear reaction terms

vt︸︷︷︸
Rate of change of v

+∇ · (a v)
︸ ︷︷ ︸

growth terms

= d ∇2v︸ ︷︷ ︸
diffusion

+ γ g(u, v)
︸ ︷︷ ︸

nonlinear reaction terms

. (1)

Here, f (u, v) and g(u, v) represent nonlinear reaction kinetics, d is a constant ratio
of the diffusion coefficients and γ is a scaling parameter. These equations are supple-
mented with initial conditions

u = u0(x), for x ∈ Ω0 at t = 0,

where u0(x) is a positive bounded vector function. We typically consider either zero-
flux boundary conditions,

(n · ∇)u = 0, x ∈ ∂Ωt and t ≥ 0,
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Stability analysis of non-autonomous reaction-diffusion systems 137

where n is the unit normal vector to the surface ∂Ωt or homogeneous Dirichelet
conditions

u = 0 x ∈ ∂Ωt and t ≥ 0,

which correspond to sinks at the domain boundaries.
In compact-vector form we can write (1) as:

ut + ∇ · (a : u − D ∇u) = γ F(u), (2)

where u =
(

u
v

)

, F =
(

f (u, v)
g(u, v)

)

, a : u =
(

a u
a v

)

, and D =
(

1 0
0 d

)

.

2.1 A Lagrangian coordinate system

We consider a new spatial coordinate system ξ via the bijective mapping

ξi = ξi (x, t), xq = xq(ξ , t), (3)

where ξ ∈ Ω0 and x ∈ Ωt . From now onwards, all lowercase Latin subscripts (exclud-
ing u, v, h∗) index spatial coordinates. We adopt the usual summation convention
for such indices whereby repetition denotes an implicit summation over the number
of spatial dimensions. From the chain rule we immediately have the identities

∂ξi

∂t
+ ∂ξi

∂xq

∂xq

∂t
= 0 and

∂ξi

∂xq

∂xq

∂ξs
= δis . (4)

We also have that Eq. (2) transforms to

∂u
∂t

∣
∣
∣
∣
ξ

+ ∂ξi

∂t

∂u
∂ξi

+ ∂ξr

∂xq

∂

∂ξr

(
aq u

) = D
∂ξi

∂x j

∂

∂ξi

(
∂ξp

∂x j

∂u
∂ξp

)

+ γ F(u),

where D = diag(1, d). This simplifies to

∂u
∂t

∣
∣
∣
∣
ξ

+
[[
∂ξi

∂t
+ ∂ξi

∂xq
aq

]

I − ∂2ξi

∂xq∂xq
D
]
∂u
∂ξi

+ ∂ξr

∂xq

∂aq

∂ξr
u

= D
∂ξi

∂x j

∂ξp

∂x j

∂2u
∂ξi∂ξp

+ γ F(su).

The bijectivity of the mapping ensures that initial conditions can be readily written
with respect to ξ and that homogeneous boundary conditions, whether Neumann or
Dirichlet, are also inherited unchanged. On choosing a mapping which obeys

∂xq

∂t

∣
∣
∣
∣
ξ

= aq , (5)
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we have, via Eq. (4), that

∂u
∂t

∣
∣
∣
∣
ξ

−
[
∂2ξi

∂xq∂xq

]

D
∂u
∂ξi

+ ∂ξr

∂xq

∂aq

∂ξr
u = D

∂ξi

∂x j

∂ξp

∂x j

∂2u
∂ξi∂ξp

+ γ F(u). (6)

A standard choice is

∂

∂t

[
x(ξ , t)

]
∣
∣
∣
∣
ξ

= a(x, t), x(ξ , 0) = ξ (7)

which is consistent with Eq. (5) and ensures that ξ corresponds to a Lagrangian coor-
dinate system.

2.1.1 Spatially linear, isotropic growth

Hereafter, we assume without loss of generality that ξ is a Lagrangian coordinate
system and thus that Eq. (7) is satisfied. We wish to consider the simplest, non-trivial,
form of growth and thus consider the expansion

ak(x, t) = vk(t)+ Akp(t)x p + Skp(t)x p + Bkpq(t)x pxq + · · ·

where Akp(t) is antisymmetric and Skp(t) is symmetric. Clearly, vk(t) corresponds
to a rigid body translation and Akp(t) to a rigid body rotation. Because we wish to
consider growth rather than rigid body movements we set vk(t) and Akp(t) to zero.
To consider the simplest form of growth, we set higher order terms such as Bkpq(t) to
zero and thus consider

ak(x, t) = Skp(t)x p

with Skp(t) symmetric, which we define to be spatially linear growth. Rather than deal
with this general case we consider the simpler case of isotropic growth, where Skp(t)
is proportional to the identity matrix. Thus

Skp(t) = S(t)δkp

where S(t) represents the expansion (or contraction) rate of the domain and δkp is the
Kronecker delta. Hence Eq. (6) simplifies to

∂u
∂t

+ h(t)u = 1

ϕ2(t)
D
∂2u
∂ξi∂ξi

+ γ F(u), (8)

where ∂2u
∂ξi ∂ξi

= ∇2u in multi-dimensions and

h(t) = mS(t), ϕ(t) = exp

⎡

⎣

t∫

0

dq S(q)

⎤

⎦ ≥ 0, (9)
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with m denoting the number of spatial dimensions. It should be noted that:

1. In one dimension, spatially linear growth (with no further assumptions) is of this
form; the assumption of isotropy required in higher dimensions is redundant. Our
analysis for the rest of the paper focuses on the model equations (8) and (9).

2. The model equation (8) is in non-conservation form. The conservative formulation
required for the numerical simulations below can be easily deduced by using an
arbitrary Lagrangian-Eulerian reference frame (Madzvamuse 2008).

It is worth pointing out that numerical solutions corresponding to Eq. (8) have been
extensively studied in papers by Crampin et al. (2002, 1999), Plaza et al. (2004),
Madzvamuse (2005), and Madzvamuse and Maini (2007).

2.1.2 Timescales

For a biological system, growth is typically driven by cell division, and thus occurs on
the timescale of the cell cycle duration, which is typically 24 h or greater. In contrast,
the biochemical reaction kinetics are typically considered to occur on a much faster
time scale of seconds to minutes, and are typically slave to the diffusive dynamics.
The length scale associated with a volume of 104 to 106 cells is about 2 × 10−4m to
10−3m. Given a diffusion coefficient of between 10−10m2s−1 to 10−9m2s−1, the dif-
fusive timescale is about 40 s to 170 min. We will take advantage of this difference in
timescales in our analysis. With Tg denoting the growth timescale, and Tdyn denoting
the maximum of the diffusive timescale and the biochemical kinetics timescale, we
will have occasion to utilise the small parameter

ε
de f= Tdyn

Tg
� 1; (10)

and therefore we will generally neglect O(ε2) corrections. For the above range of
estimates, we have ε ∈ [5 × 10−4, 0.12].

3 Domain-growth-induced diffusively-driven instability analysis

3.1 Definitions

In the following, we consider the diffusively-driven instability analysis of spatially
linear, isotropic growth. Given Eqs. (8) and (9) do not always admit a uniform steady
state, we first of all consider the spatially independent solution defined as follows:

Definition 1 Let uS(t) be a spatially independent solution of (8). Clearly uS(t) is a
solution of the non-autonomous ordinary differential vector equation

h(t) uS + ∂uS

∂t
= γ F(uS), given uS(0) = u0

S ∈ R. (11)
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140 A. Madzvamuse et al.

Definition 2 (Diffusively-Driven Instability on Growing Domains) Diffusively-
driven instability (or Turing instability) on growing domains occurs when a spatially
independent vector function uS(t), linearly stable in the absence of diffusion, goes
unstable when diffusion is present.

3.2 Non-autonomous behaviour of the linearised system

To proceed in investigating the possibility of a diffusively-driven instability in the
presence of growth, we work in the Lagrangian coordinate system and expand u(ξ , t)
about the spatially independent solution uS(t). Thus we substitute

u(ξ , t) = uS(t)+ ηw(ξ , t) with η � 1,

into Eqs. (8) and (9). On neglect of O(η2) and higher order terms, we obtain

∂w

∂t
+ h(t)w = 1

ϕ2(t)
D
∂2w

∂ξi∂ξi
+ γ J F(t)

∣
∣
uS

w, (12)

where J F(t) is the Jacobian matrix corresponding to the non-linear reaction kinetics
which is evaluated at uS(t). We define ψK (ξ) to be the time independent eigenmode
of the transport operator satisfying

⎧
⎪⎨

⎪⎩

∂2ψK
∂ξi ∂ξi

= −K 2ψK , ξ ∈ Ω0,

n j
∂ψK
∂ξ j

= 0, ξ ∈ ∂Ω0,

(13)

where n j denotes components of the outward pointing surface normal of ∂Ω0. A stan-
dard analysis shows that the eigenvalue must be real and negative, and thus without
loss of generality, we write it as −K 2 in the above; we similarly have that eigen-
modes of distinct eigenvalues are orthogonal. Furthermore, note that the domain Ω0
is time-independent because ξ is a Lagrangian coordinate system.

Observe that in the one-dimensional case with homogeneous Neumann Boundary
conditions and an initial domain length L , the modes are given by

ψK (ξ) = AK cos(K ξ)

where K = nπ
L , n = ±1,±2 . . . are discrete wavenumbers and AK is constant. Anal-

ogous definitions apply for homogeneous Dirichlet boundary conditions. Without loss
of generality, the constant AK is typically determined by demanding othonormality
in addition to orthogonality of the eigenmodes. Below, there is an implicit assump-
tion that the eigenmodes are complete though we note that with simple geometries,
completeness with respect to the L2-norm is inherited from the properties of Fourier
series.
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We proceed by expanding w in terms of the eigenmodes

w(ξ , t) =
∑

K

wK (ξ , t) =
∑

K

aK (t)ψK (ξ). (14)

Linearity and the orthogonality of the eigenmodes allow each mode to be considered
separately, which is a substantial simplification. In particular, growth of any one of the
aK (t) with time is sufficient to drive the full solution away from the time-dependent
solution uS(t). Similarly, if all the aK (t) decay with time then a sufficiently small
perturbation from the time-dependent solution uS(t) will decay, at least within the
resolution of linear theory predictions.

To proceed, we substitute, for each K , a mode wK = aK (t)ψK (ξ) from expansion
(14) into the linearised equations (12) to find

[

(ȧK + h(t)aK )+ K 2

ϕ2(t)
DaK − γ J F(t)

∣
∣
uS

aK

]

ψK = 0. (15)

Writing

aK (t) = bK (t)q(t),

where q(t) = exp
[
− ∫ t

t0
h(τ )dτ

]
and t0 is the time the perturbation is applied, we

have

[

ḃK + K 2

ϕ2(t)
DbK − γ J F(t)

∣
∣
uS

bK

]

ψK q(t) = 0. (16)

For the autonomous case, it would be standard at this point to substitute bk(t) = eαt b0
k

in the above to determine an eigenvalue equation for α. This is no longer appropriate
with non-autonomy, despite its previous use in the literature (Gjorgjieva and Jacobsen
2007), since this approach implicity requires the contradiction that b0

k , which is time
independent, is an eigenvector of a time-dependent matrix. Instead we proceed as
follows. One immediately has from Eq. (16) that

dbK

dt
= M K (t)bK , where M K (t)

de f=
[

− K 2

ϕ2(t)
D + γ J F(t)

∣
∣
uS

]

. (17)

Given initial conditions bK (t0) at time t0 we seek a solution at time t > t0 of the form

bK (t) = exp

⎡

⎣

t∫

t0

dsλ∗
K (s)

⎤

⎦ cK (t), (18)
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where λ∗
K (t) is either the largest time-dependent real eigenvalue of M K (t) or the real

part of one of the time-dependent complex conjugate eigenvalues.1 From Eqs. (17)
and (18) we have

dcK

dt
= QK (t)cK , where QK (t)

de f= [
M K (t)− λ∗

K (t)I
]
, with cK (t0) = bK (t0).

(19)

3.3 Analysis of solutions of non-autonomous systems of ordinary differential
equations

3.3.1 M K (t) has real, distinct eigenvalues

One eigenvalue of QK (t) is zero and the other is negative. Let e0
K (t) be the unit

eigenvector associated with the zero eigenvalue and let e1
K (t) be the unit eigenvector

associated with the negative eigenvalue, such that the angle between e0
K (t) and e1

K (t)
is acute. These eigenvectors are distinct and thus a spanning set; hence one can write

cK (t) = αK (t)e0
K (t)+ βK (t)e1

K (t), and ||cK (t)|| =
√

α2
K (t)+ β2

K (t).

The above norm is only the standard L2-norm if e0
K (t) and e1

K (t) are perpendicular,
which need not be true; nonetheless, || · || satisfies all the axioms required of a norm.
For a matrix Q, the induced matrix norm is

|| Q|| = sup
||x||=1

|| Qx||

and the Lozinskii measure is (Connell McCluskey 2005)

μ(Q) = lim
h→0

||I + h Q|| − 1

h
.

Noting || Qx|| ≤ || Q|| ||x||, for any matrix Q, and vector x, a solution of Eq. (19)
satisfies

d

dt
||cK (t)|| = lim

h→0

||cK (t + h)|| − ||cK (t)||
h

= lim
h→0

||cK (t)+ h QK (t)cK (t)|| − ||cK (t)||
h

≤ lim
h→0

||I + h QK (t)|| ||cK (t)|| − ||cK (t)||
h

=μ(QK (t))||cK (t)||.
(20)

1 Should the eigenvalues of M K (s) change from real to complex either side of time s∗ ∈ [t0, t] we note
that our analysis is not valid at s∗ just as the usual Turing analysis is not valid for eigenvalues with zero
real part; one can consider times either side of s∗ with the analysis below.
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Hence

||cK (t)|| ≤ ||cK (0)|| exp

⎡

⎣

t∫

t0

ds μ(QK (s))

⎤

⎦ = ||cK (0)||,

noting that a matrix with zero and negative eigenvalues has a zero Lozinskii measure.
Thus a solution to Eq. (19) does not grow in time.

We now show that for t fixed, with Δt = t − t0 ∼ Tdyn , we can also find at
least one solution of (19) which does not decay on neglect of O(ε2) corrections; not
surprisingly this corresponds to an initial condition along the direction of the zero
eigenvector. From a Picard iteration we have

cK (t) = GK (t, t0)cK (t0), (21)

where

GK (t, t0) = I +
∞∑

n=1

t∫

t0

dt1

t1∫

t0

dt2 · · ·
tn−1∫

t0

dtn QK (t1)QK (t2) . . . QK (tn). (22)

The existence of GK (t, t0) is guaranteed from Picard’s theorem given the components
of QK (t) are bounded to ensure that QK (t)cK (t) is Lipschitz. With “dot” denoting a
time derivative, we have

Q̇K ∼ O

(
1

Tgrowth
QK

)

∼ O

(
ε

Tdyn
QK

)

since the change in the matrix Q is driven by growth. We set the initial condition
cK (t0) = e0

K (t0) and consider the solution (21) obtained by expanding each QK (t) in
expression (22). Noting QK (t0)e

0
K (t0) is zero and that the nth order time derivatives

of QK (t) scale with εn we have

cK (t) = e0
K (t0)+

∞∑

n=1

Δtn+1

(n + 1)! Qn−1
K (t0) Q̇K (t0)e

0
K (t0)+ O(ε2). (23)

By differentiating QK (s) e0
K (s) = 0 with respect to s and then setting s = t0 we also

have

Q̇K (t0)e
0
K (t0) = − QK (t0)ė

0
K (t0).

Let e0P
K (t) be the unit vector which is perpendicular to e0

K (t) where P denotes per-
pendicular. Because e0

K (t) is defined to be a unit vector, we have

ė0
K (t) = ε

τ(t)
e0P

K (t);
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where τ(t) has an implicit K dependence. Since the matrix QK (t) changes on the
growth timescale we also have that ε/τ(t) ∼ O(T −1

growth) and hence τ(t) ∼ O(Tdyn).

We also have the kinematic relation

e1
K (t) = cosψ(t)e0P

K (t)+ sinψ(t)e0
K (t) (24)

by projecting e1
K (t) onto the e0

K (t) and e0P
K (t) directions. Note thatψ(t) has an implicit

K dependence and that, without loss of generality, ψ(t) ∈ [0, π/2). Hence

QK (t0)ė
0
K (t0) = λ0

K (t0)

τ (t0) cosψ(t0)
e1

K (t),

where λ0
K (t0) < 0 is the negative eigenvalue of QK (t0). By substituting this into

Eq. (23) we have

cK (t) =
[
1 + O(ε2)

]
e0

K (t0)

+
[

εΔt

τ(t0) cosψ(t0)

(
es − (1 + s)

s

)∣
∣
∣
∣
ls=λ0

K (t0)Δt
+ O(ε2)

]

e1
K (t0) (25)

which is not decaying.
To proceed we use Eqs. (18), (25) and the observation that

t0+Δt∫

t0

dsλ∗
K (s) = λ∗

K

(

t0 + Δt

2

)

Δt

+ λ̈∗
K

(

t0 + Δt

2

) t0+Δt∫

t0

ds

(

s −
[

t0 + Δt

2

])

+ · · ·

= λ∗
K

(

t0 + Δt

2

)

Δt

[

1 + O

(
ε2Δt2

T 2
dyn

)]

where we have used the scaling relation λ̈∗
K ∼ O(ε2λ∗

K /T 2
dyn). Thus we have

||bK (t0 +Δt)||
||bK (t0)|| = exp

[

λ∗
K

(

t0 + Δt

2

)

Δt

] [
1 + O

(
ε2
)]
. (26)

Thus we see, accurate to O(ε2) corrections, that the growth rate with respect to the
norm is given by

λG
K

def= λ∗
K

(

t0 + Δt

2

)

. (27)

with λ∗
K the largest real eigenvalue of M K .
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On the breakdown of the perturbation expansion

We briefly consider the nature of the O(ε2) corrections. Noting τ(t0) ∼ Tdyn the
[1 + O(ε2)] on the right hand side of Eq. (26) can be refined to

[

1 + O

(
ε2Δt2

T 2
dyn

)

+ O

(
ε2Δt2

T 2
dyn cos2(ψ(t0))

)

+ O

(
ε2Δt3λ0

K (t0)

T 2
dyn cos2(ψ(t0))

)

+ O(ε3)

]

.

The final O(ε2) term arises from explicitly calculating the O(ε2) contribution to the
coefficient of e0

K in Eq. (25), which is not presented for brevity.
It is evident that further comment is required for π/2 −ψ(t0) � 1 as this will lead

to a general invalidation of the perturbation method since we then have | cosψ(t0)| �
1. Under these circumstances, the eigenvectors of QK (t0) and hence M K (t0), are
extremely close to parallel. Even if the solution decays along one eigenmode direc-
tion, this can actually induce a large, transient, excursion in the phase plane. This may,
by itself, be sufficient to induce an instability even in an autonomous system due to the
influence of non-linear effects during such a large deviation. The fact this behaviour is
both transient and requires contributions from the two eigenmodes and non-linearities
entails this means of driving an instability is also neglected in the textbook Turing
analysis (Murray 2002). It is therefore also not considered here especially given that
requiring that the fastest growing mode corresponds to the case with nearly parallel
eigenvectors necessitates an extreme fine tuning of parameters, which in itself is unrea-
sonable to impose on a biological model. Henceforth we assume π/2 − ψ(t0) �� 1.

It is also clear that onceΔt/Tdyn starts becoming large relative to the inverse of the
asymptotically small parameter, ε, the structure of the asymptotic expansion breaks
down. Nonetheless, the asymptotic structure is clearly valid up to Δt/Tdyn ∼ O(1).
Thus, importantly, the allowed range of Δt is not asymptotically small; instead it is
sufficient to allow a perturbation to start growing, thus allowing a meaningful study
of linearised stability.

3.3.2 M K (t) has complex conjugate eigenvalues

The matrix M K (t) has a complex eigenvector

eK (t) = f 0
K (t)+ i f 1

K (t)

associated with the complex eigenvalue λ(t), where f 0
K (t), f 1

K (t) are real, distinct,
vectors and thus a spanning set of the real plane. Without loss of generality we take

f 0
K (t) to be a unit vector and let ΩK

def= Im(λ(t)) > 0. We can write any real vector
function of time in the form

cK (t) = αK (t) f 0
K (t)+ βK (t) f 1

K (t)

and define the norm

||cK (t)|| =
√

α2
K (t)+ β2

K (t).
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With ēK (t) denoting the conjugate of eK (t) we have

ėK (t) = ḟ
0
K (t)+ i ḟ

1
K (t)

de f= εAK f 0
K (t)+ iεBK f 1

K (t)

= ε
AK + BK

2
eK (t)+ ε

AK − BK

2
ēK (t)

de f= εAK eK (t)+ εBK ēK (t). (28)

where AK , BK , AK , BK are defined by the above relations and are time-dependent.
The ε appears as the change in the eigenvector eK (t) is on the timescale of growth. As
long as the angle between f 0

K and f 1
K is significantly greater than ε and the vectors

have a ratio of lengths, l, with ε � l � ε−1, then AK (t) and BK (t) can be treated as
O(ε0) terms for the purposes of asymptotic expansions. This is assumed below.

We also have that

QK (t)eK (t) = iΩK eK (t), QK (t)ē(t) = −iΩK ē(t)

and hence, by differentiation,

Q̇K (t)eK (t) = − (QK (t)− iΩK I
)

ėK (t)+ iΩ̇K eK (t)

= iεΩK [2BK ēK (t)+ΦK eK (t)] ,

where ΦK
def= Ω̇K /[εΩK ] ∼ O(1/Tdyn) as ΩK changes on the growth timescale

Tgrowth = Tdyn/ε.
Thus for a general initial condition

cK (t0) = αK f 0
K (t0)+ βK f 1

K (t0) = Re [(αK − iβK ) eK (t0)]

we have

cK (t) = Re

⎡

⎣(αK − iβK )

⎧
⎨

⎩
exp

[
QK (t0)Δt

]
eK (t0)+

∞∑

n=1

n∑

j=1

t∫

t0

dt1

t1∫

t0

dt2 . . .

×
tn−2∫

t0

dtn−1

tn−1∫

t0

dtn (t j − t0)Q j−1
K (t0) Q̇K (t0)Qn− j

K (t0)eK (t0)

⎫
⎬

⎭

⎤

⎦+O(ε2)

= Re

⎡

⎣(αK − iβK )

⎧
⎨

⎩
exp

[
QK (t0)Δt

]
eK (t0)+ ε

∞∑

n=1

n∑

j=1

Δtn+1

(n + 1)! [n − j +1]

× (iΩK )
n
[
ΦK eK (t0)+ 2BK (−1) j−1 ēK (t0)

]
⎫
⎬

⎭

⎤

⎦+ O(ε2).

= Re

[

(αK − iβK ) ×
{

eiΩKΔt
{

1 + iε
Δt2

2
ΦKΩK

}

eK (t0)

−εBK

{
sin(ΩKΔt)

ΩK
−ΔteiΩKΔt

}

ēK (t0)

}]

+ O(ε2).
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Calculating the norm reveals

||cK (t)||2 = ||cK (t0)||2
{

1 + 2ε|BK |Δt

[

− cos (2ΩKΔt + χ0)

+ sin(ΩKΔt)

ΩKΔt
cos (ΩKΔt + χ0)

]}

+ O(ε2),

where

χ0 = tan−1

(
2αKβK ReBK + (β2

K − α2
K )ImBK

(β2
K − α2

K )ReBK − 2αKβK ImBK

)

= arg
(
(αK − iβK )

2BK

)

is a phase angle. We can rewrite the above norm in the form

||cK (t)|| = ||cK (t0)||
{

1 + ε|BK |Δt

[

1 − 2 cos(ΩKΔt)
sin(ΩKΔt)

ΩKΔt

+ sin2(ΩKΔt)

[ΩKΔt]2

]1/2

cos (ΩKΔt + χ1)

}

+ O(ε2),

where

χ1 = χ0 + tan−1

(
sin(ΩKΔt)

cos(ΩKΔt)− sin(ΩKΔt)
ΩKΔt

)

.

Thus we have an oscillating solution, the amplitude of which is constant at leading
order but not at higher orders. One can immediately deduce that, accurate to O(ε2)

||bK (t0 +Δt)||
||bK (t0)|| = exp

[

Δt

{

λ∗
K

(

t0 + Δt

2

)

+ ε|BK (t0)|C(ΩKΔt, χ1)

}]

with

C(ΩKΔt, χ1)
de f=
[

1−2 cos(ΩKΔt)
sin(ΩKΔt)

ΩKΔt
+ sin2(ΩKΔt)

[ΩKΔt]2

]1/2

cos (ΩKΔt+χ1) ;

note that BK is evaluated at time t0.
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The important result for investigating stability is that an O(ε2) accurate estimate
of the growth rate between time t0 and time t is given by

λG
K

def= λ∗
K

(

t0 + Δt

2

)

+ ε

⎧
⎨

⎩
|BK (t0) |

[

1 − 2 cos(ΩKΔt)
sin(ΩKΔt)

ΩKΔt

+ sin2(ΩKΔt)

Ω2
KΔt2

]1/2

cos (ΩKΔt + χ1)

⎫
⎬

⎭
(29)

with λ∗
K denoting the real part of the eigenvalues of M K . Once more we assume that

the perturbation does not break down due to a near degeneracy of the eigenvectors of
M K and that Δt ∼ Tdyn .

3.3.3 M K (t) has real, repeated eigenvalues

This scenario requires a mathematically precise parameter fine tuning, and thus is
unlikely to occur in most models. The matrix QK (t) in Eq. (19) now has a repeated
zero eigenvalue, one eigenvector only, and has zero square. Expanding Eqs. (21) and
(22) as above, but now for general initial conditions and utilising Q2

K (t) = 0 we have

cK (t) =
[

I +Δt QK (t0)+ (Δt)2

2
Q̇K (t0)+ (Δt)3

6
QK (t0) Q̇K (t0)

]

cK (t0)

+
[
(Δt)3

3
Q̇K (t0)QK (t0)+ (Δt)4

12
QK (t0) Q̇K (t0)QK (t0)

]

cK (t0)+O(ε2).

The nilpotency of QK (t) truncates the series, which entails polynomial behaviour
in time; in fact the final O(Δt4) term above will not contribute due to nilpotency,
though this requires explicit calculation. Thus, the governing dynamics of bK (t) is
not simply exponential growth (or decay) at a rate determined, even approximately,
by an eigenvalue of M K (t). In contrast to the non-autonomous case, we have non-
linear polynomial terms at O(ε) in an asymptotic expansion. Thus a study of this
case does not fit naturally into the current study or the standard analysis of the non-
autonomous case. Furthermore, eigenvalue calculations in the presence of repeated
roots of the characteristic equation can be exquisitely sensitive to matrix perturbations
Golub and Van Loan (1996). Consequently, a special study would have to be conducted
for repeated eigenvalues. However, requiring the fastest growing mode corresponding
to the case of repeated eigenvalues demands a mathematically precise fixing of param-
eter values, which is inappropriate for biological models. Thus we do not consider this
special case below.

Summary Reconsider Eqs. (14) to (17), plus Eqs. (27) and (29). We have O(ε2)

accurate expressions for the growth rate of bK (t) and hence the growth rate of the
perturbation aK (t), at least when degenerate or near-degenerate cases, such as those
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described in Sect. (3.3.3), above are excluded. Thus a study of stability reduces to
determining whether these growth rates are positive or negative.

3.4 Turing diffusively-driven instability conditions on growing domains

Given we now have an understanding of how the non-autonomous solutions behave,
we can start to consider the Turing instability in detail. We consider a perturbation at
time t0, which can be distinct from the initial time, and how it has evolved by time
t = t0 +Δt > t0 with

Δt

Tdyn
∼ O(ε0)

where ε is defined in Sect. (2.1.2). It will be useful to define

t1
de f= t0 + t

2

for use below. We first of all summarise our caveats. For any given mode we assume the
matrix M K does not have repeated eigenvalues, or a switch between real and complex
eigenvalues for the interval [t0, t]. If the eigenvalues are real, we also assume that
the eigenvectors are not close to parallel, as defined by π/2 −ψ ∼ O(1) in Eq. (24).
If the matrix M K has complex eigenvalues, we analogously assume that the real and
imaginary parts of the complex eigenvector are not nearly parallel (or anti-parallel),
and that their ratio of lengthscales can be considered to be the order O(ε0) in an
asymptotic expansion. We also define

h∗ = h(t1)

when the eigenvalues of M K (t1) are real and

h∗ = h(t1)− ε

{

|BK (t0) |
[

1 − 2 cos(s)
sin(s)

s
+ sin2(s)

s2

]1/2

cos (s + χ1)

} ∣
∣
∣
∣
s=ΩKΔt

when the eigenvalues of M K (t1) are complex, with ΩK the imaginary part of the
complex eigenvalue and with BK defined via Eq. (28). The latter arises from the time-
dependent rotation of the complex eigenvector of M K (t0). Given the above assump-
tions we also have |BK | ∼ O(ε0/Tdyn).

We are now in a position to state the main result of our paper:

The necessary conditions for a Turing diffusively-driven instability (accurate to first
order in ε � 1) when considering the system at time t due to a perturbation at time
t0 < t in the presence of spatially linear and isotropic growth as in system (8), are
given by
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γ ( fu + gv)− 2h∗ < 0, (30)

γ 2( fu gv − fv gu)− h∗γ ( fu + gv) > 0, (31)

h∗(1 + d)− γ (d fu + gv) < 0, (32)
[
h∗(1 + d)− γ (d fu + gv)

]2 − 4d
[
γ 2( fu gv − fvgu)− γ h∗( fu + gv)

]
> 0. (33)

In the above, the subscripts u, v denote partial differentiation, with the Jacobian com-
ponents fu, fv, gu and gv evaluated in terms of uS(t1). Strictly, we have h∗ ∼ O(ε),
due to the fact that the growth timescale is much longer than any other timescale so
that one may self-consistently neglect O(h2∗) corrections in the above.

Derivation

Let λ∗
K (t1) denote the largest real part of any eigenvalue of M K (t1). Given our assump-

tions and observations on the behaviour of the non-autonomous solutions, we have
that the mode wK (ξ , t1), will grow during the interval [t0, t] if

μ∗
K

de f= λ∗
K (t1)− h∗ > 0,

and decay if

μ∗
K

de f= λ∗
K (t1)− h∗ < 0,

with t1 = (t0 + t)/2, as above. By considering conditions for stability in the presence
of spatially homogeneous perturbations and instability for spatially varying perturba-
tions, we can deduce the above conditions for a diffusively-driven instability.

To proceed, we need an expression for λK (t1), which denotes an eigenvalue of
M K (t1) with largest real part. This is the root of the quadratic equation

det

[

Iλ∗
K (t1)+ K 2

ϕ2(t1)
D − γ J F

∣
∣
uS(t1)

]

= 0 (34)

with largest real part. Thus λK (t1) satisfies the dispersion relation

λ2
K (t1)+ b(K 2∗ ) λK (t1)+ c(K 2∗ ) = 0 (35)

where

K 2∗
de f= K 2/ϕ2(t1) (36)

b(K 2∗ ) = K 2∗ (1 + d)− γ ( fu + gv), (37)

c(K 2∗ ) = d K 4∗ − γ (d fu + gv) K 2∗ + γ 2 ( fu gv − fv gu), (38)

with u, v, f (u, v), g(u, v) the scalar variables and kinetic functions in Eq. (1). The
partial derivatives are evaluated in terms of uS(t1) the solution to Eq. (11) at time t1.
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Hence

μK
def= λK (t1)− h∗

satisfies

μ2
K +

(
2h∗ + b(K 2∗ )

)
μK +

(
c(K 2∗ )+ b(K 2∗ )h∗ + O(h2∗)

)
= 0, (39)

where b(K 2∗ ) and c(K 2∗ ) are given in Eqs. (37) and (38) respectively. Defining

Bh∗(K
2∗ ) = 2h∗ + b(K 2∗ ), and Ch∗(K

2∗ ) = c(K 2∗ )+ b(K 2∗ )h∗ + O(h2∗)

we obtain the characteristic equation

μ2
K + Bh∗(K

2∗ )μK + Ch∗(K
2∗ ) = 0. (40)

Thus

2μK = −Bh∗(K
2∗ )±

√

B2
h∗(K

2∗ )− 4Ch∗(K 2∗ ). (41)

– With K∗ = 0 we have the absence of diffusion and thus spatial homogeneity.
Requiring that for uS(t1) to be stable to the K∗ = 0, spatially homogeneous, mode
entails

μ∗
K = Re[μK ] = Re

[

−Bh∗(0)±
√

B2
h∗(0)− 4Ch∗(0)

]

< 0. (42)

This is guaranteed provided Bh∗(0) > 0, Ch∗(0) > 0 which respectively yield
Eqs. (30) and (31) given by

2h∗ − γ ( fu + gv) > 0, (43)

O(h2∗)− h∗γ ( fu + gv)+ γ 2( fu gv − fv gu) > 0, (44)

Thus we have Eqs. (30) and (31), which enforce the requirement that the homoge-
neous steady state is stable with respect to spatially homogeneous perturbations.
Also note that from inequality (43), one can readily deduce that the left hand side
of the condition in (44) represents an increasing function of h∗.

– In the presence of diffusion (K 2∗ > 0), we have

Bh∗(K
2∗ ) = 2h∗ + b(K 2∗ ) = K 2∗ (1 + d)+ Bh∗(0) > 0 (45)

since Bh∗(0) > 0. For uS(t1) to become unstable, we require that

μ∗
K = Re[μK ] > 0 for some K 2∗ non-zero, (46)
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thereby requiring that Ch∗(K
2∗ ) < 0 for some K 2∗ non-zero. By definition of

Ch∗(K
2∗ ) we can further re-arrange to obtain a quadratic polynomial in K 2∗ of the

form

Ch∗(K
2∗ ) = P2 K 4∗ + P1 K 2∗ + Ch∗(0) (47)

where

P2 = d > 0,

P1 = h∗(1 + d)− γ (d fu + gv),

Ch∗(0) = c(0)+ b(0)h∗ + O(h2∗)
= γ 2( fu gv − fvgu)− γ h∗( fu + gv)+ O(h2∗).

By condition (44), Ch∗(0) > 0, and therefore we will require that P1 < 0 in order
for Ch∗(K

2∗ ) < 0 for some non-zero K 2∗ . Hence one of the conditions (32) for
diffusively-driven instability is given by

h∗(1 + d)− γ (d fu + gv) < 0. (48)

For diffusively-driven instability to occur, we also require that there exists real K 2±
such that Ch∗(K

2±) = 0 and these can be easily shown to be given by

K 2± =
−P1 ±

√

P2
1 − 4Ch∗(0)d

2d
. (49)

Thus, requiring Ch∗(K
2∗ ) < 0 entails P2

1 − 4Ch∗(0)d > 0, thereby yielding the
last condition (33) for diffusively-driven instability:

[
h∗(1 + d)− γ (d fu + gv)

]2

− 4d
[
γ 2( fu gv − fvgu)− γ h∗( fu + gv)+ O(h2∗)

]
> 0. (50)

Now neglecting O(h2∗) results in the inequalities (30)–(33). In addition to these
inequalities, a Turing diffusively-driven instability requires that there exists at least
one wavenumber such that K 2∗ is contained in the interval

K 2∗ ∈
(

K 2−, K 2+
)

where K 2± are given by Eq. (49).
Note that the above conditions generalise the classic results for the case of fixed

domains (Turing 1952; Edelstein-Keshet 1988; Murray 2002). In addition, the inequal-
ities (30)–(33) define a time-dependent domain in parameter space, generalising the
Turing space. On growing domains, this generalised Turing parameter space is con-
tingent on domain growth.
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3.4.1 Similarities and differences on comparison with the autonomous case

We are now in a position to see which properties of the autonomous Turing diffusively-
driven instability conditions are inherited in the presence of growth perturbations and,
more importantly, we will highlight any properties that are not.

1. As in the autonomous system, note that if L is a characteristic lengthscale of
the domain, then by applying a scaling argument to Eq. (13), permissible wave-
numbers are such that K 2L2 is constant as L varies. For example on a one-
dimensional domain with zero flux conditions one has K 2L2/π2 is a square
integer. Thus on a sufficiently small domain, all permissible modes are such that
K 2∗ = K 2/ϕ2(t1) > K 2+, where K 2+ is given by Eq. (49) and is L-independent.
Hence the system is stable on a sufficiently small domain but as L increases, a
diffusively-driven instability will spontaneously emerge if inequalities (30)–(33)
are satisfied.

2. Similarly to the autonomous case, a diffusively-driven instability cannot occur for
equal diffusion coefficients. Setting d = 1 in inequalities (30) and (32) gives

γ ( fu + gv) < 2h∗ < γ ( fu + gv),

which is a contradiction.
3. Similarly to the autonomous case, a diffusively-driven instability cannot occur via

a Hopf bifurcation. The instability final condition (33) is equivalent to Ch∗(K
2∗ ) <

0; combined with Eq. (42) this enforces Im(μK ) = 0 and hence no instability is
oscillatory in nature. Thus when an instability does occur we have that M K has
real eigenvalues (within the range [t0, t] under consideration), and hence we have
h∗ = h(t1) in the instability conditions (30)–(33).

4. In contrast to the autonomous case, if we have an activator and an inhibitor, we
do not require short-range activation, long-range inhibition which is the standard
mechanism for a diffusively-driven instability. For example, suppose without loss
of generality that u is the activator in Eq. (1) and v is the inhibitor. Thus fu > 0
and gv < 0. Again from inequalities (30) and (32) we require

0 > γ (gv + fu)− 2h∗ > (d − 1)(h∗ − γ fu),

where γ > 0. In the absence of growth, h∗ is zero and we immediately have
0 > (1−d) fu and hence 1−d is negative. Thus, the inhibitor has to diffuse faster
than the activator in the absence of growth for an instability to be possible. How-
ever for h∗ �= 0, we instead simply have 0 > (d −1)(h∗ −γ fu) Thus we can have
0 < γ fu < h∗ implying d < 1. Hence, in the presence of growth, short-range
inhibition, long-range activation can also generate a diffusively-driven instability.

5. In contrast to the autonomous case an activator and inhibitor interaction is not
required to generate an instability; for example, two activators can satisfy the
instability constraints. Again suppose that u is the activator in Eq. (1) so that
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fu > 0. Using inequality (30) we find

gv <

(
2h∗
γ

− fu

)

<
2h∗
γ
,

where γ > 0. Thus, for h∗ = 0, as with no growth, we have gv < 0, implying that
v must be an inhibitor. In contrast for h∗ > 0 we clearly are not required to have
gv < 0 and hence the biochemical corresponding to the concentration v can also
be an activator without making a diffusively-driven instability impossible. There-
fore an activator-activator mechanism could give rise to Turing patterns only in
the presence of domain growth. These will be termed domain-growth-induced
Turing patterns.

Even though we have not been able to consider cases of the most extreme eigen-
value sensitivity to matrix perturbations, such as the presence of repeated roots, the
latter examples highlight that the instability conditions (30)–(33) are fundamentally
different from the conditions in the autonomous case. Thus, while growth does lead to
enhanced pattern robustness, by forcing pattern selection as the system grows, growth
does in fact enhance instability in that more general choices of kinetics will exhibit a
diffusively-driven instability. Below, we illustrate how the Turing space changes with
growth and illustrate how a system which has fu gv > 0, and thus cannot undergo a
diffusively-driven instability in the absence of growth, undergoes peak formation with
slow growth.

4 Numerical experiments

To illustrate our theoretical findings, we firstly briefly introduce slow, isotropic growth
for linear, exponential and logistic evolution of the domain, calculating growth func-
tions such as h(t) required for the subsequent explorations. Then two examples are
considered in detail. The first is an activator-depleted model known to satisfy the
cross/pure kinetics conditions (Gierer and Meinhardt 1972; Prigogine and Lefever
1968; Schnakenberg 1979). The second example consists of reaction kinetics which
do not satisfy any of the cross/pure kinetics conditions. Our aims are to show that
the Turing space can be substantially altered by even slow growth and, further, that
the effects of incorporating domain growth does not necessarily restrict one to con-
sider only a short range activator-long range inhibition mechanism. This is in distinct
contrast to pattern formation on fixed domains.

4.1 Examples: uniform, isotropic growth

Let us assume that the domain growth is spatially linear and, in higher spatial dimen-
sions, isotropic. Without any loss of generality, let us assume that t0 = 0. Let x(t) =
ξϕ(t) where ϕ(t) > 0 is the domain growth function satisfying ϕ(0) = 1. We can
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Table 1 Table illustrating the function h(t) for linear, exponential and logistic growth functions

Type of growth Growth function ϕ(t) h(t) = mS(t) q(t) = e
− ∫ t

t0
h(τ )dτ

Linear ϕ(t) = r t + 1 h(t) = m r
rt+1 q(t) =

(
1

r t+1

)m

Exponential ϕ(t) = ert h(t) = m r q(t) = e−mrt

Logistic ϕ(t) = κAeκr t

1+Aeκr t , A = 1
κ−1 h(t) = m r (κ − ϕ(t)) q(t) =

(
e−κr t +A

1+A

)m

Note that q(t) is as defined and used in Sect. 3. κ is the carrying capacity (final domain size) corresponding
to the logistic growth function

compute the domain (mesh) velocity as

a(x, t)
de f= ∂x

∂t

∣
∣
∣
∣
ξ

= ξ ϕ̇(t) = ϕ̇(t)

ϕ(t)
x,

and hence it can be easily shown that

h(t) := mS(t) = m
ϕ̇(t)

ϕ(t)
∼ O

(
mε

Tdyn

)

,

where m defines the number of spatial dimensions. In Table 1 we show the corre-
sponding h(t) for linear, exponential and logistic growth functions, with κ �= 1. The
definition of A in this table ensures that ϕ(0) = 1.

4.2 Activator-depleted model: an illustrative example

For illustrative purposes let us consider the activator-depleted substrate model (Gierer
and Meinhardt 1972; Prigogine and Lefever 1968; Schnakenberg 1979) also known
as the Brusselator model given by

f (u, v) = a − u + u2 v, (51)

g(u, v) = b − u2 v, (52)

where a and b are positive parameters. In all our simulations we fix d = 10, γ = 1,
m = 2 and vary a and b as illustrated below.

4.2.1 Exponential growth

The Turing conditions for the exponential growth are independent of time t1 since
h∗ = h(t1) = h(t) := m r . For this special case, if r is fixed, the Turing space
obtained does not change in time. This is not the case for the linear and logistic
growth. Since the conditions are time-independent, we illustrate different scenarios
for different values of r .
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Fig. 1 Turing spaces for different exponential growth rates: (a) r = 0.08, (b) r = 0.16 and (c) the
superimposition of spaces for r = 0 (leftmost), r = 0.08 (central) and r = 0.16 (rightmost)

Figure 1 illustrates scenarios for different values of r . In order to highlight specific
features of each space, we show Turing spaces for r = 0.08 and 0.16 separately as
shown in (a) and (b) and then superimpose them together with the space obtained
in the absence of domain growth (c). The lower space (red) in (c) corresponds to
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the case of a fixed domain, i.e. r = 0. The middle (green) and upper (blue) spaces
correspond to the exponential growth rates r = 0.08 and r = 0.16 respectively. If
r is chosen too small (r � 1), say r = 0.002 (Crampin et al. 1999; Madzvamuse
et al. 2003; Madzvamuse 2005; Madzvamuse and Maini 2007; Madzvamuse 2008),
then there are only negligible differences between the Turing spaces at r = 0 and
r = 0.002 (results not shown). It is observed that for r = 0.08 there is a small region
where the space on fixed domain overlaps with that on an exponential growth. For
relatively large values of r there is no overlap between the Turing spaces on fixed
and growing domains (for example spaces for r = 0 and r = 0.16). The fact that in
general there is no overlap between the zero-growth rate Turing space and those on
growing domains, allows us to conclude that, in general, diffusively-driven instability
in the absence of growth need not imply diffusively-driven instability in the presence
of growth.

4.2.2 Linear and logistic growth functions

For the linear and logistic growth functions we compute the time-dependent solutions
(uS(t), vS(t)) which satisfy the differential equations

duS

dt
= γ a − (γ + h(t))uS + γ u2

SvS, (53)

dvS

dt
= γ b − h(t) vS − γ u2

SvS, (54)

where h(t) = mS(t) and given initial values at time t0 = 0. From the linear growth
function, h(t) = m r

rt+1 and similarly for the logistic growth function, h(t) = m r (κ −
ϕ(t)) where ϕ(t) = Aκeκr t

1+Aeκr t , with A = 1
κ−1 . Let us take r = 0.1(� 1), m =

2.0, κ = 2 and A = 1. It is clear from the definitions of the linear and logis-
tic growth functions that as t −→ ∞, h(t) −→ 0. Therefore in the same large
time limit, we also have that (uS(t), vS(t)) tends to (uS, vS) = (a + b, b

(a+b)2
) via

damped oscillations. Note that (uS, vS) represents the steady state in the absence
of domain growth and is a global attractor for the system of non-autonomous ordi-
nary differential equations. Fixing the model parameters a = 0.1, b = 0.9 and
γ = 1 and we plot the phase-diagrams corresponding to Eqs. (53) and (54) as illus-
trated in Fig. 2. In both the linear and logistic growth cases, a stable spiral point
exists.

Next, we compute the Turing inequalities given linear and logistic growth func-
tions respectively. The system of non-autonomous differential Eqs. (53)–(54) must
be solved for every point (a, b) in the plane at any given time t thereby giving rise
to the time-dependent Turing spaces. For every point (a, b) in the plane, we take
the initial conditions u(0) = a + b and v(0) = b

(a+b)2
and these correspond to

the uniform steady state of the reaction-diffusion system in the absence of domain
growth. Solving Eqs. (53) and (54) allows us to determine h∗ for varying t1 given
a growth rate of r = 0.1, and we list these in Table 2. Note that for the chosen
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Fig. 2 Phase diagrams
corresponding to the
non-autonomous system of
ordinary differential
Eqs. (53)–(54) with (a)
exponential, (b) linear and (c)
logistic growth functions. A
stable limit cycle exists for the
exponential growth while a
stable spiral point exists for the
linear and logistic growth
profiles. Here we have taken
parameter values a = 0.1,
b = 0.9 and γ = 1 and the
growth parameter values:
r = 0.1, m = 2, κ = 2 and
A = 1

model parameter values, the matrix MK (t) has real eigenvalues and therefore h∗ =
h(t1).

In Fig. 3 we present the Turing spaces corresponding to the linear and logistic
growth functions respectively for each h∗ in Table 2 for fixed values of t1. Observe
that as t1 increases, the parameter spaces shift away from the space obtained in the
absence of domain growth.
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Fig. 3 Comparison between Turing spaces on continuously growing domains. The spaces at t1 = 0.1, 0.3
and 0.5 are superimposed for both the linear (a) and logistic (b) growth functions. The space at t1 = 0.1
(middle) is the one closest to the space on a fixed domain (rightmost). As t1 increases, the spaces shift away
from the space on a fixed domain as shown in c for t1 = 0.5 (leftmost)

4.3 Activator-activator model: a model that violates the cross and/or pure kinetic
conditions

In this section we consider the following reaction kinetics

f (u, v) = δ(u − 1)+ (v − 1)+ 2δ(v − 1)3, (55)

g(u, v) = −(u − 1)+ (v − 1)+ (v − 1)2 − (v − 1)3, (56)

where δ is a positive parameter.
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Table 2 Computing h∗ = h(t1) (correct to 3 sig. figs) corresponding to the linear and logistic growth
functions given t1 and a fixed growth rate r = 0.1

Time Growth rate Linear Logistic

t1 r h∗ h∗
0.1 0.1 0.198 0.198

0.2 0.1 0.196 0.196

0.3 0.1 0.194 0.194

0.4 0.1 0.192 0.192

0.5 0.1 0.191 0.190

The eigenvalues of MK (t) are real given the model parameter values chosen and hence the h∗ should be
equal. Errors only occur in the third significant figure, indicating that errors are O(ε3) which is amply
accurate for our O(ε) accurate analysis

In the absence of domain growth, the uniform steady state is given by (1, 1). It can
be easily shown that

(
fu fv
gu gv

)

=
(
δ 1 + 6(v − 1)2

−1 1 + 2(v − 1)− 3(v − 1)2

)∣
∣
∣
∣
(1,1)

=
(
δ 1
−1 1

)

=
(+ +

− +
)

(57)

and therefore no Turing patterns will be observed since the system has neither cross nor
pure kinetics. The reaction system given by Eqs. (55) and (56) is an activator-activator
mechanism.

By solving the model equations (8) with reaction kinetics (55) and (56) on a one-
dimensional growing domain we illustrate in Fig. 4 that Turing patterns can be induced
due to the incorporation of domain growth. For the simulations, we assume that γ =
1.0, d = 0.0009 and δ = 0.001. Here we fix the parameters values as: the growth rate
r = 0.1 (exponential, linear and logistic growths), m = 1 and κ = 2.0 (for the logistic
growth). Using the backward Euler method we compute approximate solutions with
Δt = 10−4 and Δx = 10−2. We assume homogeneous Dirichlet boundary condi-
tions. Computationally, similar results can be obtained using the Crank-Nicolson or
the second order finite differentiation formula (results not shown). Furthermore, pat-
terns can be generated also with homogeneous Neumann boundary conditions (results
not shown). Initial conditions are taken as small positive perturbations of the uniform
steady state. It can be observed that initially, no patterns are formed until the growing
domain reaches a certain threshold whereby the inequalities (30)–(33) are satisfied.
In the absence of domain growth, no Turing patterns occur. This example illustrates
that the diffusively-driven instability conditions on growing domains do not require
cross nor pure kinetics, but that the incorporation of domain growth and the satisfac-
tion of the inequalities (30)–(33) is necessary for the emergence of Turing patterns.
Furthermore, a sufficient condition is that there exists an excitable wavenumber.
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Fig. 4 Turing patterns corresponding to reaction kinetics (55)–(56) on a one-dimensional exponentially
(a, b), linearly (c, d) and logistically (e, f) growing domain

Detailed observation of Fig. 4(a) and (b) reveals a mode tripling behaviour rather
than the standard mode doubling behaviour. For example simultaneous peak split-
ting and insertion can be observed in Fig. 4(b), for t ∈ [25, 30]. This mode tripling
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behaviour in one-dimension is well understood and has previously been explored
(Crampin et al. 2002). In particular, it emerges from the choice of kinetics; it is not a
novel feature of the non-autonomy in the pattern formation mechanism.

Similar results can be obtained with higher values up to δ = 3 (results not shown).
Beyond δ = 3 patterns emerge on growing domains for these particular kinetics which
do not behave in the manner of a standard diffusively-driven Turing instability. In par-
ticular, both temporal and spatial oscillations are observed rather than a steady or quasi
steady spatially heterogeneous pattern.

5 Discussion and summary

The theoretical analysis of the role and implications of domain growth in biologi-
cal pattern formation has remained largely elusive. In most cases, as the first step in
considering the Turing diffusively-driven instability analysis on growing domains, the
reaction-diffusion equations (RDEs) are transformed into RDEs on fixed domains, but
with time-dependence in the diffusion and dilution terms (Crampin et al. 1999; Plaza
et al. 2004). These non-autonomous terms however typically invalidate standard linear
stability analysis via plane wave decompositions, even with the common simplification
that the domain growth is assumed to be isotropic. In this paper we have presented and
derived a generalisation of the classic Turing diffusively-driven instability results for
the case of continuously deforming domains under the assumptions of slow growth.

Our results show that the stability conditions in the presence of growth are fun-
damentally different from those obtained in the absence of domain growth. To illus-
trate our theoretical findings we initially presented a short range activator-long range
inhibitor mechanism well-known for its potential to generate Turing patterns on fixed
and growing domains. Assuming exponential, linear and logistic growth profiles of
the domain, we explicitly computed the Turing parameter spaces and demonstrated
that the Turing spaces generally change in size and, especially, shift location within
parameter space once slow growth is considered.

We also numerically investigated an activator-activator mechanism that cannot
generate Turing patterns on fixed domains. The presented results explicitly illustrate
our theoretical prediction that the presence of a diffusively-driven instability no longer
necessitates the standard paradigm of short-range activation and long-range inhibi-
tion (Murray 2002). As we have shown, it is possible for two activators to generate a
diffusively-driven instability on a growing domain. Our generalised Turing analysis
also does not exclude short range inhibition and long range activation as a means to
generate pattern via diffusion on growing domains.

Finally, we note that there are some similarities with regards to diffusively-driven
instability conditions on fixed and growing domains. Firstly, a stable solution on a
sufficiently small domain is spontaneously diffusively-driven unstable as the domain
grows beyond some critical threshold, thereby satisfying the Turing conditions (30)–
(33). In addition a diffusively-driven instability cannot occur via a Hopf bifurcation
and unequal diffusion coefficients are necessary.

The implications of our findings for models of biological pattern formation are
clear. Firstly, we have shown that pattern initiation is in general sensitive to, and
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changes with, even slow domain growth. This is quite distinct from the commonly
reported result that domain growth enhances the robustness of pattern selection (Plaza
et al. 2004). Nonetheless, despite its effects, slow domain growth will not prohibit the
Turing mechanism as a means of driving a symmetry breaking bifurcation nor will
slow domain growth induce oscillations at the bifurcation, as required for biological
pattern. Indeed, our most important observation is that the relaxation of the need for
short range activation and long-range inhibition importantly entails that a wider range
of biological morphogen pairings have the potential to induce Turing patterning on a
growing domain compared to a fixed domain. It is now possible to suggest and investi-
gate, for example, activator-activator or short-range inhibition, long-range activation
as paradigms for biological pattern formation on growing domains. More generally,
there exists a larger family of RDEs capable of generating diffusively-driven instability
patterns in the presence of domain growth.

We have previously reported in the literature that domain growth enhances robust-
ness of certain patterns in a Turing mechanism (Maini et al. 2002; Plaza et al. 2004).
In this paper, we have shown that growth can not only induce instability in a Turing
system but can also expand the range of mechanisms that can give rise to spatial
patterns away from the classical short-range activation, long-range inhibition para-
digm. The Turing spaces give an extensive classification of parameter values, but not
growth rates. However, the growth rates for which such a result holds requires further
exploration.
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