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1 Comparison of models

a) Uniform Model b) Time Lapse Model
A network where each A pair of networks such that the
cord has a measured ‘earlier network’ grows into the

Input length, and one node ‘later network’ over a period of time
is designated as the t. Each cord in these two networks
inoculum. has a measured length and volume.
1) Water uptake only 1) Water uptake only occurs at the
occurs at the inoculum. inoculum.
2) There is a unit 2) The current flowing into a cord
current in every tip. minus the current flowing out of a
3) All cords in the cord equals the rate of change of
network have unit volume for that cord.
conductance per unit 3) The conductance of cords is

Assumptions length. proportional to their cross-section.
4) Fluid follows the 4) Fluid follows the path of least
path of least resistance. resistance.
5) The total volume of 5) The total volume of fluid is
fluid is conserved. conserved.
Each cord has a Each cord has a current, and a mean
current. In tree-like velocity of mass flow. The current in

Output networks, the current the cord of interest is calculated
is equal to the number without referring to the change in
of cords ‘downstream’. volume of that cord.
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resistance per unit 

Figure 1: Models of growth-induced mass flow.
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2 Parameters and solutions of the time lapse model

Calculating the pressure at each node
Recall that the current in a cord is equal to the pressure drop times the conductance
of the cord. It follows that at each node i∑

j

(pi − pj)Cij = qi, (1)

where pi is the pressure at node i, qi is the net current flowing out of node i and
Cij is the conductance of the cord between nodes i and j. We can summarise
the relationship expressed by Equation (1) by defining the following symmetric
matrix A:

Aii =
∑
k

Cik and

Aij = −Cij. (2)

Where p is the vector form of the pressures pi and q is the vector form of the
currents qi, we know by Equation (1) that p satisfies the equation

Ap = q. (3)

Since each row of A sums to zero, A has no inverse and we cannot uniquely
determine p. However, it is the pressure differences which are of interest, not the
absolute value of p. We are are therefore free to fix the pressure at any one node.
Once we have done this, Equation (3) uniquely determines the pressure at every
other node. More specifically, suppose that our network contains N nodes. In that
case Equation (3) represents a system of N linear equations in N unknowns, but
as each row and column sums to zero, theN ’th equation is a linear combination of
the other N − 1 equations. Setting pN = 0 gives us a system of linear constraints
on the values for p1, . . . , pN−1, namely


A11 · · · A1(N−1) A1N

... . . . ...
...

A(N−1)1 · · · A(N−1)(N−1)

AN1 · · · ANN




p1
...

pN−1

0

 =


q1
...

qN−1

qN

 .

This is equivalent to the following system of linear constraints on the values for
p1, . . . , pN−1,
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 A11 · · · A1(N−1)
... . . . ...

A(N−1)1 · · · A(N−1)(N−1)


 p1

...
pN−1

 =

 q1
...

qN−1

 (4)

plus an additional equation

A(N−1)1p1 + A(N−1)2p2 + . . .+ A(N−1)(N−1)pN−1 = qN . (5)

Because the rate of water uptake is equal to the rate of growth, the total in-current
is equal to the total out-current. In other words,

∑
qi = 0. We therefore know

that qN = −q1 − . . .− qN−1. We can use Equation (4) to eliminate each of the qi
(as qi = Ai1p1 + Ai2p2 + . . . + Ai(N−1)pN−1), and this shows that Equation (5)
is redundant. In other words, given that the total in-current is equal to the total
out-current, Equation (4) is sufficient to determine our solution. It contains N − 1
independent linear equations in N − 1 unknowns, which uniquely determines the
values p1, . . . , pN−1.

The parameters of the time lapse model
We require the parameter δ because newly forming cords must have some con-
ductance, or else they would not be connected to the rest of the network, and their
growth could not induce currents. The precise value of δ is not significant, but the
calculation of currents requires that all cords have a non-zero conductance. Alter-
natively, we could remove the parameter δ by supposing that the conductance of
cord ij is σ(uij+vij)

2lij
. Since an extension of an cord can be represented as a new

cord, the length of cords does not change. Hence this formula is equivalent to
supposing that the cross-sectional area of cord ij is half way between the cord’s
cross-section in the initial network and its cross -section in the resulting network.
However, in that case cords that increase in size would carry more current than
cords that do not, precisely because in this alternate model, cords that become
large are assigned a larger conductance. This is undesirable (and not the method
we employ), because we want an unbiased estimate of current to correlate with
changes in area. We could also have avoided the parameter δ by saying that newly
forming cords are not part of the network, but in that case we would have to devise
an additional algorithm for assigning out-current to the cords from which the new
cords grow: something we ‘get for free’ by using our model with δ.

The parameter σ specifies the conductance per unit area for each cord in the net-
work. The value of σ does not affect the calculated currents, as it is the relative
conductance of cords that determines the distribution of currents. However, the
pressure gradients predicted by this model will be inversely proportional to σ.
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Varying the parameter values σ and δ does not significantly affect our calculation
of the currents induced by growth. However, we do need to make a significant
assumption concerning the relationship between conductance and cross-sectional
area. We assume that conductance is proportional to cross-sectional area, but
this assumption is only of consequence when the network provides a number of
alternate routes between the site of water uptake and the site of growth. Because
our boundary conditions are fixed in terms of currents, the current in part of a
branching tree will not depend on the conductance of the network. For example,
if there is a certain current flowing out of the tips of a branching tree, where there
is only route to each tip, the specified current has to flow through a given sequence
of cords regardless of their conductance. In practice, the fungal networks we are
studying are composed of branching trees connected to a net-like core. Within the
netlike structure more current will tend to flow through the larger cords, as fluids
naturally follow the ‘path of least resistance’.
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3 Pressure gradients and wall shear stress

Viscosity, velocity and laminar flow
To assess whether the flows in fungi are laminar, we first estimate the Reynolds
number. This is defined as the ratio of inertial to viscous forces (Nobel, 1991),
and

Re =
ρvd

η
, (6)

where ρ is the density of the fluid (approximately equal to that of water: 1gml−1),
v is the mean velocity of the fluid, d is the diameter of the hypha or transport
vessel, and η is the dynamic viscosity of the fluid. The viscosity of cytoplasm is
reported to be similar to that of water, 1gs−1m

−1 (Fushimi & Verkman, 1991), but
the fluids within fungi could plausibly be as viscous as 1.5 M sucrose solution,
which has a viscosity of 7gs−1m

−1 (Bancal & Soltani, 2002). Here we use a value
of η = 2gs−1m

−1.

The velocity of fluid flow and the diameter of the tubular vessels within the cords
may vary considerably throughout the fungi, but even the most extreme plausible
values yield a Reynolds number several orders of magnitude smaller than one
(Lew, 2005). This tells us that smooth, laminar flow is occurring (Nobel, 1991;
Lew, 2005).

Pressure gradients and speed of flow
Suppose that a cord has a cross-sectional area a and carries a current f . The mean
speed of flow within the cord as a whole will be f/a. However, only a fraction
λ of the cross-sectional area of each cord will be occupied by the interior of the
vessels that carry mass flows. Thus the mean speed within the vessels will be
f/λa. If we want to use our model to obtain estimates for the speeds of mass
flow we need to choose an appropriate value for λ. Similarly, if we want estimates
of the pressure gradients we need to choose a sensible value for the parameter σ.
Here we assume that λ = 0.5, and that the tubes carrying mass flows all have an
internal radius r = 6µm. In this case

v =
f

λa
, (7)

where v is the mean velocity of mass flow, f is the current through the cord and λa
is the cross-sectional area through which the current passes. The Hagen-Poiseuille
equation tells us that the pressure gradient dP

dx must satisfy the equation

dP
dx
≡ ∆P

l
= f

8η

nπr4
= f

πr2

λa

8η

πr4
= v

8η

r2
, (8)
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where η is the dynamic viscosity of the fluid, n is the number of tubes within the
cord and r is the radius of each tube.

Deriving pressure gradients from the time lapse model
To estimate the pressure gradients needed to drive the flows predicted by the time
lapse model, we need estimates for the conductances of cords. Here we assume
that half the cross-sectional area of each cord was occupied by transport vessels of
internal radius of 6µm, and we also assume that the viscosity of the moving fluids
was 2gs−1m−1 (Eamus, 1985; Howard, 1981; Lew, 2005). By Equation (8), these
values give us the relationship

dP
dx
≈ 4v × 10−5,

where v is measured in µm s−1, and dP
dx is measured in bar cm−1. Our estimate

of conductance per unit area tells us that maintaining a velocity of 1µm s−1 only
requires a pressure gradient of around 4 × 10−5 bar cm−1. This is very small
compared to the hydrostatic pressure of hyphae, which is about 4 − 5 bar (Amir
et al., 1995b; Lew et al., 2004a; Lew, 2005; Money, 1997). Pressure gradients of
this scale could plausibly be maintained over tens or even hundreds of meters.

In Neurospora crassa the cytoplasm moves forward with the growing tips at a
rate of 0.2− 0.5µm s−1. Mass flows in the hyphae behind the tips typically reach
5µm s−1, and currents as fast as 60µm s−1 have also been directly observed (Lew,
2005). In P. velutina the highest reported velocities are around 900µm s−1 (Wells
et al., 1995b), though obtaining accurate estimates of velocity is a major chal-
lenge. Our estimate for the conductance of cords implies that maintaining a ve-
locity as large as 900µm s−1 requires a pressure gradient of around 0.04 bar cm−1.
This is a significant pressure gradient compared to the hydrostatic pressure of hy-
phae, and pressure gradients of this scale could only be sustained over a few tens
of centimeters.

Deriving wall shear stresses from the time lapse model
Fluid flows induce wall shear stresses on the vessels within cords. A good estimate
for the wall shear stress τ can be obtained using the formula

τ =
4ηv

r
, (9)

where η is the dynamic viscosity of the fluid, v is the mean velocity of fluid flow
and r is the radius of the vessels within cords (Sherman, 1981). Using the previ-
ously indicated values for η and r tells us that

τ ≈ v × 10−3,
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where the mean velocity v is measured in µm s−1 and the wall shear stress τ is
measured in pascals or Nm−2. By way of comparison, the wall shear stresses in
mammalian arterial systems are in the range 0.2 − 2Nm−2 (Kamiya et al., 1984;
Rodbard, 1975).

It is widely accepted that a local adaptive response to wall shear stress is a key
mechanism that enables the optimisation of mammalian vascular systems (Kamiya
et al., 1984; Rodbard, 1975; Sherman, 1981). By analogy it is certainly plausible
that hyphae could detect and respond to velocities of the order 100−1000µm s−1,
as we estimate that such currents would induce wall shear stresses of the order
0.1 − 1Nm−2. It is less likely that fungi can detect the difference between much
slower moving currents, as the corresponding changes in wall shear stress would
be very small.
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4 Further Results

!"
!#

!"
!$

!"
!%

!"
"

!"&""'

"

"&""'

"&"!

"&"!'

"&"%

"&"%'

()**+,-µ./
!!

0
1
2
3
4
*
-5
3
-2
6*
2
,-
.
.
%

!"
!#

!"
!$

!"
!%

!"&""'

"

"&""'

"&"!

"&"!'

"&"%

"&"%'

()**+,-./00
1
2
!!

(
2
3
,
4
+
/5
,
/3
*+
3
./
0
0
%

!"# $"#

!"
!#

!"
!$

!"
!%

!"
"

!"&""'

"

"&""'

"&"!

"&"!'

"&"%

"&"%'

()**+,-µ./
!!

0
1
2
3
4
*
-5
3
-2
6*
2
,-
.
.
%

!"
!#

!"
!$

!"
!%

!"&""'

"

"&""'

"&"!

"&"!'

"&"%

"&"%'

()**+,-./00
1
2
!!

(
2
3
,
4
+
/5
,
/3
*+
3
./
0
0
%

!"# $"#

Figure 2: Correlation between the change in cross-sectional area and the
predicted flow for edges of similar thickness. The data from all experiments
and all time steps were partitioned into four bins according to the thickness of
the cords. The lines were generated by data from cords with cross-sectional area
less than 0.02mm2 (4), cross-sectional area between 0.02mm2 and 0.04mm2

(2), cross-sectional area between 0.04mm2 and 0.06mm2 (◦) and cross-sectional
area greater than 0.06mm2 (∗). Each of these bins was then subdivided into ten
subsets of equal size, according to the calculated speed (a) or current (b). Each
marker indicates the mean speed and mean change in cross-sectional area for one
of these subsets.

a) Regardless of cross-sectional area, there was a similar relationship be-
tween the speed of flow in a cord and the change in cross-sectional area. Note
that fewer large cords have a very low speed (less than 10−2, say).

b) Larger cords tended to carry more current, but regardless of cross-sectional
area, there was a similar correlation between predicted current and the measured
change in area.
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5 Growth, Mass Flows and Nutrient Translocation

The currents calculated by the time-lapse model represent a minimal total flux,
found by calculating the unique set of currents that account for the observed
changes in cord volume, while minimising the work required to overcome vis-
cous drag. A different distribution of currents could be established by additional
transport mechanisms, though the conservation of volume is a constraint on all
possible patterns of fluid flow. In particular, osmotic gradients between adjacent
fungal vessels could produce flows that differ from the calculated minimum. In-
deed, if transport were solely driven by apical mass flow, it would be difficult to
account for simultaneous bi-directional movement and concurrent basal transport
(Fricker et al., 2007; Lindahl et al., 2001; Olsson & Gray, 1998; Tlalka et al.,
2003; Tlalka et al., 2008). However, any currents beyond those predicted by our
model necessarily require the fungi to do additional work.

Our central claim is that nutrients loaded into the mass-flow transport pathway will
move towards the hyphal tips at a velocity that is partly determined by the volume
of ‘downstream’ growth, and the network architecture. However, to actually reach
the tips, the nutrients need to move at a greater speed than the column of water
that advances in tandem with the tips (see Fig. 1a). This will be achieved in part
automatically at a slow rate by diffusion, but could be increased substantially by
local evaporation at the tips, the movement of vesicles by motor proteins, or by
other means of active transport.

Finally, we note that as growth, mass-flow and nutrient transport are coupled,
there may be an interesting interaction between nutrient availability, control of
branching and nutrient transport. It is well known that the rate of hyphal branch-
ing increases when tips encounter resource rich environments (Gow and Gadd,
1995). Turgor pressure and the build up of vesicles have both been implicated,
but whatever the mechanism behind this response, differential branching rates
may constitute a unique kind of foraging strategy. In resource-poor regions tips
rarely branch, and consequently tip growth in resource-poor environments induces
relatively low flux densities in the trailing hyphae. In resource-rich environments,
where branching rates are high, flux densities will also be high. We speculate
that regions of the mycelium that do not receive a sufficient supply of resources
will regress, and that the resulting networks constitute an efficient response to the
given resource environment.
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