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A common experimental technique for viewing in vivo angiogenesis utilises tumours implanted into a

test animal cornea. The cornea is avascular but the tumour promotes vascularisation from the limbus

and the new blood vessels can be readily observed through the transparent cornea. Many of the early

mathematical models for tumour angiogenesis used this scenario as their experimental template and as

such assumed that there is a large gap, of the order of 2 mm, between the tumour and neighbouring

vasculature at the onset of angiogenesis. In this work we consider whether the assumption that there is

a significant gap between the tumour and neighbouring vasculature is unique to intra-cornea tumour

implants, or whether this characterises avascular tumour growth more generally. To do this we utilise a

simple scaling argument, derive a multi-compartment model for tumour growth, and consider in vivo

images. This analysis demonstrates that the corneal implant experiments and the corresponding

mathematical models cannot generally be applied to a clinical setting.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Folkman (1976) proposed that tumours undergo three distinct
phases of growth: an initial avascular phase of slow limited
growth, then an angiogenesis phase where the tumour cultivates
its own blood supply, and finally a phase of rapid vascularised
growth. Folkman also proposed that inhibiting angiogenesis could
provide an effective anti-tumour therapy.

A common technique for observing in vivo angiogenesis with
minimal intervention is to implant an avascular tumour within
the stroma of the cornea or the aqueous humour of the eye in a
test animal (Gimbrone et al., 1974; Ausprunk and Folkman, 1977;
Muthukkaruppan et al., 1982). This technique allows the sprout-
ing of capillaries towards and into the tumour to be readily
observed through the transparent cornea, as exemplified
by Fig. 5(b). However, the cornea is a large and uniquely avascular
region of tissue. Angiogenesis in this setting takes place with a
distance between the tumour and neighbouring vasculature of
more than a millimetre, which is much larger than the inter-
capillary distance typically observed in ‘‘normal’’ vascular tissue
(Fait et al., 1998).

Many of the initial mathematical and computational models of
angiogenesis have been developed to recreate the results of intra-
corneal tumour implant experiments by assuming there is a
significant gap, of the magnitude of the width of the cornea,
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between the tumour and the neighbouring vasculature (Balding
and McElwain, 1985; Chaplain and Stuart, 1993; Byrne and
Chaplain, 1995; Chaplain, 2000; Plank and Sleeman, 2004). These
investigations have been very successful at modelling the cornea
implant experiments and have been well verified in context;
however, it is not obvious that a significant gap should exist
between a tumour and the neighbouring capillaries when an
in vivo tumour grows in ‘‘normal’’ vascular tissue. Furthermore,
while many modelling explorations have previously invoked
analogous assumptions when considering normally vascularised
tissue, recent imaging suggests that there is no significant gap
between an in vivo avascular tumour and its neighbouring
capillaries (Shubik, 1982), as illustrated by Fig. 5(a).

Thus there is a need to explore this potential discrepancy
between a modelling framework for vascular tumour angiogen-
esis and recent observations, and we firstly explore this by
utilising a simple scaling argument. For the intra-cornea implant
experiments to directly apply to a typical in vivo tumour the
in vivo tumour must develop and/or maintain a significant gap
between itself and the neighbouring capillaries. Consider a
spherical tumour of radius rtum(t), a function of time t, growing
in vascular tissue. Then the volume of the tumour, Vtum, is

Vtum ¼
4pr3

tum

3
:

Now suppose that following the initiation of cancer in a single
cell there is a region of non-cancerous cells between the tumour
and the surrounding vasculature which remains constant width
as the tumour grows. To be consistent with the intercapillary
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distance in vascular tissue the distance between the tumour and
neighbouring vasculature should be approximately 50 mm (Fait
et al., 1998) and the volume of tissue in such a gap between the
tumour and surrounding vasculature (in mm3), Vgap, is then

Vgap ¼
4pfðrtumþ50Þ3�r3

tumg

3
:

It can then be shown that the maintenance of this gap of
constant width requires the non-cancerous tissue to increase in
volume at the relative rate compared to cancer tissue of

1
Vgap

dVgap

dt

1
Vtum

dVtum
dt

¼
rtumðrtumþ50Þ2�r3

tum

ðrtumþ50Þ3�r3
tum

:

To use this result to compare the cellular proliferation rates of
cancerous and non-cancerous cells we recall that tumours of
radius three cell widths, which correspond to a rtum of approxi-
mately 80 mm (Casciari et al., 1992; Buckley et al., 1999) will
typically consist of only proliferating cells (LaRue et al., 2004). For
this value of rtum, the tumour radius, we find that the non-
cancerous cells must initially proliferate approximately 50% as
quickly as the cancerous cells. Having non-cancerous cells pro-
liferate half as quickly as cancerous cells may be faster prolifera-
tion than would be anticipated, but is not completely unfeasible
for particularly slow growing tumours or tumours growing in
tissue with a particularly high cell turnover rate. However, in
general no obvious mechanism exists which would Up-regulate
non-cancerous cell proliferation to this extent. This suggests that
any initial gap between the tumour and the neighbouring vascu-
lature will begin to close as the tumour starts to grow, and will do
so rapidly compared to the growth rate of the tumour.

For the mathematical models based upon the intra-cornea
experiments to be more widely applicable the assumption that
there is a significant gap between the tumour and neighbouring
capillaries requires further validation, especially since it appears
to demand extreme parameter choices in the context of a simple
scaling argument. Alternatively, if no such gap exists at the onset
of angiogenesis then this poses the question of what causes the
gap to close.

We now consider how the distance between a typical in vivo

avascular tumour and the neighbouring capillaries evolves as the
tumour grows. In particular we consider whether a significant gap
can be maintained between the tumour and capillaries, and if not
then why does the gap close and how quickly does it do so. The
results of this study will then imply whether or not the mathe-
matical models based upon the intra-cornea implant experiments
can be applied in a general context.
Fig. 1. A schematic cross-section of the domain being considered.
2. The model

To consider how the distance between an in vivo tumour and
the neighbouring capillaries evolves as the tumour grows we
model the growth of an avascular tumour beginning with a small
collection of cells and finishing with an avascular tumour which
has reached diffusion limited saturation. We consider populations
of healthy non-cancerous cells, proliferating cancerous cells,
quiescent cancerous cells and necrotic cells. We assume that the
system can be modelled as a continuum of cells and exhibits
radial symmetry. These assumptions form an idealised model for
avascular tumour growth, but one which constitutes a best case
scenario for maintaining a significant gap between the tumour
and neighbouring vasculature. If a significant gap between the
tumour and neighbouring vasculature cannot be maintained by
our idealised model, then we would not expect it to be main-
tained with the introduction of asymmetries which effectively
reduce the gap in at least one direction.
The domain of our model consists of the tumour spheroid and
a region of the non-cancerous cells outside the tumour up to the
nearest capillaries, as shown in Fig. 1.

We take the rates of mitosis and necrosis per proliferating cell
to be km(c) and kd(c), respectively, where c is the local oxygen
concentration; km(c) is represented by a monotonically increasing
function which saturates to a finite rate and kd(c) is taken to be a
monotonically decreasing non-negative function. The Michaelis–
Menten based kinetics

kmðcÞ ¼
Ac

cmþc
and kdðcÞ ¼ B 1�

sc

cdþc

� �
,

where A, B, cm, and cd are constants exhibit these properties and
have been shown to provide a good fit to the rate of oxygen
consumption by cells (Lin, 1976).

We assume that proliferating cells can become quiescent and
vice versa. Whilst the local oxygen concentration can be a factor in
determining this change of state, other factors such as cell–cell
interaction and the availability of growth factors are also likely to
be influential (Mueller-Klieser, 2000). The effect of all these
potential factors is too complex to be considered in detail. Instead
we note that proliferating cells are generally found on the outer
rim of an avascular tumour and quiescent cells are generally
observed further towards the tumour’s centre (LaRue et al., 2004;
Mueller-Klieser, 2000). To model this we postulate that prolifer-
ating cells tend to become quiescent if too far from the edge of
the tumour and quiescent cells tend to become proliferative if too
close to the edge of the tumour. We also assume that becoming
quiescent does not affect a cell’s death rate. The resulting equa-
tions for the proliferating and quiescent cell populations are

@p

@t
þr � ðvpÞ ¼ ½kmðcÞ�kdðcÞ�p�apHð½Stum�R��rÞ

þbqHðr�½Stum�R�Þ,

@q

@t
þr � ðvqÞ ¼�kdðcÞqþapHð½Stum�R��rÞ

�bqHðr�½Stum�R�Þ,

where p(r,t) and q(r,t) are the densities of proliferating and
quiescent cells, respectively, vðr,tÞ is the local cell velocity, Stum(t)
is the radius of the tumour, R is the width of the proliferating rim,
a is the rate at which proliferating cells become quiescent outside
the proliferating rim, b is the rate at which quiescent cells become
proliferative inside the proliferating rim, and H(x) is the Heaviside
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function (which takes the value 0 if x is negative and 1 if x is
positive).

To investigate whether it is feasible for a significant gap to be
maintained between the tumour and the vasculature as the
tumour grows we also consider the dynamics of the non-cancer-
ous cells immediately outside the tumour. We assume that non-
cancerous cells proliferate more slowly than cancerous cells but
otherwise exhibit similar dynamics; in particular we assume that
their proliferation depends upon the local oxygen concentration
in the same manner for both cell types. We also assume that
necrotic cells undergo linear degradation. Then the evolution of
non-cancerous cells and necrotic cells is given by

@h

@t
þr � ðvhÞ ¼ ðlkmðcÞ�kdðcÞÞh,

@n

@t
þr � ðvnÞ ¼ kdðcÞðhþpþqÞ�nn,

where h(r,t) and n(r,t) are the densities of non-cancerous cells and
necrotic cells, respectively, lo1 is the relative proliferation rate
of non-cancerous cells, and n is the linear degradation rate of
necrotic cells. Note that the kinetics of healthy and cancerous
cells can be chosen to allow the cancerous cells to proliferate at
lower oxygen concentrations than the non-cancerous cells; this
does not significantly alter the modelling predictions and the
model presented above constitutes the best case scenario for
exploring gap maintenance. We estimate the relative proliferation
rate of non-cancerous cells, l, using the fact that in the absence of
any tumour the non-cancerous cell population should be in
equilibrium. Hence l is chosen so that in the absence of any
tumour, oxygen feedback regulates cell proliferation and necrosis
in exactly the way required to maintain the observed intercapil-
lary distance.

We close our model by assuming that the cell volume fraction
of tissue is constant, which implies the following equation for the
local cell velocity:

r � v ¼
VLðlhþpÞkmðcÞ

V þ
ðVN�VLÞðhþpþqÞkdðcÞ

V �
VNnn

V ,

where VL is the mean volume of a live cell, VN is the mean volume
of a necrotic cell, and V is the cell volume fraction, and that
oxygen diffuses out of the capillaries and is taken up by living
cells. If we assume that the rate of oxygen uptake for the normal
Table 1
The parameters in our model.

Parameter Description

A The maximum rate of proliferation of cancerous cells

B The maximum rate of necrosis of cells

ĉm The non-dimensional critical oxygen concentration in

Michaelis–Menten proliferation kinetics

ĉd The non-dimensional critical oxygen concentration in

Michaelis–Menten based necrosis kinetics

s A parameter in the cell necrosis kinetics

a The rate at which proliferating cells become quiescent outside

the proliferating rim

b The rate at which quiescent cells become proliferative inside

the proliferating rim

R The width of the proliferating rim

n The rate of linear decay of necrotic cells

l The ratio of the rate of proliferation of non-cancerous cells to

cancerous cells

VL The mean volume of a live cell

VN The mean volume of a necrotic cell

V The cell volume fraction

D The diffusion coefficient of oxygen
processes which keep cells alive also follows Michaelis–Menten
kinetics and the rate of additional oxygen uptake required for cell
proliferation is proportional to the rate of proliferation, then the
evolution of the local oxygen concentration is given by

@c

@t
þr � ðvcÞ ¼r � ðDrcÞ�gkmðcÞðlhþpÞ�knðcÞðhþpþqÞ,

where c(r,t) is the local oxygen concentration, kn(c) is the
Michaelis–Menten kinetics for the oxygen uptake for normal
processes, g is the constant of proportionality for additional
oxygen uptake for mitosis, and D is the diffusion coefficient of
oxygen.

We take the initial state of our tumour to be the largest
collection of cells which can be assumed to be entirely proliferat-
ing, which is a tumour of radius equal to three cell widths (LaRue
et al., 2004). We also assume that the tumour front moves with
the local cell velocity, so that

dStum

dt
¼ vðStum,tÞ,

as do the neighbouring capillaries. Note that if the capillaries do
not move with the local velocity vector field for structural reasons
the separation between tumour and capillary would reduce even
more quickly so that, once more, we are considering a best
scenario for gap maintenance. Similar comments apply for the
initial position of the vasculature, which is assumed to be 50 mm
from the tumour, consistent with the intercapillary distance (Fait
et al., 1998). For our final boundary condition we assume that the
capillary network is a constant source of oxygen.

Where possible we estimate parameters directly from the
literature, but it is necessary to estimate some parameters by
performing an a posteriori analysis of parameters. To do this we
numerically simulate the evolution of the tumour for different
values of the unknown parameters and refine the estimates until
the modelled tumour growth is consistent with observed tumour
growth. In particular we ensure that our modelled tumour’s
growth curve, size at saturation, relationship between necrotic
core radius and tumour radius, and oxygen diffusion distance are
all consistent with observed behaviour. A summary of all the
parameters used in our model and their values is presented
in Table 1. (Note that the oxygen concentration on the edge of
our domain can be non-dimensionalised out of our model and
hence need not be estimated explicitly.)
Value taken Reference

1.4�10�6 s�1 Grote et al. (1977)

2.1�10�6 s�1 A posteriori estimation

0.1 A posteriori estimation

0.1 A posteriori estimation

0.9 A posteriori estimation

1.4�10�6 s�1 A posteriori estimation

1.4�10�6 s�1 A posteriori estimation

80 mm LaRue et al. (2004), Casciari et al. (1992)

and Buckley et al. (1999)

2.8�10�7 s�1 A posteriori estimation

0.3 See text

3�10�9 cm3 Landry et al. (1981, 1982)

1.5�10�9 cm3 Landry et al. (1981, 1982)

0.66 Buckley et al. (1999)

2�10�5 cm2 s�1 Grote et al. (1977) and Hlatky and Alpen (1985)



Fig. 3. A schematic comparison of the configurations of the tumour corresponding to

tumour, and (c) a typical tumour following implantation into the cornea, each to scale w

the red lines outside the tumour represent the capillaries and any unshaded regions cor

figure legend, the reader is referred to the web version of this article.)

Fig. 2. The growth dynamics of our modelled tumour given the parameters

in Table 1. (a) The growth curve of our modelled tumour. (b) The width of the

gap between the tumour and neighbouring vasculature as a function of tumour

radius for our modelled tumour.
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Given this model we now simulate the evolution of our
tumour whilst paying particular attention to the distance
between the tumour and the neighbouring capillaries.
3. Results

Fig. 2 shows the growth dynamics for the modelled
tumour. Fig. 2(a) shows that our modelled tumour undergoes an
initial period of exponential growth, then the growth rate slows
and the tumour saturates at a radius of approximately 1 mm,
which is consistent with observed tumour growth.

Fig. 2(b) shows the width of the gap between the tumour and
the neighbouring vasculature as the tumour grows assuming that
there is no obstruction between the tumour and vasculature. This
is likely to be valid when the tumour is a secondary metastasis,
in contrast to a carcinogenesis of a primary carcinoma with a
basement membrane separating the surrounding vasculature
from the microtumour. It can be seen that the width of the gap
decreases significantly as the tumour grows and the capillaries
effectively reach the surface of the tumour well before the tumour
growth saturates.

To further highlight this we compare the configurations of the
initial state of our modelled tumour, the final state of our
modelled tumour, and a typical tumour following an intra-cornea
implant in Fig. 3. Each of the schematics in Fig. 3 is on the same
scale with a 1 mm scale bar shown. In Fig. 3(a) there is initially a
small gap of width 50 mm between our modelled tumour and
neighbouring capillaries. In Fig. 3(b) it can be seen that when our
modelled tumour has grown to its saturated size, as given by
diffusion limited control, there is effectively no gap between the
tumour and the vasculature. However, in Fig. 3(c) it can be seen
that following tumour implantation into the cornea there is a
large gap between the tumour and the vasculature. The difference
between Fig. 3(b) and (c) is marked and highlights that the results
of our model conflict with observed angiogenesis in the corneal
implant experiments where capillaries are seen to sprout towards
and into an avascular tumour.

To investigate whether the lack of a gap between our modelled
tumour and the neighbouring vasculature is due to a failing of our
model, or whether this properly captures in vivo behaviour, we
(a) the initial conditions taken in our model, (b) the final state of our modelled

ith a 1 mm scale bar shown. The central shaded regions correspond to the tumour,

respond to non-cancerous cells. (For interpretation of the references to color in this



Fig. 4. The rate of proliferation of the different cells types when non-cancerous

cell kinetics are chosen to ensure a gap of constant width is maintained between

the tumour and neighbouring vasculature as the tumour grows to its maximum

size as given by diffusion limited control.
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now suppose that non-cancerous cell proliferation is somehow
up-regulated so as to maintain a constant gap between the
tumour and the neighbouring vasculature as the tumour grows
to its saturated size, even though there is no clear biological
motivation for such behaviour. It can be shown that the corre-
sponding kinetics of the non-cancerous cells must be

@h

@t
þr � ðvhÞ ¼

2hvtum

r
,

where vtum is the speed of the tumour front. We now test whether
kinetics of this form are feasible by considering the corresponding
rates of proliferation of the cancerous cells and non-cancerous
cells, which are shown in Fig. 4 where a rate of unity corresponds
to the proliferation rate of cancerous cells in a limitless oxygen
supply. Our modelling shows that to maintain a uniform gap
between the tumour and the vasculature some non-cancerous
cells are initially required to proliferate at a rate which is 55% that
of the tumour cells.

Note that Fig. 4 only shows the rate of proliferation required to
maintain a gap of constant width. For the initial gap of 50 mm,
which is consistent with the intercapillary distance, to evolve into
a gap of 2000 mm, which is observed following an intra-cornea
tumour implant, requires non-cancerous cells to proliferate on
average approximately 160 times faster than this.
4. Discussion and conclusions

Our modelled tumour showed that simple biologically moti-
vated dynamics for the proliferation of non-cancerous cells
caused the distance between the tumour and neighbouring
vasculature to decrease quickly compared to the growth rate of
the tumour, so that at saturation the neighbouring capillaries
effectively lie on the surface of the tumour, unless there is some
obstruction which prevents the tumour from reaching the sur-
rounding vasculature, such as a basement membrane. This was
despite taking care to ensure that any idealisations in our model
contributed to the model being a best case scenario for maintain-
ing the distance between the tumour and vasculature.

Non-cancerous cell proliferation can be forced to maintain a
constant gap between the tumour and vasculature, but this
requires non-cancerous cells to initially proliferate approximately
55% as quickly as tumour cells, which are typically taken to have
lost growth control. This result is consistent with our initial
scaling argument, which motivated the problem, which showed
that maintaining a uniform gap between a tumour and the
vasculature requires the non-cancerous cells to initially prolifer-
ate approximately 50% as quickly as the cancerous cells. Whilst
the rate of proliferation required to maintain such a gap is high, it
is not unfeasible. However, the absence of any biologically
motivated mechanism which would up-regulate non-cancerous
cell proliferation in this way, and having shown that oxygen
feedback is not sufficient, suggests that non-cancerous cell pro-
liferation is not generally up-regulated to this extent.

We have found that the rate of proliferation required to
maintain a gap of constant width between the tumour and
vasculature is high and demands extreme parameter values.
However, for an in vivo tumour growing in vascular tissue to
evolve into a state which is consistent with that seen following an
intra-cornea tumour implant would require non-cancerous cells
to proliferate on average approximately 160 times faster that was
required to maintain a gap of constant width. This would imply
that some non-cancerous cells would be proliferating at least two
orders of magnitude faster than cancerous cells which are in
conflict with our general understanding of tumour systems. This
is clearly impossible. Furthermore, a 2 mm gap between the
tumour and neighbouring vasculature would greatly exceed the
diffusion distance of oxygen and it is not clear how an in vivo

tumour in such a configuration would be supported. From this we
conclude that the 2 mm gap following intra-cornea tumour
implants is unique to that setting and cannot be included in a
general model of tumour blood flow dynamics.

Our model assumes that capillaries are carried with the
movement of local cells and neglects any angiogenic stimuli or
mechanical properties of the capillaries which might resist their
movement. We have also neglected any contact inhibition of
normal, non-cancerous, cell growth. If any of these effects are
included then the non-cancerous cell growth rates required for
gap maintenance will be even higher. Hence our model is a best
case scenario for gap maintenance and in an in vivo tumour we
would expect the gap to close even quicker than it does in our
model. Given this and that the gap closes quickly in our modelled
tumour we conclude that in a well developed in vivo tumour
growing in vascular tissue there will not be a significant gap
between the tumour and neighbouring capillaries, except possibly
for the presence of an intact basement membrane preventing the
tumour from reaching the surrounding vasculature, as with the
carcinogenesis of a primary carcinoma. Unless the tumour is
geometrically unconstrained our simple scaling argument still
applies and the gap between the tumour and surrounding
vasculature should only be the width of the basement membrane,
which will be relatively thin.

This conclusion implies that mathematical models of angio-
genesis typically should not consider an initial gap between the
tumour and the vasculature, especially for micrometastases.
Furthermore, the studies based on corneal implants serve as
building blocks for developing models for angiogenesis in that
setting, but do not immediately translate to a clinical setting and
are likely to overestimate the importance of angiogenesis and the
effectiveness of anti-angiogens without suitable modification.
Furthermore, the new vasculature cultivated by tumour angio-
genesis tends to be distorted and leaky compared to normal
vasculature though this will only exist within the tumour interior
if angiogenesis initiates from the surrounding capillaries
encroaching the tumour surface. This could mean that predictions
of healthy tissue exposure to cytotoxic chemotherapies during
therapeutic interventions are overestimated within corneal
implant motivated models because of differing detailed predic-
tions of vasculature integrity.



Fig. 5. A comparison of an in vivo tumour and a tumour following implantation

into a test animal’s cornea. (a) An in vivo avascular tumour (the white region)

growing in a mouse mound chamber. The tumour has been added to the wound

chamber in a matrigel disc, and on the outer ring of the disc endothelial buds

which were obtained from scrotal fat were placed. A 200 mm length bar is shown.

(b) Angiogenesis following tumour implantation into a test animal’s cornea

(Velpandian).
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These conclusions are supported by experimental observa-
tions. The image of the avascular tumour in Fig. 5(a) shows small
blood vessels growing directly into the periphery of a tumour that
was initially avascular. It demonstrates that blood vessels pene-
trate directly into the tumour–host interface rather than via an
elaborate network of vessels adjacent to the tumour edge as seen
in the cornea experiments, such as that shown in Fig. 5(b).
In Fig. 5(b) it can be seen that the corneal implant is surrounded
by an extremely large region of avascular tissue and the resulting
angiogenesis across a large gap between the tumour and vascu-
lature does not represent angiogenesis for an in vivo tumour
growing in vascular tissue.
5. Summary

We have considered the evolution of the gap between an
avascular tumour and the neighbouring vasculature as the
tumour grows. A simple mathematical model illustrates that a
well established yet avascular tumour will not exhibit a gap
between the tumour and the vasculature and that the neighbour-
ing capillaries effectively lie on the surface of the tumour. These
conclusions are reinforced by a simple scaling argument and
images of in vivo tumours. This illustrates that mathematical and
computational models based on the cornea implant experiments,
which assume a significant gap between the tumour and neigh-
bouring vasculature, cannot be immediately applied to a clinical
setting.
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