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Mathematical model

A more detailed description of the mathematical model is presented in this appendix. Our description

starts at the smallest spatial scale, namely the subcellular layer. Then the cellular and diffusible layers are

introduced, and finally the vascular layer is introduced. Interactions between these layers are highlighted

in the final part of this section where the computational algorithm is presented. The parameter values

are listed in Tables (1)-(4).

Subcellular layer

Coupled systems of nonlinear ordinary differential equations (ODEs) are used to model progress through

the cell cycle, and changes in expression levels of p53 and VEGF [1]. In practice the cell cycle can be

divided into 4 phases: during G1 the cell is not committed to replication, but if conditions are favourable

it may enter the S (synthesis) phase, in which DNA replication takes place. During the G2 phase, further

growth, and DNA and chromatid alignment occurs, before the cell divides during M (mitosis) phase.

For the cell cycle, we consider the cell mass M and the proteins cycCDK (cyclin-CDK complex), Cdh1

(Cdh1-APC complex), p27 and npRB (non-phoshorylated retinoblastoma protein). The cell cycle model

that we consider focuses on the G1-S transition. It extends an earlier model due to Tyson and Novak [2]

by accounting for the p27-mediated effect that hypoxia has on the cell cycle [3]. Using square brackets
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to represent intracellular protein concentrations we have

d[Cdh1]

dt
=

(1 + b3[npRB])(1− [Cdh1])

J3 + 1− [Cdh1]
− b4M [cycCDK][Cdh1]

J4 + [Cdh1]
(1)

d[cycCDK]

dt
= a4 − (a1 + a2[Cdh1] + a3[p27])[cycCDK] (2)

dM

dt
= ηM

(
1− M

M∗

)
(3)

d[p27]

dt
= c1

(
1− χ M

M∗

)
− c2c02

B + c02
[p27] (4)

d[npRB]

dt
= d2 − (d2 + d1[cycCDK])[npRB]; (5)

where b3, J3, b4, J4, a1, a2, a3, a4, η, M∗, c1, c2, B, χ, d1 and d2 are constants, specified in Table (1).

In equations (1)-(5), where M is small, the cell is maintained in a state corresponding to G1 for which

levels of Cdh1 are high and levels of cycCDK are low. Growth in the cell mass increases Cdh1 degradation

and reduces p27 production, so that cycCDK increases. This leads to inhibition of npRB and Cdh1 and,

hence, positive feedback on cycCDK. At a certain point, corresponding to the G1-S transition, the state

with high Cdh1 and low CDK is lost, and a state with low Cdh1 and high cycCDK is attained. Finally,

when Cdh1 levels are sufficiently low and CDK levels sufficiently high, cell division occurs. The external

O2 concentration c02 couples the subcellular and diffusible scales by influencing progress through the cell

cycle. Decreasing c02 reduces p27 degradation, and the resulting increase in levels of p27 counteracts the

effect of the increasing mass on cycCDK. In particular if c02 levels are sufficiently the G1-S transition

cannot occur. Further details about the model can be found in [1, 3].

The intracellular concentration of p53 regulates normal cell apoptosis, and that of VEGF controls

VEGF release by normal cells. The dynamics of p53 and VEGF are coupled to one-another, and to the

extracellular oxygen concentration, as described by the following differential equations

d[p53]

dt
= k7 − k′7

c02

Kp53 + c02
[p53], (6)

d[VEGF]

dt
= k8 + k′′8

[p53][VEGF]

J5 + [VEGF]
− k′8

c02

KVEGF + c02
[VEGF], (7)

with the constants k7, k′7, Kp53, k8, k′8, k′′8 , J5 and KVEGF (see Table (1)). The ordinary differential

equations (1)-(7) are solved subject to the initial conditions specified in Table (1), using the open source

CVODE library (https://computation.llnl.gov/casc/sundials/main.html).
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Cell death, quiescence and proliferation are determined by a cell’s internal protein concentrations.

We apply the following rules to identify the different cell-states. In normal cells, cell death occurs if

[p53] > p53THR, where p53THR is the maximal threshold they can sustain before committing apoptosis,

and is given by

p53THR =


p53high

THR for ρnormal > ρTHR

p53low
THR for ρnormal ≤ ρTHR

. (8)

We define the set of cells in the neighbourhood of cell i as Θi. The normal cell ratio in Equation (8) is

given by

ρnormal(i) =

∑
k∈Θi

normal cells at site k∑
k∈Θi

normal or cancer cells at site k
. (9)

Definition (9) accounts for the fact that healthy cells are more likely to die if they live in a tumour

environment. This can be caused by the altered microenvironment in tumours. Tumour cells enter

quiescence if [p27] > p27e, or leave quiescence if [p27] < p27l. If a cancer cell is in quiescence for too

long (> Tdeath), the cell dies. It should be noted that cancer cell death is not influenced by p53.

The condition to be satisfied for the proliferation of cells is

[Cdh1] < Cdh1THR and [cycCDK] > cycCDKTHR. (10)

The daughter cell is placed in the current location if there is free space; otherwise it is moved to an empty

neighbour location with a high oxygen concentration. If there is no free space in the neighbour CA-cells,

the parent cell dies and no daughter is produced.

Cellular layer

The following section focuses on the creation and movement of new vessels. For a detailed description see

Owen et al. [4]. New sprouts form at site i (which must be a vessel site) with probability Psprout
i where

Psprout
i =

P sprout
max cVEGF

Vsprout + cVEGF
∆t. (11)

Since VEGF stimulates sprout formation the probability of sprouting is assumed to increase with the

VEGF concentration, cVEGF. The maximum sprouting probability is P sprout
max and Vsprout is a constant.
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New sprouts can only emerge if sufficient space is available. Around the base of each sprout a radius of

exclusion is defined, in which new sprouts cannot occur. For the vessel tip cells, we define P(i → j) as

the probability of moving from i to j, to be

P(i→ j) =
∆tD

d2
ij∆x

2

(Nm −Nj)
(

1 + γ
cVEGF,j−cVEGF,i

dij∆x

)
∑

k∈Ωi
(Nm −Nk) +Nm −Ni +NmMc

(12)

for i 6= j ∈ Ωi. Herein, D represents the cell motility, Nm is the maximal carrying capacity of the cell

type attempting to move, Ni is the number of cells, Mc is a constant and cVEGF,i the VEGF level at site

i, γ is the chemotactic sensitivity, and Ωi is the set of sites in the neighbourhood of i, not including i

itself. The probabilities are weighted with the distance between lattice site i and j, written as dij . In

the three dimensional case, Ωi has at most 26 neighbour elements for each lattice point i. We set the

probability to zero if an endothelial cell crosses a vessel. The probability of not moving is

P(i→ i) = 1−
∑

j,k∈Ωi
j 6=k

P(j → k). (13)

Whenever a tip cell moves to another location, an endothelial cell remains at the former lattice site. This

is equivalent to the snail-trail concept also applied in [5–7]. A sprout dies if it does not connect to another

sprout or the existing vasculature within a certain time period.

Diffusible layer

The diffusible layer facilitates the coupling between the vascular and subcellular layers. We consider

two diffusible components in our model, namely oxygen and VEGF, and denote their concentrations by

cVEGF and c02. The vascular system acts as an oxygen source, while the normal and tumour cells act as

sinks. This behaviour is described by the following, quasi-stationary, reaction-diffusion equation

D02∆c02 + 2πR̃(t,x)P02(cblood
02 − c02)− k02(t,x)c02 = 0. (14)

In Equation (14) the vessel radius indicator function R̃ returns the vessel radius if a vessel is present at

position x and zero otherwise. Equation (14) also accounts for the vessel permeability to oxygen (P02),

the blood oxygen concentration cblood
02 and the cell type dependent oxygen consumption rate k02. If cells
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become hypoxic or quiescent, they start to secrete VEGF, which then can be removed by the vasculature.

The concentration of VEGF is determined by

DVEGF∆cVEGF − 2πR̃(t,x)PVEGFcVEGF + kVEGF(t,x)− δVEGFcVEGF = 0, (15)

wherein PVEGF is the permeability of the vessels to VEGF, kVEGF the cell type dependent VEGF pro-

duction rate and the decay rate δVEGF. In our numerical algorithm, Equations (14) and (15) are discre-

tised with a finite difference scheme and the resulting sparse linear system of equations is solved with a

GMRES-solver.

In case of a non-periodic simulation domain it is assumed that there is no flux of diffusible substances

over the boundary and thus homogeneous Neumann boundary conditions are imposed. For simulations

in a periodic domain we apply periodic boundary conditions for the calculation of diffusible substance

concentrations.

Vascular layer

We follow very closely the work of Secomb et al. and refer the reader to [8] for full details. We assume a

laminar Poiseuille flow in each vessel. The flux Q̇i through vessel i is given by

Q̇i =
πR4

i

8µ(Ri, Hi)Li
∆Pi, (16)

where ∆Pi is the pressure difference at the vessel segment i, Li the vessel length, µ(Ri, Hi) is the radius

Ri and haematocrit Hi dependent blood viscosity [8]. In Equation (16) we can identify the resistance of

vessel i by Resi = 8µ(Ri, Hi)Li/(πR
4
i ). In (16) the blood viscosity is defined by

µ(R,H) = µ0µrel(R,H), (17)

where µ0 is a positive constant,

µrel(R,H) =

[
1 + (µ0.45(R)− 1)

(1−H)C − 1

(1− 0.45)C − 1

(
2R

2R− 1.1

)2
](

2R

2R− 1.1

)2

, (18)

µ0.45(R) = 6e−0.17R + 3.2− 2.44e−0.06(2R)0.645 (19)
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and

C = C(R) =
(
0.8 + e−0.15R

)(
−1 +

1

1 + 10−11(2R)12

)
+

1

1 + 10−11(2R)12
. (20)

Using Equations (16)-(20) we can calculate the flux through each vessel segment in terms of the pressure

at each junction of the vascular tree. At any node of the vascular network, the total flow into that node

must balance the total flow out of that node. With the pressures at each inlet and outlet (Pin and Pout)

prescribed, we obtain a linear system of equations for the pressures at each vessel node. This system is

solved with the direct SuperLU solver.

When updating the vascular network, there are two different timescales of interest, the timescale

for flow and the timescale for vascular adaptation. While changes in flow may be rapid, we assume

that vascular adaptation occurs on the same timescale as endothelial cell movement and cell division.

Consequently we model the temporal evolution of a vessel segment’s radius by applying the following,

discretised ordinary differential equation

R(t+ ∆t) = R(t) + αR∆tR(t)(Sh + Sm − ks), (21)

where ∆t is the timestep size and the updated radius must satisfy the constraint Rmin ≤ R(t+∆t) ≤ Rmax.

The factor αR that appears in Equation (21) relates the stimuli to our timestep size ∆t. In the absence

of any details on the rate of vascular adaptation (since all previous studies that we are aware of consider

quasi-steady state vessel radii), we set αR = 3.3 × 10−6min−1 so that the rate of change of the vessel

radius is typically less than 10% per hour. ks is the shrinking tendency of a vessel that takes into account

that vessels tend to regress in the absence of stimuli. Sh and Sm are haemodynamic and metabolic stimuli

for vascular adaptation:

• Haemodynamic stimulus:

Sh = log(τw + τref)− kp log((τ(P )), (22)

with the wall shear stress (WSS)

τw =
R∆P

L
, (23)

the constant reference wall shear stress τref and the corresponding set point pressure of the wall
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shear stress τ(P ), described by the empirical function

τ(P ) = 100− 86 exp
(
−5000 [log(logP )]

5.4
)
. (24)

• Metabolic stimulus:

Sm = km(cVEGF) log

(
Q̇ref

Q̇H + aQ̇ref

+ 1

)
, (25)

with

km(cVEGF) = k0
m

(
1 + kVEGF

m

cVEGF

V0 + cVEGF

)
, (26)

where Q̇ref , a, k0
m, kVEGF

m and V0 are parameters. Q̇ref is a reference flow, and the term aQ̇ref (where

a is a small parameter) in the denominator of Equation (25) is introduced to avoid extreme vessel

dilation in poorly perfused vessels (and hence Sm differs slightly from the original model [4, 9]).

In addition to being created new vessels can also be removed by pruning. If a vessel is exposed to a

wall shear stress that is below a threshold (τ crit
w ) for a certain time (Tprune), we remove the vessel from

our system. In general the vascular adaptation algorithm includes the following steps. First, the vessel

radii evolve according to Equation (21). Then we calculate the flows in the network. In contrast to

the previous model [4], the evolution of the radius is considered separately and is not iterated until a

steady-state is reached.

Computational algorithm

The basis of our model is a regular grid that subdivides the simulation domain into cellular automaton

lattice sites. Each lattice site can be occupied by several biological cells and vessels. Figure 1 shows the

high degree of coupling between the different spatial scales. We introduce the main steps in the following

list. The flowchart in Figure 2 summarises the overall algorithm and the temporal order of computation,

and shows how processes that act of different space and time scales are inter-related.

1. Initialisation (Vascular and cellular layers)

We specify an initial vascular network as a system of straight pipes with fixed inflow and outflow

nodes with prescribed pressures. We also prescribe the amount of haematocrit that enters through

each inlet, and the initial location of the different cell types in the cellular automaton domain.
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2. Update cells, oxygen and VEGF (Diffusible, cellular and subcellular layers)

• Calculation of oxygen concentration (Diffusible layer)

The reaction-diffusion equation (14) is used to calculate the quasi-stationary oxygen concen-

tration c02(t,x) in the simulation domain. Oxygen consumption by normal and cancer cells

is included in Equation (14) via sink terms, assuming first order kinetics. On the other hand,

perfused blood vessels deliver oxygen to the tissue and thus account for oxygen sources.

• Calculation of cell cycle, p53 and VEGF ODEs (Subcellular layer)

The subcellular level is coupled to its local environment via the oxygen concentration. Oxygen

drives the cell cycle of individual cells, whose current state is described by the time-dependent

concentrations of the proteins Cdh1, cycCDK,p27,npRB and the cell mass M . Internal p53

and VEGF concentrations are also considered. All subcellular variables are modelled by the

coupled systems of non-linear ordinary differential equations (1)-(7).

• Check for cell division (Cellular layer)

Cells divide if their Cdh1 and cycCDK concentrations are under, respectively, over a predefined

threshold (see Equation (10)).

• Cell movement (Cellular layer)

Vascular tip cells perform a biased random walk through the tissue. The probability of moving

in a certain direction is influenced by the local VEGF gradient and cell densities (see Equation

(12)). The motility of normal and cancer cells is also included via Equation (12).

• Calculation of VEGF concentration (Diffusible layer)

Quiescent tumour cells and hypoxic normal cells produce VEGF, and so contribute to the

source term in the reaction-diffusion equation (15) for the VEGF concentration cVEGF(t,x).

VEGF is removed by the vascular system.

• Check for cell quiescence (Cellular layer)

Tumour cells enter or leave a quiescent state depending on the internal cell p27 concentration,

which is described in Equation (4). Oxygen is the external factor that influences the level of

p27.

• Check for cell death (Cellular layer)

Normal cells die if their subcellular p53 concentration exceeds a threshold value. If a normal
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cell is surrounded by a high number of tumour cells then its p53 threshold for cell death is

reduced (see Equation (8)). This models the degradation of a tumour’s environment by tumour

cells. Tumour cells die if they are quiescent for a certain period of time; unlike normal cells,

their death is not influenced by p53.

3. Update vasculature (Cellular and vascular layer)

The vascular system continually remodels and evolves in response to external and internal stimuli.

• Check for new tip cells (Cellular layer)

A raised VEGF concentration in the tissue stimulates the vasculature to form new sprouts.

The probability that new sprouts emerge is specified by Equation (11) and is an increasing

function of the local extracellular VEGF concentration.

• Check for anastomosis (Cellular layer)

New vessels are formed if sprouts connect to other sprouts or to the pre-existing vascular

network.

• Vessel pruning (Vascular layer)

Vessels that are underperfused (τw < τ crit
w ) for a certain period of time (Tprune) are removed

from the vascular network.

• Calculation of radius adaptation (Vascular layer)

The vessel radii are updated at each timestep according to equation (21). The change in vessel

radii is influenced by haemodynamic and metabolic stimuli as well as the general tendency of

vessels to shrink (see Equations (22)-(25)).

• Calculation of pressures and flows within vasculature (Vascular layer)

The pressure at each node of our vascular network is calculated by applying conservation

of mass at each node, where the fluxes are assumed to obey Poiseuille’s law (16), and the

haematocrit is assumed to split symmetrically at bifurcations.

In 1) the whole cellular automaton model is initialized. Then 2) and 3) are carried out within each time

interval ∆t until the final simulation time is reached.
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Experimental methods

GFP-expressing microvessel fragments are isolated from the epididymal fat pads of GFP/rats which are

genetically engineered to express GFP (RRRC Rat Resource and Research Center; Columbia, MO, USA)

and the epididymal fat is isolated from rats that are greater than 300g. The fat pads are aseptically

removed, minced and digested in DNase (1mg/ml) and collagenase (2mg/ml). Following digestion, 2

filtration steps take place. First a 500µM filter is used to remove large tissue debris and then a 20µM filter

is used to retain the microvessel fragments while removing smaller debris such as cells. The microvessel

fragments are then added to a solution of Type I rat tail collagen (BD Biosciences) and DMEM. The

final concentration of rat tail collagen that is used is 3mg/ml, the DMEM is 1X and the concentration of

fragments is 15, 000− 20, 000 fragments/ml.

The tumour droplet consists of the MDA MB 231/RFP cells that will form the tumour. The cells are

used in a final concentration of 12.5× 106/ml and are suspended in 2.5mg/ml of rat tail Type I Collagen

(BD Biosciences) and 1X DMEM. Using a 48 well non-tissue cultured plate, a 15 µl drop of the tumour

cell suspension is polymerized in the center of the well. Following brief polymerization of about 2 minutes

at 37◦C in the incubator, 200µl of the microvessel fragment mix is added to the wells creating a donut

shape around the tumour cell droplet. This tumour construct was then placed in the 37◦C incubator

for 20 minutes. Following polymerization, 250µl of 1X DMEM (+10% FBS) was added to the tumour

construct and incubated at 37◦C for 4 days. Within these 4 days the microvessels undergo spontaneous

angiogenesis and anastamosis. Following the 4 day incubation the tumour construct is inoculated into

the dorsal window chamber.

Dorsal window chamber systems are made of titanium steel and are sterilely implanted on the dorsal

side of a 8− 10 weeks old NOD/SCID mouse. The chamber holds a flap of dorsal skin up vertically away

from the mouse’s body. A small layer of skin is surgically excised from the flap creating a pocket. Droplets

containing RFP-expressing MDA-MD 231 breast cancer cells and GFP-expressing rat microvessel cells

are inoculated on to the region of exposed tissue. A #1.5 1cm diameter round glass cover-slip is placed

over the tissue containing the implanted tumour and microvessel mix and seals the wound. This cover

slip is located in the window portion of the chamber.

In order to image the tumour cells and vascular network within the window chamber, the mice are

anesthetised and fitted with a nose cone affixed to a portable inhalation isofluorane cart. A customized
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fluorinated ethylene propylene mount is used to fix the mouse on the stage of the microscope which keeps

the mouse in place and minimizes cardiac, pulmonary or other movements. Images are taken using the

Olympus FV1000MPE multiphoton excitation microscope with a combination of objectives ranging from

1.25 × 0.3NA dry lenses to 25× XL pan N 1.05NA water immersion. A Ti:Sa infra-red (IR) laser line

tuned to 920nm is applied to excite the RFP and GFP samples using line switching to minimize crosstalk

between fluorochromes. Z-stacks are acquired at 0.5µm increments through the depth of the tumour and

vessel area up to 750nm. Images are reconstructed in 3D using Imaris v.5.5.1 (Bitplane, Inc.; St. Paul,

Minnesota, USA) or Avizor v6.2 (Visualization Sciences Group; Burlington, MA, USA).
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Parameters

The following parameter values are applied in the simulation.

Table 1. Parameters for the multiscale model, common to the whole simulation, to all proliferating
cells, etc. (See [1, 4, 10–12])

Parameter Default value

∆t 30 min
∆x 40 µm
Domain size variable

[Cdh1]0 0.9
[cycCDK]0 0.01
M0 5.0
[p27]0 0.0
[npRB]0 0.0
b1 1.0 min−1

b3 10.0 min−1

J3 0.04
b4 35.0 min−1

J4 0.04
a4 0.04 min−1

a2 1.0 min−1

a3 0.25 min−1

η 0.005 min−1

M∗ 10.0
c2 0.01 min−1

Parameter Default value

B 0.01
d2 0.1 min−1

d1 0.01 min−1

[VEGF]0 0.0
[p53]0 0.0
k7 0.002 min−1

k
′

7 0.01 min−1

Cp53 0.01
k8 0.002 min−1

J5 0.04

k
′

8 0.01 min−1

CVEGF 0.01

PO2 3500
PVEGF 11400
δVEGF 10.0
DO2 0.00145
DVEGF 0.00145
Rex 5



3D Multiscale Modelling of Vascular Tumour Growth 13

Table 2. Parameter values that differ for normal and cancer cells, where a dash indicates a parameter
that is not defined for that cell type [1, 4, 10–12].

Parameter Normal cell Cancer cell

a1 0.05 min−1 0.4 min−1

c1 0.1 min−1 0.007 min−1

χ 1.0 0.0

k
′′

8 -0.002 min−1 0.002 min−1

ρTHR 0.75 –
Dm 1 1
Cdh1THR 0.004 0.05
cycCDKTHR 0.2 0.05

p53high
THR 0.8 –

p53low
THR 0.08 –

Tdeath – 4000 min
p27e – 1.05
p27l – 1.0
VTHR 0.27 –
kVEGF(x) 0.3 0.3

Table 3. Vasculature parameters [1, 4, 10–12]

Parameter Default

Pin 35 mmHg
Pout 15 mmHg
Hin 0.45
µ0 1.2 g cm min−2

α 0.0
ks 1.15 s−1

kp 1.0 s−1

k0
m 3.3̇ s−1

kVEGF
m 0.0
V0 10−3

τref 0

Q̇ref 4× 10−5 cm3min−1

αR 3.3× 10−6

Rmin 1 µm
Rmax 50 µm
τ crit
w 8.3̇ dynes cm−2

Tprune 4000 min
a 0.01
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Table 4. Parameters for angiogenic sprouting, or parameters that extend to endothelial cells in
addition to normal and cancer cells [1, 4, 10–12].

Parameter Normal Cancer Endothelial Cell

k02(x) 13 20 5
D 0 53.3̇ µm2 min−1 53.3̇ µm2 min−1

γ 0 0 2× 103 µm
Nm 1 1 2
Em – – 2
Pmax

sprout – – 0.3̇× 10−3 min−1

Vsprout – – 0.001
Mc – 50 10

Table 5. Parameter values that have been changed for three-dimensional simulations.

Simulation in Figure Parameter Value

all P02 3800
3-8 Rex 3
3-8 Tprune 8000 min
11 tcrit 30 h
14 γ 2× 104 µm
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