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This document briefly introduces parallel computations on graphics processing units (GPUs)
and the implemented exact stochastic simulation algorithms (i) the stochastic simulation
algorithm (SSA) byGillespie [5], (ii) the logarithmic direct method (LDM) by Li and Petzold
[10] and (iii) the next reaction method of Gibson and Bruck [3]. The LDM and NRM are
more efficient reformulations of the SSA.
Section 1 briefly introduces the application of GPUs to general purpose computation. Section
2 motivates the stochastic simulation of well-mixed chemical reaction systems and introduces
the implemented simulation algorithms. Section 3 provides details on the threading approach
taken and section 4 on the sampling regimes used. Section 5 lists the features and limitations
of our stochastic simulation MATLAB plugin. Section 6 lists the hardware and software used.

1 Parallel computing on a GPU

Stochastic simulations of chemical reaction systems are per se not well parallelisable since
the current state of the reaction system depends on the chain of previous reaction events.
However NVIDIA’s compute unified device architecture (CUDA) enables the efficient compu-
tation of ensembles of stochastic simulations in parallel using GPUs. While GPUs emerged as
dedicated graphics boards to accelerate 3D graphics, these devices have recently been used
for general purpose parallel computations. NVIDIA introduced CUDA in November 2006 in
its GeForce 8800 GPU [11, 14]. GPUs are especially well suited for problems where the same
set of instructions can be applied to several data sets simultaneously. This is called single
instruction multiple data (SIMD). Even if the problem itself can not be well parallelised,
several instances can be executed in parallel.

1



GPUs evolved over the last decade from special purpose devices supporting the central pro-
cessing unit (CPU) by rendering 3D-graphics efficiently to multi-core data parallel general
purpose processing units with hundreds of compute cores 1.
CPUs evolved towards very long pipelines to achieve instruction level parallelism increasing in-
struction throughput and multi-level caches to hide memory access latency. Pipelined proces-
sors are organised internally into stages which can work on separate jobs semi-independently.
Fetching and decoding an instruction begins before the prior instruction finishes executing.
While pipelining increases throughput, it comes at the cost of requiring branch prediction
for optimal performance. Compared to GPUs, on a CPU considerably less space is allo-
cated to the arithmetic logic units (ALUs) and more to caches and control logic like branch
prediction [7]. Another major difference between CPUs and GPUs is the available memory
bandwidth. The design of a generic dual-core CPU as well as a GPU is shown in Figure 1.
While the CPU has a high bandwidth between its processing cores using the level 2 (L2)
cache, the available bandwidth to main memory is limited. The GPU has a high memory
bandwidth between the SMs and graphics card memory. CUDA enables one to apply GPUs
to parallel general purpose computations. A NVIDIA CUDA enabled GPU consists of a set of
streaming multiprocessors (SMs). Each SM currently aggregates 8 single precision and one
double precision floating point processing cores called stream processors (SPs) accompanied
by two special function units (SFUs). The SM is the smallest independent unit of scheduling
with its own instruction cache, thread select logic, 64 kB of register file, 16 kB of shared
memory, and 8 kB of constant cache 2. Each SM is a threaded single-issue processor with
single instruction multiple data (SIMD). Each SM can execute up to eight thread blocks
with a total of 1024 threads, which is 128 threads per SP, concurrently. Each SM has a
64 kB register file comprising 16 k 32-bit wide entries. So each of the SM’s eight SPs has
a 2 k entry register file. The register’s usage is assigned compile time. The graphics card’s
memory is called global memory. It is accessible by all threads of all SMs but it has a high
access latency of 400 to 600 clock cycles [15].
Each SP can perform two floating point operations per cycle by its multiply-add unit. Each
SFU can perform 4 instructions per cycle. This gives a total per SM of 16 operations per
cycle for the eight SPs and eight for the two SFUs [12].
CUDA uses a variation of SIMD, as used in vector computers, called single instruction mul-
tiple thread (SIMT). The SIMT architecture applies one instruction to multiple independent
threads in parallel achieving data level parallelism. In contrast to vector computers using
SIMD, where a single instruction is applied to all data lanes, the threads are scheduled in
groups, called a “warp”, of 32 threads. This allows different warps to take different execution
paths without performance penalty.
Within a warp, threads of a warp either execute the same instruction or stay idle. This allows
threads of the warp to branch and take other execution paths. The execution of threads tak-
ing different branches is serialised decreasing the overall performance. An example is shown
in Figure 2. Four threads are executing the same code fragment in parallel, but taking differ-
ent branches of the if-statement and get serialised. The advantage of SIMT over SIMD is the

1The NVIDIA Tesla architecture has up to 240 cores, the Fermi architecture up to 512 cores.
2Based on NVIDIA Tesla architecture [15].
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Figure 1 – On the left the relative memory bandwidth between the processing cores of a multi-
core CPU with its caches and the GPU. The line thickness of the links between the different
components indicates the relative bandwidth available. In a multi-core CPU, the bandwidth
between the cores and the shared 2-nd level cache is high, while the bandwidth to main memory is
substantially lower. On the graphics board, the available bandwidth between the multiprocessors
and the on-board memory is high compared to the link to the host main memory. On the right the
organisation of a streaming multiprocessor is given. It aggregates eight single precision floating
point stream processors and one double precision. The two special function units provide single
precision functions such as trigonometric or logarithm.
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1 float a = unifrnd ();

2 int b = 0;

3

4 if(a <= 0.5) {

5 // if-branch

6 b = b + 1;

7 } else {

8 // else -branch

9 b = b - 1;

10 }

i f - branch

else - branch

1 2 3 4

Figure 2 – Thread execution of a branch. The code of the example is given on the left. Based
on the uniform random number a, b is either incremented or decremented with a probability of
0.5. On the right the thread execution of a block of 4 threads executing the example is shown.

independent scheduling of thread warps. This gives a higher flexibility and efficiency when
branches occur, since only diverging threads within a warp need to be serialised. Obviously,
full efficiency is gained when all threads of a warp take the same execution path [11].
Multiple warps of threads can be grouped into blocks which again form a computational
grid. Blocks are assigned to the SMs and the threads of a block can cooperate and share
cached memory areas and shared memory. Each thread is able to access its own set of local
variables in local memory. Variables in local memory are stored in registers (fast access but
read after write penalty of 2 cycles). If register space is exceeded, local variables spill into
global memory.

2 Stochastic simulation of chemical reaction systems

The time evolution of a chemical reaction system is neither continuous since reactions are
atomic, nor deterministic since a reaction may, but does not have to, occur whenever the
appropriate molecules collide. Nevertheless, assuming a sufficiently large molecular popula-
tion, a chemical reaction system can be treated as a deterministic continuous process which
can be modelled using ordinary differential equations (ODEs). However in many biological
systems small molecular abundances make deterministic ODE based simulations inaccurate
[1]. As an example, the average copy numbers of some mRNA molecules relevant to the
budding yeast cell cycle per cell may be less than one. Proteins, the actual work horses of
the cell, are translated from mRNA. In this scenario all protein of a certain kind may be
translated from a single mRNA molecule [8]. This means that depending on a single event
occurring, the transcription of a mRNA molecule, the system may take different paths. The
behaviour of the reaction system in a single cell, like switching between two states, may
depend on stochastic fluctuations [6, 17].
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2.1 Stochastic simulation algorithm

The Gillespie stochastic simulation (SSA) of chemical reaction systems addresses two ques-
tions [4, 5]. First, when does the next reaction event occur? Second, of which kind is this
event? The SSA is an exact algorithm to simulate the time evolution of realisations con-
sistent with the chemical master equation of a well mixed chemical reaction system. One
time step of the Gillespie SSA is given in Listing 1, below. The SSA considers a spatially
homogeneous (well mixed) molecular system of M reactions Ri, i = 1, . . . , M , in thermal
equilibrium of the N molecular species Sj , j = 1, . . . , N . The current state vector is defined
as

X(t) = (x1(t), . . . , xN (t))

where xi(t) is the number of molecules of chemical species Si(t), i = 1, 2, . . . , N .
The M reactions Ri, i = 1, . . . , M , are accompanied by the vector of propensity functions

a(X(t)) = (ai(X(t)), . . . , aM (X(t)))

and the state change vectors νi. The νi compose the N ×M stoichiometric reaction matrix
ν. The N components

νij , j = 1, . . . , N

of the change vector νi describe the change in the number of molecules of species Si due to
a Rj reaction event. The term aj(X(t))dt is the probability, given the current state X(t),
that a Ri reaction event will occur in the next infinitesimal time interval [t, t + dt). The
total propensity function a0(X(t)) is the sum of all propensity functions [4, 5]

a0(X(t)) =

M
∑

i=1

ai(X(t)) .

The core of the SSA is to use random numbers to choose state transitions. The time τ
at any given state of the system X(t) until the next reaction fires at t + τ is exponentially
distributed with mean a0(X(t)). Then aj(X(t))/a0(X(t)) is the probability that the j-th
reaction occurs.

1 while t < T do:

2 Calculate Propensity functions : ai.

3 Calculate a0(X(t)) =
∑M

i=1
ai(X(t)).

4

5 Sample two random numbers r1, r2 from a uniform

distribution.

6

7 Select τ = − 1

a0
ln (r1).

8

9 Select the reaction j to fire such that
∑j−1

k=1
ak < r2a0 <

∑j
k=1

ak.

10
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11 Update X according to νj:

12 Let X(t + τ) = X(t) + νj.

13 Let t = t + τ .
14 end;

Listing 1 – Main loop pseudocode of the SSA algorithm.

The SSA requires the calculation of the propensity function vector a as well as the compu-
tation of the cumulative sum over it. This makes the SSA computationally expensive.

2.2 Logarithmic direct method (LDM)

The SSA spends most of its computational time in selecting the next firing reaction. The
cumulated sums of propensity functions ai are computed in line 9 of Listing 1. A linear search
with the computational complexity of O(M), where M is the number of reactions, is used
to find the index µ of the next firing reaction. The idea of the logarithmic direct method
(LDM) proposed by Li and Petzold [10] is to replace the linear search with a binary search
of complexity O(log M). The LDM is an exact and efficient re-formulation of the SSA.
The SSA computes the sum of all propensity functions almost twice. First in line 3 and
second in line 9 of Listing 1. The linear search in line 9 terminates as soon as the next
firing reaction is found. If one stores the partial sums

∑j
i=1

ai, j = 1, . . . , M instead of
the propensity functions ai, i = 1, . . . , M , the result is an ordered list. The binary search
algorithm requires such an ordered list to select the next firing reaction. It divides the search
interval in half repeatedly. Each step has to decide between only two alternatives, to which
half the key belongs [9]. The key to be searched is r2a0 as in the SSA. In contrast to the
linear search, the average search depth of the binary search is independent of ordering the
reactions [10].

2.3 Next reaction method (NRM)

The next reaction method (NRM) is an efficient and exact re-formulation of the SSA proposed
by Gibson and Bruck [3]. Rather than using relative time until the next reaction event occurs,
the NRM uses absolute time. It computes the absolute putative time of the next reaction
event for all M reactions and stores them in an indexed priority queue. The next reaction
is that with the smallest absolute putative time. The pseudocode of the NRM is given in
listing 2 below.
Since not all propensities have to change with each reaction event, only those whose reactants
are affected by the currently firing reaction are updated. The NRM uses a dependency graph
to identify those reactions. Figure 3 exemplifies the dependency graph using the Oregonator
reaction system [13]. The dependency graph G = (V, E) is a set of nodes V and a set of
edges E. There is a node V = 1, . . . , M for each reaction. G is a directed graph. A directed
edge from node k to node l means if reaction k fires, the propensity function of reaction l
changes and needs to be updated.

6



X1 + Y2 → Y1 (1)

Y1 + Y2 → Z1 (2)

X2 + Y1 → 2 Y1 + Y3 (3)

2 Y1 → Z2 (4)

X3 + Y3 → Y2 (5)

Figure 3 – Dependency graph of the Oregonator reaction system [13]. The chemical reaction
system of the Oregonator is given on the left. The numbers in brackets correspond to the node
labels in the dependency graph on the right. A directed edge from node A to node B means
that if reaction A fires, then the propensity function of reaction B changes.

The indexed priority queue is implemented using a heap data structure [9]. To find the next
firing reaction, the heap sort algorithm is used. The usage of the fairly complex heap data
structure and heap sort algorithm has been criticised by Cao et al. [2].

1 Initialise outside the main loop dependency graph G,

propensity functions ai, initial putative reaction

times τ = τ1, . . . , τM stored indexed priority queue P ;

2

3 while t < T do;

4 Let µ be the index of min(τ ), let τ be τµ;

5

6 Update X according to νµ:

7 Let X(t + τ) = X(t) + νj.

8

9 For each edge (µ, α) in G:

10 (a) update aα,

11 (b) if α 6= µ, set τα = (aα,old/aα)(τα − t) + t,
12 (c) If α = µ, generate a random number ρ according

13 to an exponential distribution with parameter aµ, and

14 set τα = ρ + t,
15 (d) update τα in P ;

16 end;

Listing 2 – Main loop pseudocode of the NRM algorithm.

The putative absolute times of the next reaction for each reaction channel are in general an
unsorted array of numbers of which we need to find the minimal element. The run-time of
a naive linear search is O(n) where n is the length of the input array. Instead, Gibson and
Bruck use the more efficient heap-sort algorithm [3]. Its run-time is O(n log n) [9].
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The NRM exploits the fact that not all propensity functions change when a reaction event
occurs. The less the dependency graph is populated, the fewer propensity functions need
to be updated when a reaction event occurs. We expect the NRM to perform better for
reaction systems for which the dependency graph is sparsely populated.

3 Threading approach and memory usage

The aim is to maximize the usage of shared memory and registers to keep the data required
by the threads as “close” in terms of memory access time and latency as possible. This
means to copy a working set of data into shared memory and process it by as many threads
as possible in parallel [15]. Regarding the SSA and LDM implementation this is achieved by:

1. Loading the initial population vector X(0) from device memory to shared memory,
initialising propensity function vector a and setting pointers to reaction rates and
stoichiometric reaction matrix in constant memory,

2. Synchronising with all the other threads of the block so that each thread can safely
execute the chosen algorithm in shared memory and performing the simulation in shared
memory,

3. Each thread writing its current molecular population vector X(t) back to device mem-
ory as required.

Shared memory The number of threads per block is restricted by the available shared
memory which again may hamper the overall performance. Both the propensity vector and
the population vector depend on the size of the reaction system and with it the maximum
number of possible threads per block. The pseudo random number generator (PRNG) state
is stored in registers.
For each thread, the state vector X(t) of length N and the propensity function vector a

of length M need to be stored in shared memory. Additionally, 128 bytes (32 32-bit wide
entries) of shared memory are statically and automatically allocated by the compiler. This
gives a per block shared memory requirement in bytes of:

memoryshared = ((M + N) × threads per block + 32) × 4 . (1)

Re-arranging this for the number of threads gives the upper bound:

threads per block ≤

⌊

4096 − 32

M + N

⌋

. (2)

The NRM requires additional shared memory. The dependency graph G needs to be traversed
in each iteration but it is constant and can be pre-computed. It is stored in constant memory.
The priority queue is updated in each iteration, so it needs to be stored in shared memory.
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The storage requirement of the priority queue is 3 × M (using 16-bit integers to conserve
shared memory space). Considering the same reaction system, the maximum block size of
the NRM is smaller than that of the SSA or LDM.
The shared memory requirement of the NRM in bytes is:

memoryshared = ((3 × M + N) × threads per block + 32) × 4 . (3)

Re-arranging this for the number of threads gives the upper bound:

threads per block ≤

⌊

4096 − 32

3 × M + N

⌋

. (4)

Given that the minimum efficient block size is 64 threads or 2 warps [15], the maximum size
of the reaction system is given by ⌊N + M⌋ ≤ 63. For the NRM ⌊3 × 3 × N + M⌋ ≤ 63.
Let us illustrate this with the Oregonator system given in Figure 3 [13]. The Oregonator
system consists of M = 8 molecular species and N = 5 reactions. The dependency graph
given in Figure 3 requires 18 32-bit entries of shared memory. The maximum number of
threads per block is 213 for the SSA and 139 for the NRM, respectively.
The number of the histogram bins B is limited by the size of shared memory to

B =
4096

M
(5)

where M is the number of moelcular species.

Constant memory The maximum size of the stoichiometric reaction matrix ν can not be
given in terms of the number of reactions and species, but in terms of non-zero entries. The
GPU’s constant memory is used to store the reaction matrix as sparse, the vector of reaction
rates and for the NRM the dependency graph. The total size of constant memory is 64 kB
or 16384 32-bit floating point entries. The constant memory is cached by a constant cache
of 8 kB per SM [15].
The stoichiometric reaction matrix ν is stored in the compressed row storage (CRS) sparse
matrix format. The storage requirement of the sparse matrix using 32-bit float values of M
rows and nnz non-zero entries is M + 2 × nnz 32-bit entries. The storage requirement of
the dependency graph of M nodes and |E| edges is M + |E| 32-bit entries.
Regarding the SSA and LDM, the maximum number of non-zero entries in the reaction
matrix is:

nnz
max,SSA =

⌊

16384 − 2 × M

2

⌋

, (6)

and regarding the NRM:

nnz
max,NRM =

⌊

16384 − 3 × M − |E|

2

⌋

. (7)

Device memory The number of realisations and the number of samples to be stored per
realisation depends on the size of the available device memory 3. Let S be the number of

3For the Tesla architecture the maximum size of the device memory is 4GB, for the Fermi architecture it is
6 GB.
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samples stored for each realisation. The the product realisations × S × N × 4 in bytes has
to fit into the device memory.

4 Sampling regimes

The implemented exact stochastic simulation algorithms, SSA, LDM and NRM, compute
the time of the next occurring reaction by sampling from an exponential distribution. This
means reaction events do not occur in equidistant time steps.
The available device memory of the graphics card is limited 4 and reaction events can be
numerous, so we do not want to store every reaction event. Reaction events can be sampled
non-equidistantly whenever a reaction event occurs resulting in a dynamic grid of reaction
times which differs for each realisation of the simulation.
Another option is to sample at fixed time increments tref . This means the molecular popu-
lation is sampled when a time tref passes regardless of the actual number of reaction events
that occur. This makes it easier, for example, to calculate the average molecular population
of multiple simulations. Both options are illustrated in Figure 4.

Figure 4 – Sampling the molecular population at fixed time increments or whenever a reaction
event occurs.

5 Features and limitations of the stochastic simulation software

The main feature of our software is to compute ensembles of realisations of stochastic
simulations in parallel on a GPU without assuming any knowledge about GPUs on behalf of
the user. This is achieved by integrating it into MATLAB via a direct plugin to the Systems

4The Nvidia GTX 260 card used has 896 MB of device memory.
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Biology Toolbox 2 for MATLAB (an opensource project by [16]) 5. It replaces its MATLAB
based implementation of stochastic simulations of well-mixed chemical reaction systems with
the GPU-based implementation. This does not require any change to the user’s code. The
features of our software are:

• Parallel simulation of ensembles of well-mixed chemical reactions,

• Implementation of exact stochastic simulation algorithms:

– Stochastic simulation algorithm (SSA) [5],

– Next reaction method (NRM) [3],

– Logarithmic direct method (LDM) [10],

• Integration into MATLAB and the Systems Biology Toolbox 2 for MATLAB [16],

• Histogram computation of the molecular populations,

• Computation of the average of the computed realisations,

• Fixed and dynamic sampling grid,

• The implementation uses sparse matrices to store the chemical reaction system to
maximise the possible size of the reaction system to be simulated.

Beyond the limitations of the available device, constant and shared memory of the GPU used,
the reaction kinetics of the chemical reaction system is limited to the law of mass action.

6 Hardware and software environment used

All simulations were computed using a NVIDIA GTX 260 GPU with 216 cores and 896Mb
DDR3 RAM. The Host CPU is an Intel Core 2 Duo at 2.16 GHz and 4 GB RAM. The
Software environment is OpenSuse 11.1 with gcc 4.2.3, NVIDIA CUDA 3.0 and MATLAB
2010a. The stochastic simulation software requires a GPU with compute capability 1.2 or
higher.
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