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Stochastic reaction and diffusion on growing domains:
Understanding the breakdown of robust pattern formation
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Many biological patterns, from population densities to animal coat markings, can be thought of as
heterogeneous spatiotemporal distributions of mobile agents. Many mathematical models have been proposed
to account for the emergence of this complexity, but, in general, they have consisted of deterministic systems
of differential equations, which do not take into account the stochastic nature of population interactions. One
particular, pertinent criticism of these deterministic systems is that the exhibited patterns can often be highly
sensitive to changes in initial conditions, domain geometry, parameter values, etc. Due to this sensitivity, we seek
to understand the effects of stochasticity and growth on paradigm biological patterning models. In this paper,
we extend spatial Fourier analysis and growing domain mapping techniques to encompass stochastic Turing
systems. Through this we find that the stochastic systems are able to realize much richer dynamics than their
deterministic counterparts, in that patterns are able to exist outside the standard Turing parameter range. Further,
it is seen that the inherent stochasticity in the reactions appears to be more important than the noise generated
by growth, when considering which wave modes are excited. Finally, although growth is able to generate robust
pattern sequences in the deterministic case, we see that stochastic effects destroy this mechanism for conferring
robustness. However, through Fourier analysis we are able to suggest a reason behind this lack of robustness and
identify possible mechanisms by which to reclaim it.
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I. INTRODUCTION

Mathematical modeling is of fundamental importance in
developmental biology due to its ability to suggest and test
mechanisms by which complex biological patterns can arise
[1]. Although many mechanisms have been proposed [2–6], we
focus on the Turing system as a model of morphogenesis [7–9]
as it has been postulated to be the key mechanism behind
feather bud, limb bud, and hair follicle development [1,10–13].
In most cases these models have been constructed in a deter-
ministic framework and the effects of intrinsic noise on pattern
formation have only recently been considered [14]. Indeed,
due to the sensitivity of the Turing model to perturbations in
parameter values, domain geometry, etc., it has been seen that
stochastic effects are able to influence the evolving patterns in
ways not seen through deterministic simulations [14].

Previous research in the area of stochastic reaction-
diffusion systems has focused on analyzing and simulating the
effects of external noise [15–19]. External noise is modeled
as an additional effect that is controlled by the user, thus its
properties are known a priori. Here, we focus on the role of
intrinsic stochasticity by modeling diffusion of the chemical
constituents as a space-jump process [20], i.e., the individ-
ual particles of the chemical populations undergo unbiased
random walks on a domain which has been discretized into
boxes. Reactions between constituent populations are assumed
to act within each box, thus reagents in box i can only react
with other reagents in box i. For each stochastic system,
a chemical master equation (CME) can be generated as an
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exact description of the evolution of the system [21]. Linear
noise expansions allow derivation of Fokker-Plank equations
that characterise the properties of the noise, which can then
be converted into ordinary differential equations (ODEs) that
define the covariances [22]. Recently developed spatial Fourier
transform techniques [23–29] can also be applied in order to
gain an insight into the potential spatial dynamics that are
possible in such systems.

Primarily, we can consider which wave modes are stochas-
tically excited inside and outside of the deterministic Turing
domain. Within the parameter region that allows deterministic
systems to realize Turing patterns, we analytically demonstrate
that the stochastically excited wave modes correspond exactly
to their deterministic analogues. It is found that these stochas-
tically excited wave modes grow exponentially with time and,
since the noise perturbs the populations away from the uniform
steady state, patterning is able to form much earlier in a
stochastic system than in its deterministic counterpart. Outside
of this region, deterministic systems are unable to sustain
viable patterns, whereas the noise inherent in a stochastic
system is able to produce a state that is consistently far
removed from the homogeneous steady state, a result that was
previously noted by Biancalani et al. [14].

Having considered the stationary domain case, we use
a recently developed mapping technique [28,29] to explore
stochastic reaction-diffusion systems on growing domains. We
are interested in the effects of stochasticity in such systems,
as, in the deterministic setting, it has been shown that domain
growth is able to support robust pattern doubling sequences
[30]. Barrass et al. [32] further illuminated this mechanism by
producing bifurcation diagrams showing the observed pattern
doubling occurs by the mth wave mode destabilizing and
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the solution trajectory moving onto the stabilized 2m wave
mode. During the jump from one stable mode to the other,
the trajectory moves through a window where wave modes k,
m < k < 2m, may also be stable, thus, if the growth is too slow,
period doubling will break down. Alternatively, if growth is
too fast, period doubling breaks down because the system does
not reside for sufficiently long in a specific range of pattern
stability to allow that pattern to establish [31]. Furthermore, in
the case that domain length has a more complex dependence
on concentration, growth can cause a number of interesting
pathological phenomena [31].

We cast the Turing models onto growing domains in order
to consider the possible transition sequences. Since robustness
in a deterministic Turing system is achieved through domain
growth, we may naı̈vely suspect that robustness may also
exist in the stochastic formulation, since the excited wave
modes are identical in both systems. However, it is quickly
realized that stochasticity inhibits pattern-doubling robustness.
Even in the limit of large populations, stochasticity is able
to cause a breakdown in the doubling, eventually. Although
we lose period doubling as a mechanism of robustness,
stochastic systems appear to excite consecutive modes, and
thus we investigate the robustness of this mechanism through
simulation.

With the aim of analyzing robustness, or lack thereof, in
mind, we start in Sec. II by creating the stochastic framework
in which we will construct the models. In Sec. III we justify the
mapping from the Eulerian domain, which is time-dependent,
to the Lagrangian domain, which is time-independent, and
then recapitulate the application of spatial Fourier transforms
on growing domains in Sec. IV. The effects of stochasticity on
a specific Turing system, both inside and outside of the Turing
unstable parameter region, are then considered in Sec. V, and
these results are then extended to the case of deterministically
and stochastically growing domains. Finally, in Sec. VI, we
show that the stochastically excited wave modes are exactly
equivalent to their deterministic analogues and derive an
inequality for the discretization needed to generate noise
appropriately.

II. STOCHASTIC FORMALISM

For a detailed discussion of the following ideas see
Refs. [28,29], where we considered a general system con-
taining a single stochastic biochemical population. In order
to examine Turing systems, we need to consider at least
two spatially extended populations that interact through
nonlinear reactions. Thus, in this section, we briefly re-
capitulate the weak noise expansion, applied to a system
of two diffusing populations, U (x,t) and V (x,t), that are
coupled through nondelayed reactions, on a one-dimensional
domain.

Although other descriptions of diffusion are possible [33],
we model diffusion as a space-jump process; see Fig. 1 [20].
The domain is partitioned into one-dimensional boxes of size
�E , where each box, i, contains the indexed populations,
Ui and Vi . Higher dimensional domains can be considered
by replacing the one-dimensional boxes with appropriate
analogues [34]. Thus, for two particle types that have been
discretized into K compartments in a one-dimensional domain

FIG. 1. Diagram illustrating the stochastic description of diffu-
sion. Each particle has equal probability of moving left as of moving
right. If, for example, the right diffusion reaction, Rj , occurs one
molecule from box j moves to box j + 1. Reproduced from Ref. [28].
“Copyright 2011 by the American Physical Society.”

of length L, with Neumann boundary conditions and stochastic
diffusion coefficients du and dv , respectively, the diffusion
reactions are:

U1
du

⇀↽
du

U2
du

⇀↽
du

· · · du

⇀↽
du

UK, (1)

V1
dv

⇀↽
dv

V2
dv

⇀↽
dv

· · · dv

⇀↽
dv

VK. (2)

We use Ui and Vi to stand for both respective species and
populations and this abuse of notation should not cause
confusion. Since a space-jump process gives rise to first-order
reactions, the equations governing mean particle numbers are
equivalent to the equations derived using the Law of Mass
Action [35]. Thus, if du = Du/�

2
E and dv = Dv/�

2
E , where

Du and Dv are the macroscopic rates of diffusion [36], then
the mean-field equations are seen to be second-order, finite
difference approximations of the one-dimensional Laplacian,
which is derived through a Taylor expansion of the continuous
formulation [37,38].

In addition to diffusion, suppose these populations un-
dergo J reactions, {R1, . . . ,RJ }. For simplicity, we use the
convention that bold variables stand for the vector of spatially
extended variables, e.g. U(t) = [U1(t), . . . ,UK (t)] and V (t) =
[V1(t), . . . ,VK (t)] are the state vectors of the system at time
t . Each reaction, Rj , is specified by the propensity function,
aj (u,v), where u and v are single realizations of U and V and
the stoichiometric vector νj = (ν1j , . . . ,ν2Kj ). Explicitly, for
the j th reaction, νij is the change in population Ui for 1 � i �
K and Vi−K for K + 1 � i � 2K . From these definitions and
the Laws of Probability [39], we can construct the CME. By
defining P (W ,t) = P (u,v,t) to be the probability of being
in state W = (u,v) at time t , then, given an initial state,
W 0 = (U(t0),V (t0)) = (u0,v0),

∂

∂t
P (W ,t |W 0,t0) =

J∑
j=1

[P (W − νj ,t |W 0,t0)aj (W − νj )

−P (W ,t |W 0,t0)aj (W )]. (3)

Due to the CME usually being nonlinear it is generally
not solvable, except in certain, special, circumstances [37,
40]. Thus, we derive a weak noise expansion of the CME
using a suitable system parameter, denoted �. This expansion
allows us to consider the deterministic and stochastic effects
separately.
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We define new random variables, ηui and ηvi (which are of
order one as � → ∞), for i = 1, . . . ,K , through the relations,

Ui = φi� + ηui

√
�, (4)

Vi = ψi� + ηvi

√
�, (5)

where � is the magnitude of the smallest homogeneous steady
state of the populations U or V . φi and ψi are the expected
ratios of the populations at time t to the order of magnitude, �,
and are dimensionless “macroscopic” variables. The statistics
of Ui and Vi are linked to ηui and ηvi , respectively, through the
identification [22]

P (U,V ,t) = �(ηu,ηv,t). (6)

By using this form of expansion the fluctuations are treated as
Gaussian perturbations about the deterministic solution and,
as such, this approximation only works in the case of large �.
Note that, if considering a monotonically increasing process,
such as exponential growth, this approximation suggests that,
although the mean population undergoes a net exponential
growth, the domain length in the Gaussian approximation is
able to shrink instantaneously. The final piece of terminology
we need is the macroscopic rate of reaction, aj , which is used
to define the macroscopic variables, φi and ψi , as solutions of

dφi

dt
=

J∑
j=1

aj (φ,ψ)νij , (7)

dψi

dt
=

J∑
j=1

aj (φ,ψ)ν(K+i)j . (8)

Through using the relationships between P , �, aj , and
aj , we are able to expand and separate Eq. (3) in terms of
decreasing orders of � [28,29]. The leading order terms are
of size O(

√
�) and define the deterministic dynamics of the

macroscopic equations,
K∑

i=1

[
dφi

dt

∂�

∂ηui

+ dψi

dt

∂�

∂ηvi

]

=
J∑

j=1

[
K∑

i=1

aj (φ,ψ)νij

∂�

∂ηui

+
K∑

i=1

aj (φ,ψ)νK+ij

∂�

∂ηvi

]
.

(9)

This is satisfied by the definitions of φi and ψi in
Eqs. (7) and (8).

The second-order term in the expansion is of size O(1) and
gives rise to a Fokker-Planck equation [41], which defines the
dynamics of the probability density,

∂�

∂t
= −

2K∑
i,l=1

Ail

∂[ηl�]

∂ηi

+ 1

2

2K∑
i,l=1

Bil

∂2�

∂ηi∂ηl

, (10)

where ηi = ηui for i = 1, . . . ,K and ηi = ηvi−K for i = K +
1, . . . ,2K . The coefficients Ail and Bil are defined through the
matrix equations [42]

A = {Ail} = {∂[νa]i/∂φl}, (11)

B = {Bil} = νdiag(a)νT , (12)

ν = {νij }j=1,...,J

i=1,...,K, (13)

and aT = (a1, . . . ,aJ ).

III. LAGRANGIAN COORDINATES

As discussed in Sec. I, growth has been used theoretically to
ensure robustness in deterministic Turing patterning systems
[30]. Because growth is so important in biology [43], there has
recently been interest in producing a stochastic description of
growth [20] that is consistent with continuum theory [44].

In previous work [28,29], we developed a rigorous analytic
framework that allows the consideration of stochastic and
deterministic domain growth by mapping the growing Eulerian
domain to a static Lagrangian domain. This consists of
discretizing a domain into K boxes, as usual, but each box,
i, is now identified as a Lagrangian compartment of size �L,
containing Ni(t) Eulerian subdivisions of size �E (see Fig. 2).
This microscopic variable, Ni(t), is governed by a stochastic
process and is linked to a macroscopic variable, ni(t), which
defines the average ratio of Lagrangian box size, �L, to the
total size of the corresponding Eulerian subcompartments,
Ni(t)�E , at time t . Further, similar to Sec. II, a new random
variable, εi(t), is defined through

Ni = niθ + εi

√
θ, (14)

where

θ
def= �L

�E

, (15)

is the scaling of Eulerian box length to Lagrangian box length.
Initially, the Ni(0) are taken to be equal for all i, thus,

�Lni(0) = θ�E = Ni(0)�E, (16)

(see Fig. 2) and hence, ni(0) = 1 for all i. The intrinsic noise in
the domain length arises through probabilistic changes in the
number of microscopic compartments, which are biologically
motivated by the stochastic processes of cell division and cell
death. Thus, similar to the case of reactions, the noise forms
an integral part of the domain’s dynamics.

In the Appendix we use the specific example of Schnaken-
berg reaction kinetics to illustrate the effect of this spatial
mapping. Since the mean-field behaviour of the CME is given
by the deterministic system shown in Eqs. (A6) and (A7)
we use the deterministic reaction rates to produce stochastic

FIG. 2. Illustration of the connection between the Lagrangian
description of the domain and the corresponding Eulerian description.
See text for details. Reproduced from Ref. [28]. “Copyright 2011 by
the American Physical Society.”
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analogues by substituting ni(t) for Ni/θ and noting that,

lim
θ→∞

Ni(t)

θ
= ni(t). (17)

Using the weak noise expansion [22,42] discussed in Sec. II,
we can separate the leading order equations of � and θ

to obtain the deterministic behavior, and then consider the
lower-order terms to explore the stochastic behavior. Note that
not only do we obtain terms of order one, but there will be
new terms of order

√
�/θ . Thus, the general Fokker-Planck

equation for stochastic reactions on a stochastically growing
domain is

∂�

∂t
= −

3K∑
i,j=1

Aij

∂

∂ζi

(ζj�)

√
�j

�i

+ 1

2

3K∑
i,j=1

Bij

∂2�

∂ζi∂ζj

�j

�i

,

(18)

where �i is the scaling for the variable ζi . In the current
case, ζi = ηui for i = 1, . . . ,K; ζi = ηvi−K for i = K +
1, . . . ,2K; ζi = εi−2K for i = 2K + 1, . . . ,3K; �i = � for
i = 1, . . . ,2K; and �i = θ for i = 2K + 1, . . . ,3K . Note
that, for simplicity, whenever we consider stochastic growth
we fix the scaling parameters to be equal, i.e., θ = �. If
θ � �, it would be possible to assume that the reactions were
deterministic on a stochastically growing domain. However,
since we are interested in small particle numbers this is
not considered here. Similarly, if θ � �, the domain would
effectively be growing deterministically. This assumption is
used later, once we have compared deterministic and stochastic
growth in Sec. V B and shown that the noise generated
from growth is much less significant than that generated
from reactions. Furthermore, we see that the pattern evolution
of a Turing system on a stochastically growing domain is
sufficiently similar to one undergoing deterministic growth
so that it is appropriate to investigate only deterministic
growth. Finally, we fix the form of Lagrangian diffusion to be
approximate midpoint to midpoint diffusion [29]. This defines
the transition rates left and right to be equal to

dL

1
θ2 N

2
i

, (19)

where dL = du or dv depending on the population. For a
derivation of this rate from Dynkin’s formula see Refs. [29,45].

In general, a system of nondelayed, coupled reaction-
diffusion equations on a deterministically growing domain
can be rescaled to remove dilution and projected on to the
stationary domain thus giving the form (see the Appendix)
[30,43,44]:

∂φ

∂t
(x,t) = Du

n(t)2
∇2φ(x,t) + f [φ(x,t),ψ(x,t),t], (20)

∂ψ

∂t
(x,t) = Dv

n(t)2
∇2ψ(x,t) + g[φ(x,t),ψ(x,t),t], (21)

where φ(t), ψ(t), and n(t) are the spatially continuous forms of
the discretized populations φi(t), ψi(t), and ni(t), respectively.
Also, due to the rescaling of the reaction kinetics using n(t)
(see the Appendix), the kinetic functions of the reactions, f

and g, will normally be time-dependent. Thus, except for
the diffusion term (which uses a three-point stencil in one
dimension), the discretized system will contain only terms
evaluated at the same spatial and temporal points. Further,
since we are dealing with a regular grid of points in the
discretized domain, the diffusive operator stencil only includes
two neighboring spatial terms. These are identical at all
points across the domain, excluding the end points, which
are accounted for by the form of the Fourier cosine expansion.
Thus, the matrices A and B, defined in Eqs. (11) and (12),
can be split into symmetric tridiagonal submatrices, where
the terms along each diagonal are identical. This allows the
equations to be Fourier-transformed analytically, even where
we have time-dependent coefficients. If instead an irregular
discretization is used, the Fourier transform can be calculated,
but only numerically. Although, by considering different
stochastic descriptions of diffusion the number of nonzero
super- and subdiagonals may change, the matrices will always
be symmetric and so spatial Fourier transforms will always be
applicable.

For stochastic growth, the matrices A and B will be 3K ×
3K in size, as we have three distinct, spatially discretized
populations, U , V , and N = (N1,N2, . . . ,NK ). In the case that
the growth rate is independent of the chemical concentrations,
A and B will have sparse forms. These matrices can be split
up into nine K × K submatrices of the form

A =

⎡⎢⎣ a b e

c d f

0 0 0

⎤⎥⎦ , B =

⎡⎢⎣α β 0

β γ 0

0 0 δ

⎤⎥⎦ , (22)

where b and c are diagonal and the zeros exist because
a change in the number of Eulerian subdivisions, Ni , only
affects the chemical species Ui and Vi through the diffusion
coefficient. Since we would like to consider stochastic growth
the submatrices a, d, e, and f have nonunique forms due
to different possible spatial dependencies in the definition
of diffusion on a Lagrangian domain [29]. However, as
mentioned, in the present case we fix the definition of diffusion
to be approximate midpoint to midpoint diffusion, so that the
matrices a, d, e, and f will be tridiagonal and symmetric.

For the matrix B, we first note that, by definition, it
is symmetric and the submatrices α, β, and γ are of the
same structure as the corresponding submatrices of A. The
submatrix δ is diagonal since each growth “reaction” only
affects a single Lagrangian box. For a specific worked example
of the derivation of A and B, see the Appendix.

Using matrices A and B, we are able to derive the
corresponding general Fokker-Plank equation for the variables
ηui , ηvi , and εi :

∂�

∂t
= −

∑
i,j

aij

∂

∂ηui

[ηuj�] −
∑
i,j

bij

∂

∂ηui

[ηvj�] −
∑
i,j

eij

∂

∂ηui

[εj�] −
∑
i,j

cij

∂

∂ηvi

[ηuj�] −
∑
i,j

dij

∂

∂ηvi

[ηvj�]

−
∑
i,j

f ij

∂

∂ηvi

[εj�] + 1

2

∑
i,j

αij

∂2�

∂ηui∂ηuj

+
∑
i,j

β ij

∂2�

∂ηui∂ηvj

+ 1

2

∑
i,j

γ ij

∂2�

∂ηvi∂ηvj

+ 1

2

∑
i,j

δij

∂2�

∂εi∂εj

. (23)
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From this we can immediately derive the covariances as [22]

˙〈ηulηum〉 =
∑

j

alj 〈ηujηum〉 +
∑

j

amj 〈ηulηuj 〉 +
∑

j

blj 〈ηvjηum〉 +
∑

j

bmj 〈ηulηvj 〉 +
∑

j

elj 〈εjηum〉 +
∑

j

emj 〈ηulεj 〉 + αlm,

(24)

˙〈ηulηvm〉 =
∑

j

alj 〈ηujηvm〉 +
∑

j

blj 〈ηvjηvm〉 +
∑

j

cmj 〈ηulηuj 〉 +
∑

j

dmj 〈ηulηvj 〉 +
∑

j

elj 〈εjηvm〉 +
∑

j

f mj 〈ηulεj 〉 + βlm,

(25)

˙〈ηvlηvm〉 =
∑

j

clj 〈ηujηvm〉 +
∑

j

cmj 〈ηvlηuj 〉 +
∑

j

d lj 〈ηvjηvm〉 +
∑

j

dmj 〈ηvlηvj 〉 +
∑

j

f lj 〈εjηvm〉 +
∑

j

f mj 〈ηvlεj 〉 + γlm,

(26)

where ˙= ∂/∂t and 〈ab〉 denotes the covariance of a and
b. Partial differential equations governing the covariances of
〈ηulεm〉, 〈εlηvm〉, and 〈εlεm〉 can be found similarly.

IV. SPATIAL FOURIER TRANSFORM

We now introduce the discrete spatial Fourier transform.
We choose to use the discrete Fourier cosine expansion [14,
25,46], since, by setting k = mπ/L, m = 0,1, . . . ,K − 1, we
can incorporate the boundary terms as the cosine function
naturally encapsulates the Neumann boundary conditions [28].
The transform has the explicit form

f̂ (k) = �x

K∑
j=1

cos[k�x(j − 1)]f (xj ). (27)

Note that the factor of (j − 1) in the cosine function is simply
to correct for the fact that, spatially, we have defined our
populations to start with an index one, instead of zero. Hence,
the differential equations governing the spatial power spectrum
of the system are specified by

˙〈̂ηukη̂uk〉 = [4a1 cos(k�L) + 2a0]〈̂ηukη̂uk〉 + 2b0〈̂ηvkη̂uk〉
+ [4e1 cos(k�L) + 2e0]〈̂ηukε̂k〉
+ �2

LK

2
(α0 + 2 cos(k�L)α1), (28)

˙〈̂ηukη̂vk〉 = [2(a1 + d1) cos(k�L) + a0 + d0]〈̂ηukη̂vk〉
+ b0〈̂ηvkη̂vk〉 + c0〈̂ηukη̂uk〉
+ [2e1 cos(k�L) + e0]〈̂εkη̂vk〉 + [2f1 cos(k�L)

+ f0]〈̂ηukε̂k〉 + �2
LK

2
β0, (29)

˙〈̂ηvkη̂vk〉 = [4d1 cos(k�L) + 2d0]〈̂ηvkη̂vk〉 + 2c0〈̂ηukη̂vk〉
+ [4f1 cos(k�L) + 2f0]〈 ε̂kη̂vk〉

+ �2
LK

2
(γ0 + 2 cos(k�L)γ1), (30)

where, for w ∈ {a,b,c,d,e,f,α,β,γ,δ}, w0 and w1 are the
diagonal and off-diagonal elements of the submatrix w,
respectively. ODEs governing the Fourier transforms of the
covariances for 〈̂ηukε̂k〉, 〈̂εkη̂vk〉, and 〈̂εkε̂k〉 can be found
similarly. Hence, we have reduced the system from 6K × 6K

to six ODEs, which define the dynamics of the spatial power
spectra of the stochastic variables. These equations tell us
which spatial wave modes are activated and, thus, give us
insights into the patterns we should expect. However, it should
be noted that we have lost information concerning the cross
correlations. This is not a problem, since we are only concerned
with the activated wave modes predicted by the power spectra.

V. SIMULATION COMPARISON

We now face the problem of comparing theory with
simulation. The derived theory is only applicable at the
spatially homogeneous steady state. However, in the Turing
unstable parameter region, the system will try to evolve into
a patterned state, making the conclusions drawn from the
theory invalid. Thus, we are in exactly the same situation
as with deterministic Turing linear analysis; we can only
predict to which modes a spatially uniform steady state is
unstable and not which mode (or supposition of modes) will
be finally displayed at steady state. Thus, the theory has two
applications. First, it can be used to suggest which wave
modes are being initially excited and question whether they
correspond to the modes available in the deterministic system.
Second, we can explore the parameter region outside the
Turing unstable regime. In the deterministic regime we would
obtain no patterns. However, it has been shown that, in this
regime, the stochastic description of the problem may be able
to support structures which have been referred to as “stochastic
Turing patterns” [14,47].

A. Stationary domain

As an initial illustration, we simulate a deterministic system
and compare it to its stochastic analog. To complement this,
we investigate the stochastic and deterministic wave modes to
which the uniform steady state is linearly unstable, both inside
and outside of the deterministic Turing patterning parameter
domain.

1. Inside the Turing parameter domain

Turing systems on stationary domains normally do not
exhibit pattern selection robustness because the homogeneous
steady state is generally unstable to multiple wave modes, as
illustrated in Fig. 3. This figure shows that, as the length of
the domain, L, increases, the number of possible final patterns
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FIG. 3. Linearly growing wave modes of the Schnakenberg
kinetics for varying domain lengths. The two solid lines delineate
the region of possible linearly growing wave modes. The dotted
line denotes the maximum eigenvalue of the dispersion relation,
i.e., the fastest growing Fourier mode in the continuous system. The
inset magnifies the region [0,0.1]. Parameters used: Du = 1 × 10−4,
Dv = 1 × 10−2, κ1 = 10, κ3 = 0.2, κ−1 = 30, and κ2 = 1 × 10−5.

also increases. For example, when the length of the domain is
L = 0.4, the spatially uniform steady state is unstable to wave
modes two and three. Thus, from random initial conditions,
we cannot be certain as to which final wave mode the system
will evolve. However, similar to the case of deterministic
Turing patterns, for small numbers of possible linearly growing
wave modes we can expect that the fastest growing mode will
generally dictate the solution of the system. Figures 4(a) and
4(b) show that modes two and three are realizable in both the
stochastic and deterministic simulations.

By considering the spatial power spectra in Figs. 4(c) and
4(d), we can now compare the stochastically excited modes
with the actual evolution of the system. Figure 4(c) clearly
shows that both modes two and three are excited in the
stochastic spectrum. The fact that wave mode two grows
quicker than wave mode three offers a reason behind the
difficulty in generating a mode-three wave pattern; out of 100
simulations, only seven displayed a stable mode-three pattern,
similar to that shown in Fig. 4(b).

On comparing Figs. 4(c) and 4(d), we see that the theoretical
power spectrum grows without limit, while the spectrum of the
single stochastic realisation tends to a finite power value. This
shows the limitation of the theory discussed at the start of
Sec. V; i.e., since we are using a linearized version of the
Fokker-Plank equation we can only predict the excited wave
modes rather than their amplitude. This is comparable to the
standard Turing analysis [10,35,48].

2. Outside the Turing parameter domain

To illustrate the second use of our theory, we now extend
our investigation to parameter regions that do not allow
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FIG. 4. (a, b) For the given parameter values, both wave mode
two and three patterns are possible using the Schnakenberg kinetics
(see the Appendix). Here we compare the stochastic and deterministic
systems for each mode, respectively. (c) Evolution of the theoretical
spatial power spectrum, Eq. (28), using the Schnakenberg kinetics.
(d) Power spectrum of the single stochastic simulation shown in (a).
Parameters used: Du = 1 × 10−4, Dv = 1 × 10−2, κ1 = 10, κ−1 =
0.2, κ2 = 30 and κ3 = 1 × 10−5, on a stationary domain of length
L = 0.4 discretized into K = 40 compartments.

deterministic systems to pattern. For L = 0.1, the inset of
Fig. 3 suggests that no deterministic Turing patterns exist,
which is confirmed by deterministic simulation (not shown).
Contrarily, Fig. 5(a) clearly shows that the inclusion of noise
promotes patterning. However, although stochastic Turing
patterns are able to exist outside of the deterministic parameter
domain, they are unable to stabilize over the entire simulation
time. Due to the instability of these “stochastic Turing
patterns,” the structures are able to undergo polarity switching.
Note that polarity switching is also possible within the normal
Turing parameter region if noise levels are sufficiently high.
However, it is realized more easily outside this region because
of the competing effects that are occurring; the noise tends to
pattern the domain, whereas the mean-field dynamics tend to
homogenize the system.

In Fig. 5(c) we see that, since we are not inside the Turing
unstable parameter region, the stochastically excited wave
modes no longer continuously grow without bound and instead
tend to a constant value of power. This compares well to
the averaged power spectrum of the simulated data shown
in Fig. 5(b). Here, we see the theory works far better than we
would expect it to. As mentioned previously, we only expect a
good comparison when the population is near its steady-state
value, yet Fig. 5 clearly shows that the theory may hold even in
situations where the stochastic kinetics are such that a spatial
mode is being activated to move the system away from the
steady state. Currently, there is a debate as to how the noise is
able to act constructively over such long time scales. However,
by considering Eqs. (28)–(30), we can be sure that the wave
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FIG. 5. (a) Evolution of the population U during a single stochastic simulation with Schnakenberg kinetics. (b) Averaged power spectrum of
100 simulations. (c) Evolution of the theoretical spatial power spectrum, Eq. (28), with Schnakenberg kinetics (see the Appendix). Parameters
used: Du = 1 × 10−4, Dv = 1 × 10−2, κ1 = 10, κ−1 = 0.2, κ2 = 30, κ3 = 1 × 10−5, and � = 100 on a stationary domain of length L = 0.1
discretized into K = 40 compartments. For the given parameters the steady state is U = 200.

modes are excited due to the second-order moments of our
Gaussian approximation to the noise.

B. Comparing deterministic and stochastic growth

Having seen that the intrinsic noise of reactions can affect
the patterning properties of a Turing system on a stationary
domain, we now include growth to see how this influences
mode selection.

In Fig. 6 we compare not only the deterministic evolution of
Schnakenberg kinetics to their stochastic analogues but we also
illustrate the difference between stochastic and deterministic
descriptions of growth. Starting from an initial length of
L = 0.4 the domain was allowed to grow uniformly linearly as
n = 1 + rt/θ at a rate of r/θ = 1 × 10−4. Thus after 104 time
steps the domain doubles in size, to L = 0.8. By considering
Fig. 3 we can see that, for a domain of length L = 0.4, the
system can evolve to a final pattern of wave mode two or
three, whereas when the length of the domain is L = 0.8,
the system can evolve to a final pattern of any integer wave
mode between three and seven, inclusive. This evolution of
activated modes is captured in Figs. 6(d) and 6(e) where,
initially, mode two has the highest power but as time increases
further wave modes are activated. As the simulation reaches
t = 2220 the growth of the second mode begins to slow down
and eventually reduces, whilst the third mode overtakes it as
the most strongly excited mode. This transition can be linked to
the breakdown of period doubling that occurs in the transition
from deterministic kinetics to stochastic kinetics, as seen in
Figs. 6(a)–6(c), although the realization of the transition occurs
much later in the simulated system than estimated from the
covariance ODEs.

From comparing Figs. 6(b), 6(c), 6(d), and 6(e) we can
conclude that the inherent noise of the reactions far outweighs
the noise generated from the stochastic description of growth,
since qualitatively the figures are the same. However, it should
be noted that the stochastic growth spectrum has a higher
power. The only noticeable difference in the simulations
being that, as expected, the stochastic growing domain
simulation is noisier; the maximum range of the solution
is larger than the deterministic growth simulation and the

transition from mode two to three occurs earlier. Practically,
this implies that it is sufficient to consider deterministic
growth.

In both the situations of growing and static domains,
whenever we are inside the Turing unstable parameter re-
gion the noise excites the same modes as the deterministic
Turing analysis. Particularly, due to consecutive wave mode
excitation, the primary effect of growth is seen to remove
peak-splitting as the mechanism of transition and replace it
with consecutive increasing of the wave mode of the solution.
This correspondence of activated wave modes is proved
in Sec. VI.

C. Mechanisms of robustness

In the previous section we saw that stochasticity caused a
breakdown of robustness via mode doubling. Although this
loss of robustness may not be surprising, it does lead us to
question the sensitivity of the pattern doubling mechanism,
i.e., will arbitrarily small noise lead to a breakdown of pattern
doubling? Furthermore, is this new mechanism of consecutive
mode excitation robust?

Theoretically, as the population scale, �, becomes larger,
the stochastic simulations should approximate their determin-
istic counterparts better. The effect of increasing � can be seen
in Fig. 7, where, for values of � � 104, the pattern doubling
mechanism breaks down as the system undergoes the transition
from wave mode two to three. Although � = 104 is nowhere
near the number of molecules in a mole (1023), numerically we
are at the limit of our computational power using single particle
interactions. Thus, to consider stochastic effects within larger
populations, we use a Langevin framework in which the noise
is correctly scaled (Fig. 8) [49–51]. Although this is only
an approximation of the system under consideration, as we
have moved from a discrete case description to a continuous
description, it will at least suggest if the transitions are stable
against any form of noise, or whether stochasticity singularly
perturbs the deterministic system. From Fig. 8 we see the first
signs of robust doubling reappearing, as the transition 2 �→ 4
stabilizes for � � 106 and, further, the transition 2 �→ 4 �→ 8
is observed in Fig. 8(b). Thus, we conjecture that as the
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FIG. 6. (a) Deterministic evolution of the Schnakenberg equations on a linearly growing domain. (b) Stochastic Schnakenberg kinetics on a
deterministically, linearly growing domain. (c) Stochastic Schnakenberg kinetics on a stochastically, linearly growing domain. (d, e) Evolution
of the corresponding theoretical power spectra, 〈̂ηukη̂uk〉, on deterministically and stochastically growing domains, respectively. Note that the
plots have a log scale. Parameters used: Du = 1 × 10−4, Dv = 1 × 10−2, κ1 = 10, κ−1 = 0.2, κ2 = 30, κ3 = 1 × 10−5, � = 100, θ = 100, and
r/θ = 10−4. The initial length of the domain is L = 0.4 and there are K = 50 compartments.

parameter � increases, the doubling transitions will become
more and more common. However, for any finite value of �

there will come a time point at which the stochastic transitions
diverge from the deterministic transitions. This is because,
as the system evolves to higher and higher wave modes, the
bifurcation diagram increases in complexity and therefore it
is more likely that the simulations will exhibit one of the other

possible modes [32]. This breakdown of period doubling
is also compounded by the fact that we are using linearly
growing domains, as it has been shown analytically that only
exponentially growing domains can support period doubling
in the deterministic case. Hence, for all subexponential growth
rates, there will come a point at which even the deterministic
system is unable to maintain a pattern doubling transition.
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FIG. 7. Stochastic simulations with increasing value of �, noted beneath each figure. Parameters are Du = 1 × 10−4, Dv = 1 × 10−2,
κ1 = 10, κ−1 = 0.2, κ2 = 30, κ3 = 1 × 10−5, and r/θ = 10−4. Initially the length of the domain was L = 0.4 and the domains in (a) and (b)
were discretized into K = 50 compartments, whereas the domains in (c) and (d) were discretized into K = 100 boxes.

Since our primary concern is with low copy number
systems, we must return to the hypothesis that, although pattern
doubling is not robust, it may be possible to use consecutive
wave number increase as a mechanism of robustness, as
suggested by Fig. 6. In Fig. 9 we show the results of repeated
simulation of the stochastic system for cases with K = 50
Lagrangian boxes (top row) and K = 100 Lagrangian boxes
(bottom row) to demonstrate that the domain discretization was
not affecting the simulations. The simulations show that the
phenomenon of sequentially increasing wave numbers is not
completely robust as, although the majority of simulations do
show transitions 2 �→ 3 �→ 4, after this transitions 4 �→ 5 and
4 �→ 6 are both seen and, furthermore, the transition 2 �→ 4
is also possible. Also note that we have no control over the
polarity of the solution. Thus, we conclude that, for systems
that contain only a small number of active particles, uniformly
growing domains may be able to support robust sequences
of the lower wave modes. For further evidence of this claim,

see Fig. 10. Here, we have simulated the evolution of 100
stochastic systems and calculated the dominant wave mode at
each time point. Clearly we see that the most likely transition
sequence is a consecutively increasing one, since the wave
mode with the highest probability increases consecutively.
However, this probability reduces with increasing number
of active wave modes. For example, the probability that the
system will exhibit a wave mode two pattern during the
first 5000 time units is 0.98. Similarly, the probability the
system will exhibit a mode three pattern during the next
5000 time units is 0.96. Interestingly, although we can see
that the probability of being in a particular state decreases
over time, due to more wave modes becoming available, this
decrease is not monotonic. Indeed, over the regions where the
probability of being in an even mode is highest, this probability
is higher than the probability of the preceding odd mode. For
example, the probability of being in a mode six pattern during
t ≈ 25000−30000 time units is 0.87, whereas the probability
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FIG. 8. Langevin simulations with increasing value of �, noted beneath each figure. Parameters are Du = 1 × 10−4, Dv = 1 × 10−2,
κ1 = 10, κ−1 = 0.2, κ2 = 30, κ3 = 1 × 10−5, and r/θ = 10−4. Initially the length of the domain was L = 0.4 and the domains were discretized
into K = 100 boxes.

of being in a mode five pattern during t ≈ 20000−25000 is
0.81. This can be explained by reasoning that it is an artefact of
the mean-field causing the system to exhibit mode-doubling.
Hence, although small transition sequences of consecutive
increasing modes are likely, they are not certain. This was
also commented upon by Arcuri and Murray [52], who
studied deterministic Turing systems on growing domains.
They incorporated growth through a simple scaling argument
rather than a derivation from first principles, and noticed that
their systems would often miss certain wave modes during
their evolution. Hence, they concluded that patterns must form
sequentially as any mechanism that acts over the whole domain
is subject to too many sources of error to be capable of robust
pattern formation at high wave modes. Although they did not
include a dilution term, which we can now account for if the
growth is isotropic, in the stochastic setting we are unable
to generate robustness successfully on uniformly growing
domains.

VI. ANALYSIS OF THE COVARIANCE ODES

Simulations seem to suggest that, inside the parameter
region that realizes deterministic Turing patterns, the excited
wave modes of the stochastic Schnakenberg system correspond
to its deterministic analog, although the transition sequences
may not. From considering a general reaction-diffusion system
on a deterministic, uniformly growing domain that has been
mapped onto a Lagrangian domain,

∂φ

∂t
= Du

n2

∂2φ

∂x2
+ f (φ,ψ,t), (31)

∂ψ

∂t
= Dv

n2

∂2ψ

∂x2
+ g(φ,ψ,t), (32)

we intend to show that this is true for all Turing systems.
As we are assuming slow growth, we use a quasi-steady-state
hypothesis and, thus, fix n = 1.
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FIG. 9. Ten stochastic simulations with varying numbers of Lagrangian boxes. Top row: K = 50. Bottom row: K = 100. Parameters
Du = 1 × 10−4, Dv = 1 × 10−2, κ1 = 10, κ−1 = 0.2, κ2 = 30, κ3 = 1 × 10−5, � = 100, θ = 100, and r/θ = 10−4. Initial length of domain
L = 0.4. The color map is from 0 (black) to 20 (white).

From the reaction system that produces the kinetic func-
tional forms f and g, we can derive the propensity functions
and stoichiometric matrix (see the Appendix). Then, using
Eqs. (7) and (8), we can calculate the matrices A and B
from the definitions in Eqs. (11) and (12), which allows us to
construct the ODE system of Fourier-transformed covariances

in Eqs. (28)–(30). Rewriting this as a matrix ODE equation
we obtain

Ẋ = M X − V , (33)

where XT = [〈̂ηukη̂uk〉,〈̂ηukη̂vk〉,〈̂ηvkη̂vk〉], the explicit form of
M is

M =

⎡⎢⎣4 a1 cos (k�L) + 2 a0 2 b0 0

c0 2 a1 cos (k�l) + a0 + 2 d1 cos (k�l) + d0 b0

0 2 c0 4 d1 cos (k�L) + 2 d0

⎤⎥⎦ , (34)

and V is defined appropriately from Eqs. (28)–(30). Since
Eq. (33) is linear and autonomous, we can solve the ODEs
analytically yielding a solution that is the linear sum of three
exponential functions with exponents

λ1 = 2a1 cos(k�L) + a0 + 2d1 cos(k�L) + d0, (35)

λ± = 2a1 cos(k�L) + a0 + 2d1 cos(k�L) + d0

± [4(a1 − d1)2( cos(k�L) − 1)2

+ 4(a1 − d1)(2a1 + a0 − d0 − 2d1) cos(k�L)

+ (a0 − d0)2 − 4(d1 − a1)2 + 4b0c0]
1
2 . (36)

The existence of such a solution also depends on these three
values not being zero, which is always satisfied inside the
Turing domain, as shown below.

Since we are only interested in the coefficients matrix, M , of
the Fourier-transformed covariances, we only need to consider
the matrix A. This can be split up into four K × K submatrices,

A =
[

a b
c d

]
, (37)

where a and d are symmetric and tridiagonal and b and c are
diagonal. From their definitions Eq. (11) we can show that
b = ∂f/∂ψ I = b0 I and c = ∂g/∂φ I = c0 I , where I is the
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FIG. 10. Exhibited wave modes of 100 simulations using the same parameters as described in the legend of Fig. 9. The domain was
discretized into 100 Lagrangian compartments.

K × K identity matrix. The diagonal and off-diagonal values
of a are

a0 = −2DuK
2

L2
+ ∂f

∂φ
, (38)

a1 = DuK
2

L2
, (39)

respectively, whereas

d0 = −2DvK
2

L2
+ ∂g

∂ψ
, (40)

d1 = DvK
2

L2
, (41)

are the diagonal and off-diagonal elements, respectively, of
d. Each term is evaluated at the homogeneous steady state,
φi = φ∗ and ψi = ψ∗, for all values of i.

Substituting these values into Eqs. (35) and (36), we obtain

λ1 = 2
DuK

2

L2
[cos(k�L) − 1]

+ 2
DvK

2

L2
[cos(k�L) − 1] + fφ + gψ, (42)

λ± = λ1 ±
{

4

[
DuK

2

L2
− DvK

2

L2

]2

[cos(k�L) − 1]2

+ 4(fφ − gψ )

[
DuK

2

L2
− DvK

2

L2

]
[cos(k�L) − 1]

+ 4(gφfψ − fφgψ ) + (fφ + gψ )2

} 1
2

. (43)

Since [cos(k�L) − 1] � 0 and inside the Turing region we
know that fφ + gψ < 0 [48], it follows that λ1 and Re(λ−) are
negative. Hence, the only way to obtain an excited mode in
the Turing region is if Re(λ+) > 0. In order to satisfy this
condition the following inequality for y = [cos(k�L) − 1]
must be satisfied:

4DuDvK
4

L4
y2+ 2K2

L2
(fφDv + Dugψ )y+fφgψ − gφfψ < 0.

(44)

Thus, excited modes will exist for

− L2

K2
y+ < y < − L2

K2
y−, (45)

where

y± = fφDψ + gψDφ ± √
(fφDψ + Dφgψ )2 − 4DφDψ (fφgψ − fψgφ)

4DφDψ

. (46)
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Note that inside the Turing unstable domain y± are real and so
the steady state is unstable whenever

1 − L2

K2
y+ < cos(k�L) < 1 − L2

K2
y−. (47)

Thus, whenever the two limits of this range are within [−1,1]
we can invert the cosine function to obtain:

arccos
(
1 − y− L2

K2

)
�L

< k <
arccos

(
1 − y+ L2

K2

)
�L

. (48)

Since K is the number of compartments then to make sure the
domain discretization does not interfere with the simulations
we make K large and, hence, we are able to expand the arccos
operator in terms of large K:√

2y−

[
1 + 1

12
y−

(
L

K

)2]
� k �

√
2y+

[
1 + 1

12
y+

(
L

K

)2]
.

(49)

Letting K → ∞, or �L → 0, in such a way that L = K�L

remains constant, space becomes a continuum and, thus, using
k = mπ/L,

√
2y−
π

L = m− < mc < m+ =
√

2y+
π

L. (50)

Using Eq. (46), inequality Eq. (50) can be compared exactly
with the activated modes derived from the deterministic Turing
analysis [48]. Hence, we can see that inside the determinis-
tically unstable Turing parameter region, the stochastically
excited modes are exactly the same as the Turing excited
modes.

However, this is only true in the limit K → ∞. In a
discretized domain of K boxes there can be, at most, K active
wave modes and, as the domain grows, higher wave modes also
have the possibility of growing. As the activated wave modes
tend to the number of boxes, the noise is able to excite higher
wave modes than otherwise expected. For example, consider
the dotted line in Fig. 11. This shows the stochastically excited
modes when the domain is discretized into 25 boxes. As the
number of modes increases, the line begins to distort until
its tangent becomes infinite at wave mode 25. In terms of
inequality Eq. (47), the lower root has reduced to below −1,
implying that the equation no longer has two, real solutions.

For a given length, L, we are able to use the upper boundary
of inequality Eq. (49) to define a lower bound on K ,

m = kL

π
,

≈ L

π

√
2y+

[
1 + 1

12
y+

(
L

K

)2]
,

= m+ +
√

2

12π
y

3/2
+

(
L3

K2

)
. (51)

The discretization of the space will become inadequate when
it allows higher wave modes to be amplified than would be
expected by the deterministic Turing analysis. From Eq. (51),
we see that we need to choose K satisfying

√
2

12π
y

3
2+
L3

K2
< 1, ⇒ y

3
4+L

3
2√

6
√

2π
< K. (52)
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FIG. 11. Comparison of linearly growing wave modes of the
deterministic Turing analysis (black solid lines) and noise-excited
wave modes for different numbers of boxes, K , using the upper
and lower bounds of inequalities Eqs. (47) and (50). Parameters are
Du = 1 × 10−4, Dv = 1 × 10−2, κ1 = 10, κ−1 = 0.2, κ2 = 30 and
κ3 = 1 × 10−5. Note that the lines delineating the lower bounds all
lie approximately on top of each other.

Inequality Eq. (52) suggests that the number of boxes in
the discretized system needs to grow faster than the length
due to the exponent of 3/2. For the small-scale systems we
are simulating, we can easily choose K large enough not
to violate this condition. However, for larger values of L

we would need a much larger value of K and thus a much
finer discretization. Since our analysis uses the weak-noise
limit, this would mean including a larger number of simulated
particles. This combination of factors implies that as the
domain becomes larger the Gillespie SSA will take longer
to simulate the system, as each time step becomes smaller due
to the propensities increasing with the number of particles.

VII. CONCLUSION

In this work we have applied previously developed Fourier
transform techniques to Turing reaction-diffusion systems
on growing domains [28,29]. Our aim was to consider the
lack of robustness that is apparent in such paradigm models,
when the uniform steady state is linearly unstable to multiple
wave modes [53]. It has been shown in the deterministic
case that, upon placing Turing systems on uniformly growing
domains, robust peak doubling sequences can be generated
[30]. However, upon stochastically simulating the systems we
have found that this robustness is lost.

First, we considered the specific example of the Schnaken-
berg kinetics on a stationary domain. Here it was seen that,
within the deterministic Turing instability regime, the uniform
steady state of the stochastic system is linearly unstable to
exactly the same wave modes as the deterministic system.
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However, although we were able to suggest which wave modes
were excited, we were unable to predict which mode the final
pattern would adopt. This is similar to the standard Turing
analysis, which, due to the linearization process, suggests that
all excited modes tend to grow exponentially and ignores
higher-order terms that become important as the solution
evolves. In the stochastic case, due to our use of a linear noise
expansion, we also lose the higher-order effects and, thus, our
analysis is only valid around the homogeneous steady state.

Although we are unable to predict exactly to which mode
the system is going to evolve, if the number of excited modes
is small then the power spectrum suggests which mode grows
most quickly. This, in turn, suggests to which mode the system
will tend. This was demonstrated in Fig. 4, where the power
spectrum suggests that both modes two and three are excited,
although wave mode two grows more quickly. This correlates
with the fact that, out of 100 stochastic simulations, 93 yielded
a stable mode two pattern, whereas only seven exhibited a
stable wave mode three pattern. This correlation between
highest power mode and realized stable pattern was also seen
in the growing domain simulations (Fig. 6). Here, the power
spectrum shows that, although wave mode two is initially the
highest power mode, during growth wave mode three surpasses
mode two to become the dominant mode. This can then be
linked to the exact same transition in the simulated systems.

Parameters outside the deterministic Turing unstable re-
gion were then considered. Although such stochastic Turing
patterns have been noted before [14], our simulations are, to
our knowledge, the first numerical evidence of their actual
existence. Further, we have discovered that, due to stochastic
effects, polarity switching is possible (Fig. 5). Due to the
systems lying outside the deterministic patterning parameter
region, the activated modes no longer grow exponentially
and we see a good comparison between the theoretical and
simulated power spectra. Since the theory only holds near
the homogeneous steady state and noise forces the system
away from this state, this excellent correspondence is quite
unexpected. As we move away from the deterministic Turing
parameter region, the patterns become less pronounced, until
it is difficult to observe patterns at all. Thus, since we are
unable to clearly predict how much noise is needed to create
a pattern, we simply focus on calculating the activated wave
modes within the deterministically derived Turing domain.

Having investigated the stationary domain, we then moved
on to consider uniformly growing domains. Immediately, it
was seen that stochastic effects destroy any hope of robust
peak doubling sequences when population numbers are low.
By comparing stochastic and deterministic growth, we see
that the noise generated by reactions is more important than
the noise generated by stochastic domain growth. Indeed, it is
due to the kinetics that activated modes grow exponentially,
the effect of stochastic domain growth is simply to increase
the power of all modes.

Using this knowledge we focused simply on deterministic
growth, which further reduced the system of Fourier covari-
ance ODEs. Using general reaction-diffusion equations we
were able to show that the stochastic Turing modes were able
to grow exponentially and, further, that these excited modes
exactly correspond to their analogous deterministic Turing
modes. This has allowed us to suggest that the reason that the

peak doubling sequences break down is that the simulations
simply switch to the highest power mode, which increases
consecutively.

In Sec. V C we investigated this breakdown further and
questioned whether stochasticity was a singular perturbation
of the deterministic system. Since the noise scales as 1/

√
�,

we increased � to our computational limit and saw that for
sufficiently large populations, � = 106−1012, period doubling
can be realized, at least for the first couple of transitions.
If we now compare these particle numbers to a physical
system of Turing patterns over a single cell [54], we see that
a Dictyostelium cell has a volume of order 10−16 m3 and,
thus, it could contain on the order of 107 particles. As seen in
Fig. 8(a), by this point the stochastic effects in the system are
incredibly small. Hence, systems of this size and larger could
be justified to act as a continuum. However, there are many
biological systems that depend on very low copy numbers of
active proteins, e.g., the genome of the bacterium Escherichia
coli, where there are only 10–30 molecules of the lac repressor,
which is involved in the regulation of gene expression [55].
Thus, our focus on small population numbers is fully justified.

Furthermore, in this low copy number regime, even the
consecutive inclusion of wave modes is not robust on uni-
formly growing domains when the homogeneous steady state
is unstable to large numbers of wave modes. In this case,
predicting the evolution of the pattern is incredibly difficult.
Thus, our results support those of Arcuri and Murray [52],
who concluded that patterns must form sequentially as any
mechanism that acts over the whole domain is subject to
too many sources of error to be capable of robust pattern
formation at high wave modes. Hence, to generate robustness,
in a stochastic environment, we suggest apical growth as a
plausible mechanism that can robustly support consecutive
wave mode increasing pattern sequences (see Fig. 12). Thus,
if apical domain growth and wave number were connected
in some form of feedback loop then, once the desired wave
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FIG. 12. Stochastic Schnakenberg kinetics simulated on a deter-
ministic apically growing domain. Parameters are Du = 1 × 10−4,
Dv = 1 × 10−2, κ1 = 10, κ−1 = 0.2, κ2 = 30, κ3 = 1 × 10−5, � =
100, and r/θ = 1/5 × 103. Initially, L = 0.1 and the domain was
discretized into 25 boxes.
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number is reached, growth would stop, leaving a stable pattern
of exactly the desired wave mode.
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APPENDIX: SCHNAKENBERG EXAMPLE

Letting κi be the stochastic rate of reaction, the Schnaken-
berg system [56,57] consists of the chemical reactions

∅ κ1→ U, U
κ−1→ ∅, ∅ κ2→ V, 2U + V

κ3→ 3U, (A1)

plus diffusion of the two reacting species. We consider
the Schnakenberg system on a uniformly growing domain,
which causes the Eulerian coordinates, xE , to behave like
xE = xLn(t), where xL is the fixed Lagrangian coordinate and
n(t) encapsulates the definition of growth [noting n(0) = 1].
The mean-field equations take the form [30,43,44]

∂φ

∂t
+

[
dxE

dt
φ

]
xE

= Du

∂2φ

∂x2
E

+ κ1

�
− φκ−1 + φ2ψκ3�

2,

(A2)

∂ψ

∂t
+

[
dxE

dt
ψ

]
xE

= Dv

∂2ψ

∂x2
E

+ κ2

�
− φ2ψκ3�

2, (A3)

where φ and ψ are defined in equations (4) and (5). Converting
to Lagrangian coordinates and dropping the L yields

∂φ

∂t
+ ṅ

n
φ = Du

n2

∂2φ

∂x2
+ κ1

�
− φκ−1 + φ2ψκ3�

2, (A4)

∂ψ

∂t
+ ṅ

n
ψ = Dv

n2

∂2ψ

∂x2
+ κ2

�
− φ2ψκ3�

2. (A5)

Finally, by rescaling φL = φn and ψL = ψn, we remove the
dilution terms and, upon ignoring the subscript, L, again, we
obtain

∂φ

∂t
= Du

n2

∂2φ

∂x2
+ κ1n

�
− φκ−1 + φ2ψκ3�

2

n2
, (A6)

∂ψ

∂t
= Dv

n2

∂2ψ

∂x2
+ κ2n

�
− φ2ψκ3�

2

n2
. (A7)

Using this as a template, we redefine the stochastic rates
of reaction so as to simulate the reactions on a Lagrangian
domain:

∅ κ1n→ U, U
κ−1→ ∅, ∅ κ2n→ V, 2U + V

κ3/n2

→ 3U. (A8)

Thus, the mean-field equations of these reactions (plus
diffusion scaled similarly) are exactly Eqs. (A6) and (A7).

Assuming deterministic growth, the stoichiometric matrix
is

ν =
[

R L 0 0 I −I 0 I

0 0 R L 0 0 I −I

]
, (A9)

where L and R are the K × K stoichiometric matrices for
diffusion left and right, respectively [see Eqs. (1) and (2)], and
I is the K × K identity matrix. The corresponding vector of
macroscopic transition rates, a, is

aT =
[
d1φ1

n2
, . . . ,

d1φK

n2
,
d2ψ1

n2
, . . . ,

d2ψK

n2
,
n

�
κ1,

. . . ,
n

�
κ1,φ1κ−1, . . . . . . ,φNκ−1,

n

�
κ2,

. . . ,
n

�
κ2,φ

2
1ψ1κ3

�2

n2
, . . . ,φ2

nψnκ3
�2

n2

]
. (A10)

These then determine the desired matrices A and B, which
have the forms shown in Eqs. (11) and (12). Noting that we
are interested in the homogeneous state, φi = φ∗ and ψi = ψ∗
for all i, we can write down the elements of the matrices A
and B as

a1 = d1

n2
, a0 = −2d1

n2
− κ−1 + 2φ∗ψ∗κ3

�2

n2
,

b0 = φ∗2κ3�
2

n2
,

c0 = −2φ∗ψ∗κ3�
2

n2
,

d1 = d2

n2
, d0 = −2d2

n2
− φ∗2κ3

�2

n2
, α1 = −2d1φ

∗

n2
,

α0 = 4d1φ
∗

n2
+ nκ1

�
+ κ−1φ

∗ + φ∗2ψ∗κ3
�2

n2
,

β0 = −φ∗2κ3ψ
∗�2

n2
,

γ1 = −2d2ψ
∗

n2
, γ0 = 4d2ψ

∗

n2
+ nκ2

�
+ φ∗2ψ∗κ3

�2

n2
.

where, for w ∈ {a,b,c,d,e,f,α,β,γ,δ}, w0 and w1 are the
diagonal elements and off-diagonal elements of the submatrix
w, respectively.

In the case that growth is stochastic, the stoichiometric
matrix and the macroscopic transition rate vector in Eqs. (A9)
and (A10), respectively, will need to be extended in the obvious
way. From these we can then calculate the final elements
needed to completely define the matrices Eq. (22),

e1 = −2
duφ

∗

n3
, e0 = 4duφ

∗

n3
+ κ1

�
− 2φ∗2ψ∗κ3

�2

n3
,

f1 = −2
dvψ

∗

n3
, f0 = 4dvψ

∗

n3
+ κ2

�
+ 2φ∗2ψ∗κ3

�2

n3
,

δ0 = r

θ
. (A11)
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