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A partial differential equation model is developed to understand the effect that nutrient and acidosis

have on the distribution of proliferating and quiescent cells and dead cell material (necrotic and

apoptotic) within a multicellular tumour spheroid. The rates of cell quiescence and necrosis depend

upon the local nutrient and acid concentrations and quiescent cells are assumed to consume less

nutrient and produce less acid than proliferating cells. Analysis of the differences in nutrient

consumption and acid production by quiescent and proliferating cells shows low nutrient levels do

not necessarily lead to increased acid concentration via anaerobic metabolism. Rather, it is the balance

between proliferating and quiescent cells within the tumour which is important; decreased nutrient

levels lead to more quiescent cells, which produce less acid than proliferating cells. We examine this

effect via a sensitivity analysis which also includes a quantification of the effect that nutrient and acid

concentrations have on the rates of cell quiescence and necrosis.

Crown Copyright & 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Multicellular tumour spheroids (MCTS) are three-dimensional
cellular aggregates which mimic many of the characteristics of
in vivo avascular tumours (Mueller-Klieser, 1997). They have been
the focus of research for experimentalists and applied mathema-
ticians over the past 30 years (Araujo and McElwain, 2004; Roose
et al., 2007). Whilst able to mimic many characteristics of in vivo

tumours, for instance the observed spatial variation in oxygen and
glucose concentrations from the outer to inner regions (Kunz-
Schugart et al., 1998; Mueller-Klieser, 1997), MCTS are not widely
used in cancer drug discovery, due to the cell culture techniques
being more complex than standard 2D monolayers (Tung et al.,
2011).

Initial mathematical modelling work in the area focused on
simple models describing MCTS growth in the context of nutrient
delivery to the tumour (Burton, 1996; Greenspan, 1972). With
time and further experimental understanding a number of con-
tinuum mathematical models have been developed which have
focused on the effect certain biological mechanisms (biochemical

and biomechanical) have on MCTS development (see, for example
Breward et al., 2002; Netti et al., 1995; Ward and King, 1997). The
work presented here involves mathematical modelling of two
different aspects of tumour growth; the cell cycle and acidosis
and the effects both of these have on MCTS growth.

The cell cycle is a series of tightly regulated biochemical
events which control the growth and development of a cell. To
summarise: cells grow during G1 phase before entering a period
during which their DNA is synthesised (S-phase). G2, a short
period following S-phase, allows the cell time to prepare for cell
division, involving splitting of the DNA spindle and physical
division of the cell in two (M-phase). The newly generated cells
may enter a period of extended time without further prolifera-
tion. Such cells are defined to have entered the quiescent G0
phase. In tumour biology entering such a phase is usually driven
by factors external to the cell, for instance a decrease in growth
factors or nutrient deprivation. Cells may undergo two basic
forms of cell death; apoptosis or necrosis. Apoptosis is a decision
by a cell to commit cell ‘suicide’. In doing so the cell shrinks to
form an apoptotic body which is removed by the immune system.
Physiological events, such as decreased nutrient concentration
within the tumour or high acidity, can have harmful effects on
quiescent cells and may eventually lead to necrosis; the breaking
down of the cellular wall and release of cell contents into the
extracellular environment.
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Recent experimental and mathematical modelling work has
elucidated the importance of pH levels on tumour morphology.
Noninvasive magnetic resonance (MR) techniques have been
developed to measure both intracellular pH (pHI) and extracel-
lular pH (pHX) of human and animal tissues (Gillies et al., 2004,
2002). Virtually all tumour pH data to date show an acidic pHX

and alkaline pHI relative to normal tissue. Moreover, it is found
that the pHX becomes more acidic as the tumour grows, consis-
tent with reduced perfusion (Gillies et al., 2002). Clinical speci-
mens have shown that these changes have a molecular basis in
upregulation of glucose transporter 1 and the Naþ =Hþ exchanger
(Gatenby et al., 2007); the developed mathematical models
(Smallbone et al., 2007) have shown excellent agreement with
experimental data on the distribution of upregulated cells.

There exists a growing number of mathematical models in the
tumour literature which have been developed to understand the
role of the cell cycle in tumour growth. These include dynamic
models which encorporate simple (Bajzer et al., 1997; Bertuzzi
et al., 1981; Cojocaru and Agur, 1992; Hillen et al., 2010) or
complex (Zhao and Ricci, 2010) descriptions of the cell cycle, the
spatiotemporal distribution of the cell cycle state within MCTS
(Billy et al., 2009; Jeon et al., 2010; Mahmood et al., 2011; Tindall
and Please, 2007; Tindall et al., 2008) and therapeutic interven-
tions (Billy et al., 2009; Zhao and Ricci, 2010). To our knowledge
no mathematical model currently exists which has considered
how nutrient and acidosis levels affect the spatiotemporal cell
cycle state of tumour cells and dead cell material within an
avascular tumour.

In this paper we consider a mathematical model of a MCTS
which includes a simple model of the cell cycle, where cells are
considered to exist in either a proliferating, quiescent or dead cell
(due to necrosis or apoptosis) state. The model includes a
description of the nutrient and acid concentration within the
MCTS. In what follows, the effect these have on the distribution of
proliferating cells, quiescent cells and dead cell material and the
overall tumour size, is investigated.

2. Model formulation

Let Pðx,tÞ, Q ðx,tÞ and Mðx,tÞ represent the density of proliferat-
ing cells, quiescent cells and dead cell material per unit volume,
respectively, whose mass conservation is described by

Ptþr � ðuPÞ ¼ ðKBðCÞ�KQ ðC,HÞ�KAÞPþKPðCÞQ , ð1Þ

Qtþr � ðuQ Þ ¼ KQ ðC,HÞP�ðKDðC,HÞþKPðCÞÞQ , ð2Þ

Mtþr � ðuMÞ ¼ KAPþKDðC,HÞQ�lM, ð3Þ

where uðx,tÞ represents the local velocity of the cells and KI

(I¼ B,P,Q ,D,A) are cell cycle transition, or birth/death rates, which
we assume are dependent upon the local diffusible nutrient Cðx,tÞ
and extracellular hydrogen ion (acid) concentration Hðx,tÞ.
We assume that dead cell material is lost from the tumour at a
constant rate l (as first observed in Greenspan, 1972).

We note that our work differs from other models by explicitly
accounting for proliferating cells, quiescent cells and dead cell
material. Comparative papers (Ward and King, 1997, 1998) only
account for live and dead cells within an MCTS. Although we have
recently considered the effect of different spatial velocities,
dependent upon the cell cycle state of the cell and the cell’s local
extracellular nutrient gradient (Tindall et al., 2008), we have here,
for simplicity, assumed that all cells move with the same spatial
velocity. This assumption reduces the complexity of having to
account for varying cell cycle state structures, as a result of the

varying chemotactic response to the local environment within the
tumour.

We will take simple expressions for the KI which capture the
qualitative behaviour:

KBðCÞ ¼ kBC, ð4Þ

KPðCÞ ¼ kPC, ð5Þ

KQ ðC,HÞ ¼ kQ ðC1�CÞþk 0Q ðH�H1Þ, ð6Þ

KDðC,HÞ ¼ kDðC1�CÞþk 0DðH�H1Þ, ð7Þ

KA ¼ kAC1: ð8Þ

Here KB(C) represents the rate of cell birth, KP(C) is the rate of cell
transfer from the quiescent to proliferating compartments,
KQ ðC,HÞ is the rate at which cells move from the proliferating to
quiescent compartment (quiescence), KDðC,HÞ is the rate of cell
death from the quiescent cell compartment (necrosis), KA(C) is
cell death from the proliferating cell compartment (apoptosis)
and C1 and H1 denote the concentration, respectively, of nutrient
and acid at the tumour boundary which are assumed to be
constant.

Acidification leads to death of normal cells due to activation of
p53-dependent apoptosis pathways, as well as loss of function of
critical pH-sensitive genes (Park et al., 1999; Williams et al.,
1999). Tumour cells, however, may be relatively resistant to
acidic pHX . Whilst normal cells die in environments with a
persistent pH below about 7, tumour cells continue to proliferate
in a relatively acidic medium (pH 6.8) (Casciari et al., 1992).
Beyond this point quiescence and eventually necrosis occur (Patel
et al., 2001). This biological knowledge is reflected in the mono-
tonic increase of quiescence KQ and necrosis KD with H.

Given that the rate of diffusion of nutrient throughout the
spheroid is rapid compared to the time scale of growth, we adopt
the standard quasi steady-state assumption (Ward and King,
1997):

DCr
2C ¼ sCðPþECQ ÞC: ð9Þ

This equation has two nutrient consumption terms, one relating
to proliferating cells (sC) and the other to quiescent cells (sCEC).
Here DC is the nutrient diffusion coefficient.

In the case of acid diffusion throughout the spheroid, we also
make a quasi steady-state assumption:

DHr
2H¼�ðPþEHQ ÞðsHþs0HðC1�CÞÞ, ð10Þ

where the acid diffuses at a rate DH and sH and sHEH represent the
production of acid by proliferating and quiescent cells, respec-
tively. Note that CrC1 and HZH1, given the respective bound-
ary conditions and application of the maximum principle.

In Eqs. (9) and (10), EC 51 and EH 51, representing the fact
that quiescent tissue is essentially metabolically inactive, con-
suming significantly less oxygen than its proliferating counterpart
and producing significantly fewer hydrogen ions. Tumours rely on
anaerobic metabolism and hence produce acid at a rate sH under
normoxic conditions (the Warburg (1930) effect); nonetheless, as
oxygen levels decrease, acid production increases linearly at rate
s0H (the Pasteur effect, Racker, 1974). Whilst more complex
descriptions of tumour metabolism are possible (see, for example
Bertuzzi et al., 2007; Forbes et al., 2006), in this form the size of
the parameter space remains tractable.

We adopt the common assumption that the tumour is sphe-
rical and thus we will consider solutions in the one-dimensional
spherical polar coordinates regime (see Section 4). This assump-
tion allows us to determine the motion of the cells by noting that
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there is no additional space in the tumour (incompressibility)
so that

N¼ PþQþM, ð11Þ

where N is a constant. This also assumes that cells have similar
size. A mass balance equation can then be found by adding
Eqs. (1), (2) and (3) and then using (11) to obtain

r � u¼
1

N
ðKBðCÞP�lMÞ: ð12Þ

Throughout this model derivation, we have assumed that
various processes follow simple, linear dynamics. It can be argued
that these assumptions are too unrealistic to represent complex
biological phenomena such as these. However, these processes
are poorly understood and, as a first approximation, an assump-
tion of linearity is sufficient to capture qualitatively similar
monotonic behaviour (e.g. cell death decreasing with oxygenation
and increasing with acidity in Eq. (7)). We would not expect these
assumptions to have a marked effect on the model’s conclusions.

2.1. Non-dimensionalisation

Eqs. (1), (2), (9)–(12) are non-dimensionalised according to

x¼ r=L, t¼ t=T , p¼ P=N, q¼Q=N,

c¼ C=C1, h¼ ðH�H1Þ=H0 and t¼ Tu=L, ð13Þ

where L¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DC=ðNsCÞ

p
and T ¼ 1=ðkBC1Þ represent length and time

scales, respectively. Due to our problem being spherically sym-
metric we introduce the radial co-ordinate r. The acid concentra-
tion is scaled with respect to H0 ¼ ðsHDCÞ=ðsCDHÞ. Our
dimensional system of equations in spherical polar coordinates
in the one-dimensional radial direction become

@p

@t þ
1

x2

@

@x
ðx2vpÞ ¼ ðkbðcÞ�kqðc,hÞ�kaÞpþkpðcÞq, ð14Þ

@q

@t þ
1

x2

@

@x
ðx2vqÞ ¼ kqðc,hÞp�ðkdðc,hÞþkpðcÞÞq, ð15Þ

m¼ 1�p�q, ð16Þ

1

x2

@

@x
x2 @c

@x

� �
¼ ðpþECqÞc, ð17Þ

1

x2

@

@x
x2 @h

@x

� �
¼�ðpþEHqÞð1þshð1�cÞÞ, ð18Þ

1

x2

@

@x
ðx2vÞ ¼ kbðcÞp�l

0m, ð19Þ

where the non-dimensional rates are given by

kbðcÞ ¼ c, kpðcÞ ¼ kpc, kqðc,hÞ ¼ kqð1�cÞþk0qh,

kdðc,hÞ ¼ kdð1�cÞþk0dh, ka ¼ ka and l0 ¼
l

kBC1
, ð20Þ

and the remaining non-dimensional parameters are

ki ¼
kI

kB

, sh ¼
s0HC1
sH

, k0d ¼
k 0DH0

kBC1
and k0q ¼

k 0qH0

kBC1
ð21Þ

for i¼ p,q,d,a.
We impose the following boundary and initial conditions. For

boundary conditions on C and H we let Cðx,tÞ ¼ C1 and
Hðx,tÞ ¼H1. These assume the spheroid grows in a nutrient rich
medium whose metabolite concentration remains constant. For
the initial conditions we assume all cells are initially proliferating,
i.e. P¼N, Q¼0, M¼0. For simplicity we assume no cell shedding.

On non-dimensionalising the initial and boundary conditions
become

cxð0,tÞ ¼ hxð0,tÞ ¼ 0, cðGðtÞ,tÞ ¼ 1, hðGðtÞ,tÞ ¼ 0,

uð0,tÞ ¼ 0, pðx,0Þ ¼ cðx,0Þ ¼ 1, qðx,0Þ ¼ hðx,0Þ ¼ 0, ð22Þ

where GðtÞ ¼ Rðt=TÞ=L is the non-dimensional spheroid radius
with

tðG,tÞ ¼ dG
dt and Gð0Þ ¼G0, ð23Þ

where R(t) is the dimensional radius of the tumour.

2.2. Parameter estimation

The model is dependent on eleven non-dimensional para-
meters as set out in Table 2. These may be estimated from
parameters available in the literature as shown in Table 1.

Values for the cell cycle rates specified in the model are not
readily available and as such we have determined these as
follows. By definition, each time unit t corresponds to one full
cell cycle period, which we take to be twelve hours. From this and
C1 we can determine kB ¼ 4:6� 10�4 mM�1 s�1 which is in good
agreement with experimentally quoted values (Kumei et al.,
1989).

Previous authors have taken kp¼0.05 and kq¼0.9 (Tindall and
Please, 2007), which assumes a high rate of quiescence and few
cells returning from the quiescent to proliferating compartment.
Using this value of kq, and assuming that kqðcQ ,0Þ ¼ kqð1,hQ Þ,
allows us to calculate k0q ¼ 4� 10�2. Here cQ and hQ are the
respective nutrient and acid concentrations at which cells become

Table 1
Dimensional parameter values.

Parameter Value Description Reference

DC 1.5�10�5 cm2 s�1 Nutrient (oxygen) diffusion coefficient Nichols and Foster (1994)

sCNC1 2:2� 10�1mM s�1 Tissue nutrient (oxygen) consumption rate Banaji et al. (2005)

Ec 0.1 Quiescent:proliferating nutrient ratio Bredel-Geissler et al. (1992)

EH 0.01 Quiescent:proliferating metabolic ratio Patel et al. (2001)

C1 5�10�2 mM Normal nutrient (oxygen) concentration Banaji et al. (2005)

DH 1.1�10�5 cm2 s�1 Hydrogen ion diffusion coefficient Patel et al. (2001)

NsH 5�10�5 mM s�1 Hydrogen ion production rate Patel et al. (2001)

H1 5.6�10�5 mM Normal hydrogen ion concentration Patel et al. (2001)

R0 5�50 mm Tumour cell radius Anderson (2005)

cQ 10�1 Non-dimensional nutrient-induced quiescence threshold Höckel and Vaupel (2001)

cD 5�10�2 Non-dimensional nutrient-induced necrosis threshold Anderson (2005)

HQ 4�10�4 mM Acid-induced quiescence threshold Patel et al. (2001)

HD 10�3 mM Acid-induced necrosis threshold Patel et al. (2001)

s0:1 1.6 Anoxic:normoxic acid production ratio Schornack and Gillies (2003)

l 0.05/day Rate of removal of dead cell material Tanaka et al. (2009)

M.J. Tindall et al. / Journal of Theoretical Biology 298 (2012) 107–115 109
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quiescent as given in Table 1. This assumes that the rate of
quiescence at the quiescent threshold is the same, whether due to
nutrient deprivation or acid concentration. In order to calculate
the non-dimensional parameters hQ and hD, we have used Eq. (21)
to obtain H0 ¼ 1:5� 10�5 mM, and then using Eq. (13), hQ¼20
and hD¼60 follow.

To calculate kd and k0d we use the necrosis thresholds, cD and hD

(see Table 1) and assume the point at which cells die and resume
proliferation are equivalent, i.e. kd ¼ kp. This leads to kd ¼ 5�
10�2 and k0d ¼ 8� 10�4. We have chosen a higher death rate of
kd¼0.2 in order to demonstrate particular features of the model
as discussed in Section 3. Investigations have shown that wide-
spread apoptosis occurs in cells fixed mid-cycle after around one
week, or 14 time units (Meikrantz and Schlegel, 1995). As such,
we approximate ka ¼ 1=14¼ 7� 10�2.

For the rate of dead cell matter lost from the tumour, we have
consulted the work of Tanaka et al. (2009) who used a value of
l¼ 0:05=day in modelling glioma tumours. This leads to a non-
dimensional value of l0 ¼ 0:6. We have chosen a slightly lower
value (l0 ¼ 0:1) to demonstrate specific features of the model, in
particular the distribution of quiescence cells at the centre of the
tumour, as discussed in the next section.

From Eq. (18) the anoxic (c¼0) to normoxic (c¼1) acid
production ratio is 1þsh. Thus from Table 1, sh ¼ s0:1�1¼ 0:6.

3. Model analysis

Before turning to numerical solutions of our model we consider
how the boundary of the tumour behaves given the interplay
between the three cell cycle state compartments—proliferating,
quiescent and dead cell matter. We know from the boundary
conditions that c¼1 and h¼0. Thus Eqs. (1)–(3) reduce to

pt ¼ pð1�p�kaÞþkpqþl0pm, ð24Þ

qt ¼�pqþl0qm�kpq, ð25Þ

mt ¼�mpþl0m2þkap�l0m, ð26Þ

on the boundary of the tumour, where the Eulerian flux terms are
zero. The steady-states of this system of equations are given by

ðpn

1,qn

1,mn

1Þ ¼ ð0;0,1Þ, ðpn

2,qn

2,mn

2Þ ¼ 1�
ka

1þl0
,0,

ka

1þl0

� �

ðpn

3,qn

3,mn

3Þ ¼
kpðl

0
�kpÞ

kp�ð1�kaÞl
0 ,

1

kp
ðpn

3ðp
n

3þka�1Þ�l0pn

3mn

3Þ,
kakp

kp�ð1�kaÞl
0

 !
:

ð27Þ

Both ðpn

1,qn

1,mn

1Þ and ðpn

3,qn

3,mn

3Þ are biologically unrealistic. In the
first case all of the tumour dies and in the second case we must
have kp4ð1�kaÞl

0Fwell outside our parameter range (see
Table 2). We thus ignore these and consider the more realistic
case of ðpn

2,qn

2,mn

2Þ which shows the tumour boundary density
varies dependent upon the rate of apoptosis and the rate at which
dead cell material is removed from the tumour. If these are
negligible then the boundary condition of previous authors, e.g.
Ward and King (1997), holds, but in the next section we consider
cases where kd and l0 are large enough to affect the densities of
live and dead cells at the surface as the tumour grows.

4. Model simulations and results

Numerical solutions to the system of Eqs. (14)–(19), with the
respective boundary and initial conditions, were found by apply-
ing the method of characteristics to Eqs. (14) and (15) and the
Successive Over Relaxation (SOR) method to Eqs. (17) and (18).

The finite volume method was used to solve Eq. (19). Before
applying each of these methods, the governing equations were re-
scaled to a fixed grid by the transformation Z¼ x=GðtÞ given the
moving boundary nature of the problem. The parameters used are
those shown in Table 2. Model solutions are plotted at t¼ 1, 5, 10,
40 and 50 days, respectively. Although we solve the dimension-
less system (14)–(19), for illustrative purposes our results are
presented in dimensional form.

Typical model results are shown in Fig. 1(a)–(f). As the
spheroid grows, it develops the three distinct regions of prolifer-
ating cells on the exterior (Fig. 1(a)), quiescent cells towards the
inner regions (Fig. 1(b)) and a mainly dead core of necrotic and
apoptotic material (Fig. 1((c)). We note that dead cell material is
found throughout the three regions due to the assumed constant
rate of apoptosis. The spatial velocity profile of the cells is shown
in Fig. 1(d) and is in agreement with results found elsewhere, e.g.
Ward and King (1997). We note our numerical solutions concur
with the boundary values given by ðpn

2,qn

2,mn

2Þ in Eq. (27).
A comparison of the model with and without acid present is

shown in Fig. 2. In each case the proliferating, quiescent and dead
cell distributions, cell velocity, nutrient and acid concentration
profiles were qualitatively equivalent to Fig. 1(a)–(f). Including acid
in the tumour had no impact on the tumour size or the radial
velocity profile. This is because the rates of necrosis and quiescence
by acidosis are considerably smaller (three orders of magnitude)
than the rates due to a decrease in nutrient concentration.

We also investigated varying the rate of necrosis kd and the rate
at which dead cell matter l0 is lost from the tumour. A necrosis rate
lower than that used here, i.e. 0:05rkdr0:2 led to more quiescent
cells accumulating at the centre of the tumour and an increase in
tumour size. Likewise an increase led to a smaller tumour and an
even thinner quiescent region than shown in Fig. 1(b). Increasing l0

means dead matter is lost faster from the tumour, leading to a
smaller tumour with more quiescent cells at the centre and less
necrotic material than that shown in Fig. 1(b) and (c). These results
show that the balance between these two rates has an important
affect on the distribution of quiescent cells within the tumour. Our
final parameter set was chosen to demonstrate the general MCTS
cell cycle structure that of a mainly necrotic core with a small
proliferating rim and intervening quiescent region. Variations in
these parameters, and thus the quiescent cell and dead cell matter
distribution, did not have an effect on drawing conclusions from
the results which follow.

4.1. Nutrient consumption and acid production

We wish to understand the effect that different rates of
nutrient consumption and acid production by proliferating and
quiescent cells, respectively, have on the overall growth and
development of the tumour. In Fig. 3, we vary the value of EC ,

Table 2
Non-dimensional model parameters.

Parameter Value

G0 3

EC 0.1

EH 10�2

sh 0.6

kp 5�10�2

l0 0.1

kq 0.9

k0q 4�10�2

kd 0.2

k0d 8�10�4

ka 7�10�2

M.J. Tindall et al. / Journal of Theoretical Biology 298 (2012) 107–115110
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the difference in the rate of nutrient consumption by proliferating
and quiescent cells. Fig. 3(a) and (b) compares the total radius and
the radial velocity for three values of EC when hydrogen ions are

present with EH ¼ 0:01, and when no hydrogen ions are present.
Increasing the value of EC results in a slower rate of growth and a
smaller steady-state radius; an increased rate of oxygen
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Fig. 1. Numerical simulations typical of the model showing the main dynamical behaviour during the first 50 days of growth (the tumour reaches a diameter of

0.896 mm). The tumour obtains a final steady-state after a period of 80 days (with a 0.921 mm diameter) as seen in Fig. 2. Parameter values used were as detailed in

Table 2. (a) Proliferating cell distribution, Pðr,tÞ. (b) Quiescent cell distribution, Q ðr,tÞ. (c) Dead cell matter distribution, Mðr,tÞ. (d) Cell velocity, vðr,tÞ. (e) Nutrient

concentration, Cðr,tÞ, and (f) Acid concentration, Hðr,tÞ.
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consumption by quiescent cells means the nutrient concentration
falls more rapidly and more cells become quiescent. Thus there
are fewer proliferating cells available to increase the tumour size.

However, increasing EC leads to a lower concentration of acid
throughout the tumour as shown in Fig. 3(d), a rather counter-
intuitive result. We expect that decreasing the nutrient concen-
tration would lead to a higher acid concentration via anaerobic
metabolism (the term shð1�cÞ in Eq. (18)). Our model includes
the well known biological result that a decrease in nutrient
concentration leads to a higher rate of quiescence and therefore
fewer proliferating cells. Since quiescent cells produce less acid
than proliferating ones via EH , our results indicate that this leads
to a decrease in the acid concentration within the tumour. This
result is demonstrated by setting EH ¼ 0; as EC increases the acid
concentration decreases (results not shown).

Our finding here shows the importance that the cell cycle state
can have on the development of the tumour. By anaerobic
metabolism alone, we would expect an increase in the acid
concentration throughout the tumour. Including a description of
proliferating and quiescent cells and the difference in acid
production between them can counteract this effect. When the
overall number of proliferating cells is greater than that of
quiescent cells we expect a higher acid concentration as dictated
by EH 51. When, however, the number of proliferating cells is less
than the number of quiescent cells, less acid is produced and
although the nutrient concentration is low, the effect of anaerobic
metabolism on the acid concentration is secondary to that of the
cell cycle state. We note that varying sh alone had only a marginal
affect on the acid concentration, i.e. 0rshr1 only resulted in a
decrease in the spheroid radius of R� 0:025.

4.1.1. Nutrient and acid effect on quiescence and necrosis

The rates of cell quiescence and necrosis are dependent upon
both the concentration of nutrient and acid. In this section we
wish to quantify and compare the effect that nutrient and acid
concentration have on the transition to these cell states.

In order to compare cell necrosis via a reduction in the
nutrient or an increase in acid concentration, we define

f d ¼

R
Okdð1�cÞ�k0dh dOR
Okdð1�cÞþk0dh dO

, ð28Þ

where O is the volume of the tumour at steady-state. This
relationship defines the ratio of the difference in cell death due
to nutrient deprivation or acidosis with the total amount of cell
death in the tumour due to each mechanism. When fd¼1 necrosis
is dominated by a decrease in nutrient concentration, whilst when
f d ¼�1 acidosis has a greater effect than nutrient deprivation. We
varied kd and k0d according to 0:01rkdr0:1 and 10�4rk0dr10�3,
respectively. Fig. 4(a) shows that necrosis is dominated by a
decrease in the nutrient concentration rather than acidosis; a
result of k0d being three orders of magnitude less than kd.

Cellular quiescence via either a decrease in nutrient concen-
tration or increase in acid concentration, can be compared in a
similar way such that

f q ¼

R
Okqð1�cÞ�k0qh dOR
Okqð1�cÞþk0qh dO

: ð29Þ

Similar to Eq. (28) this relationship defines the ratio of the
difference in cell quiescence due to nutrient deprivation or
acidosis with the total amount of cell quiescence in the tumour.
Here we have varied kq and k0q according to 0:1rkqr1 and
0:01rk0qr0:1, respectively, as shown in Fig. 4(b). Similar to cell
death via necrosis, cell quiescence is more sensitive to a change in
acid concentration when the rate of quiescence due to the
nutrient concentration is reduced.

5. Summary and conclusions

A mathematical model describing the growth of a MCTS and
the effects that nutrient and acid concentrations have on the
distribution of proliferating and quiescent cells and dead cell
material (via necrosis and apoptosis) throughout the tumour has
been formulated and solved.

We have found that the distribution of proliferating and
quiescent cells can have important consequences on the amount
of acid produced in the tumour. Decreased nutrient levels do not
necessarily lead to excessive acid concentration via anaerobic
metabolism. Instead, because quiescent cells produce less acid
than proliferating cells, when the nutrient concentration is low,
there are more quiescent and fewer proliferating cells and hence
the increased effect of anaerobic metabolism is negligible. Our
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Fig. 2. Comparing the effect of acidosis on the size of the tumour in respect of the spheroid radius (a) and radial velocity (b), calculated from Eq. (23). The solid line denotes

in the presence of acid and the dotted broken line is in the absence of acid (k0q ¼ 0¼ k0d). In both cases all other parameters were held constant as defined in Table 2. (a)

Outer radius of the tumour – R(t). (b) Radial velocity of the tumour – dR(t)/dt.
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result here is dependent upon the rates of anaerobic metabolism
and cells moving from the proliferating to quiescent cell compart-
ments, which have been obtained from experimental data in the
literature for a number of cancer cell lines.

Analysis of the model has also quantified the difference in cell
quiescence and death due to either the local nutrient or acid
concentration. In the case of necrosis we varied the rates of necrosis
due to nutrient deprivation and acidosis, respectively, over one order
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Fig. 3. (a) and (b) comparing the effect of different rates of nutrient consumption by quiescent versus proliferating cells on the overall size of the MCTS. (c)–(f) The effect

the different rates have on nutrient and acid concentrations, proliferating cell density and velocity profiles. In (c)–(f) solid lines are for when Ec ¼ 0:1 and dotted lines when

Ec ¼ 1. In both cases all other parameters were held constant as defined in Table 2. (a) Outer radius of the tumour – R(t). (b) Radial velocity of the tumour – dR(t)/dt. (c)

Nutrient concentration – C(r, t). (d) Acid concentration – H(r, t). (e) Proliferating cell distribution – P(r, t). (f) Proliferating cell velocity – v(r, t).
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of magnitude. By then comparing the overall number of dead cells
produced via each mechanism we were able to determine that both
necrosis and quiescence are dominated by the nutrient rather than
acid concentration. In the case of necrosis, it is clear that this is the
result of considerable variation between the necrosis rates due to
each mechanism. We note that altering our model to include
proliferating cell death via necrosis and quiescent cell death via
apoptosis does not alter the spatiotemporal distribution of cells in
the tumour, but merely reduces the tumour size (results not shown).

Our results have shown that whilst nutrient and acid concen-
trations are independently important in affecting tumour growth,
in understanding the ‘bigger picture’ one needs to account for the
effect that the cell cycle state of the cells within the tumour has
on their concentration. Effectively, the cell cycle state of the cells
and respective nutrient and acid concentrations are thus inter-
dependent systems. This result could be taken into account in
respect of therapeutic strategies; it is important to quantify the
ratio of proliferating and quiescent cells within the tumour in
order to understand the effect of decreased nutrient concentra-
tions. A reduction in nutrient concentration may not simply lead
to an increase in the acid concentration within the tumour.

Furthermore, it has been shown that lowering acidity levels
can inhibit cancer cell invasion (Robey et al., 2009) and therefore
a greater understanding of the control of acidosis is required,
especially if one envisions combination treatments involving
angiogenesis, which will affect nutrient levels. One of the major
challenges of transferring insights such as those gained from the
present study into clinical practice will be to determine precisely
where the patient is in parameter space as treatments may have
very different effects on two different patients. Not only does this
illustrate the difficulties in trying to develop general treatment
protocols, but also the difficulties of drug testing without a
profound knowledge of the underlying mechanisms affecting
the spatiotemporal cell cycle state of cells within a tumour.

In the work presented here we have neither considered the effect
of acidosis on the rate of apoptosis nor have we accounted for the
difference in intracellular and extracellular acid and their subsequent
effects. Such issues would need to be addressed in future work.
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