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The discovery over the last 15 years of molecular clocks and gradients in the pre-somitic mesoderm of
numerous vertebrate species has added significant weight to Cooke and Zeeman'’s ‘clock and wavefront’
model of somitogenesis, in which a travelling wavefront determines the spatial position of somite
formation and the somitogenesis clock controls periodicity (Cooke and Zeeman, 1976). However, recent
high-throughput measurements of spatiotemporal patterns of gene expression in different zebrafish
mutant backgrounds allow further quantitative evaluation of the clock and wavefront hypothesis.
In this study we describe how our recently proposed model, in which oscillator coupling drives the
propagation of an emergent wavefront, can be used to provide mechanistic and testable explanations
for the following observed phenomena in zebrafish embryos: (a) the variation in somite measurements
across a number of zebrafish mutants; (b) the delayed formation of somites and the formation of
‘salt and pepper’ patterns of gene expression upon disruption of oscillator coupling; and (c) spatial
correlations in the ‘salt and pepper’ patterns in Delta-Notch mutants. In light of our results,

we propose a number of plausible experiments that could be used to further test the model.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Somitogenesis is the process by which the pre-somitic
mesoderm (PSM) segments at regularly spaced time intervals
into blocks of epithelial cells known as somites (Gilbert, 1997).
Anterior somite production is accompanied by posterior growth
and axis elongation, thus a posteriorly moving wavefront of
differentiation is observed traversing the anterior-posterior (AP)
axis of the vertebrate embryo. A molecular oscillator, known as
the somitogenesis clock (Palmeirim et al., 1997), regulates the
periodicity with which somites form, and a well accepted, though
not directly measured, explanation for the observed patterns is
that the clock oscillation rate attains its maximum value in the
posterior PSM and decreases anteriorly along the AP axis. This
gradient in oscillation rate results in narrowing waves of gene
expression that travel anteriorly along the AP axis (see Fig. 1(a)).
The somites then form in pairs, one on either side of the
notochord, at the spatial positions where the oscillations cease.

Whilst snapshots of the expression patterns of clock genes
(Fig. 1(a)) can be imaged using techniques such as in situ
hybridisation (Jiang et al., 2000; Giudicelli et al.,, 2007), real-
time expression assays, which have to date been performed for
murine PSMs, allow the quantification of evolving patterns in a
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single experiment (Masamizu et al., 2006; Aulehla et al., 2008;
Soroldoni and Oates, 2011, see Fig. 1(b) and (c)). Typically, the AP
axis is plotted on the x-axis, with the origin represented by the
position of a formed somite, time is represented on the y-axis and
the signal intensity resulting from gene expression (e.g. fluores-
cence) is plotted on a colour scale. The space-time diagrams
provide an intuitive way to visualise and quantify aspects of the
clock and wavefront phenomenon. Moreover, analysis of real-
time expression patterns can yield quantitative descriptions of
quantities such as the propagating phase gradient or the pattern
wavelength (see schematic in Fig. 1(d)) in individual experiments.
We note that the short period of the segmentation clock
(~30min) in zebrafish embryos presents significant imaging
challenges that have delayed the development of real-time
expression assays (Soroldoni and Oates, 2011).

The observation that neighbouring oscillators are in phase
(see, for example, Fig. 1(a)) is non-trivial as, given the inherent
noise that must originate from factors such as cell heterogeneity,
one might naively expect them to have slightly different oscillation
rates, and hence to gradually drift out of phase with one another.
During somitogenesis, and in many other biological contexts
(e.g. Winfree, 1967; Strogatz, 2000), synchrony is maintained by
oscillator coupling. In zebrafish, Delta-Notch signalling has been
shown to play a fundamental role in the coordination of patterning
in the posterior PSM (Ozbudak and Lewis, 2008; Lewis et al., 2009).

Canonical Delta-Notch signalling is a receptor-ligand binding
interaction in which the extracellular Delta ligand binds to the
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Fig. 1. (a) A zebrafish DeltaC in situ expression profile (Giudicelli et al., 2007) with a superimposed schematic of intensity peaks. (b) Real-time mouse clock expression
patterns illustrated in a space-time diagram (Masamizu et al., 2006). Levels of gene expression (greyscale) are plotted against axial position and time. Copyright (2006)
National Academy of Sciences, USA. (c) A schematic illustration of the fluorescence intensity plot presented in (b). The dashed line at t = t; represents a snapshot in time
and the peaks and troughs are comparable to those depicted in (a). The markers, separated by spatial lengths Ax, along the dashed line represent increases in 7 in the phase
of the pattern (i.e. peak to trough). (d) Using the space-time plot in (c), the phase gradient and pattern wavelength at t =ty can be approximated by n/Ax and Ax,
respectively. The arrow represents the posterior propagation of the profiles. (e) A schematic illustration of a one-dimensional chain of phase coupled oscillators aligned

along the AP axis. Anterior (A) and posterior (P).

Notch receptor of a neighbouring cell, thus initiating transcrip-
tional activity. In zebrafish there are four known members of the
Delta family of Notch ligands and two active Notch receptors in
the PSM. Upon binding of Delta ligands to Notch receptors, the
Notch intracellular domain (NICD) is cleaved, allowing its trans-
port to the nucleus, where it activates the transcription of target
genes, including members of the hairy/enhancer of split (Her)
family (Lewis et al., 2009). Transcriptionally regulated oscillations
of the Her family play a fundamental role in generating oscilla-
tions (e.g. no somites form in double knockdowns of Her1 and
Her7) and it is thought that members of the Her family may
constitute the core somitogenesis oscillator (Oates and Ho, 2002).
Hence in zebrafish, oscillations and the Delta-Notch mechanism
of oscillator coupling are intrinsically connected.

The Tiibingen zebrafish mutant screen (Van Eeden et al., 1996)
yielded a number of mutants with a distinctive phenotype: only
the anterior-most somites form as normal and, posterior to the
last-formed somite, clock genes exhibit a ‘salt and pepper’
transcription pattern in which the levels of gene expression vary
chaotically from cell to cell (Ozbudak and Lewis, 2008). The
mutant genes were labelled after eight (aei), deadly seven (des),
beamter (bea) and mind bomb (mib) and, subsequently, each was
found to be connected to the Delta-Notch signalling pathway: aei
encodes for the DeltaD ligand, des for the Notchla receptor, bea
for the DeltaC ligand and mib for the E3 ubiquitin ligase, a protein
that enables the Delta ligand to interact with the Notch receptor.
The anterior limit of defects (ALD) phenomenon, which represents
a quantification of the position of the last-formed somite (Riedel-
Kruse et al., 2007), has previously been explained by a desyn-
chronisation hypothesis in which the cumulative effect of noise in
the absence of oscillator coupling is the breakdown of oscillator
synchrony in the posterior PSM (Jiang et al., 2000; Horikawa et al.,
2006; Riedel-Kruse et al., 2007; Ozbudak and Lewis, 2008).

Many properties of the Delta-Notch mutants are observed
upon application of the y-secretase inhibitor DAPT (Geling et al.,
2002), which prevents cleavage of NICD and hence its transport to
the nucleus. Intriguingly, when DAPT is applied during somito-
genesis, around 13 normal somites form before disruption;
posterior to the last-formed somite, a ‘salt and pepper’ pattern
is observed (Ozbudak and Lewis, 2008; Riedel-Kruse et al., 2007).
One expects the behaviour of DAPT-treated and Delta-Notch
mutant embryos to be closely related but not identical owing to
redundancies in the Delta-Notch signalling pathway.

The ‘salt and pepper’ patterns observed in the posterior PSM of
Delta-Notch mutant and DAPT-treated embryos have recently
been quantified using the spatial autocorrelation function

1 M-o
Ci(0)= i > IXIX-+0), 1)

=1

where I(x) is the observed fluorescence intensity of cyclic gene
expression at position x, M is the length of the spatial region over
which the autocorrelation is calculated and o is a length corre-
sponding to the distance between two points in the PSM (Herrgen
et al., 2010). The mean of the individual autocorrelation functions,
C(9), is calculated for a given batch of embryos by averaging over
the C’s at each value of J. This formalism allows one to
quantitatively compare noisy patterns across different perturbed
embryos and thus, in principle, to distinguish between ‘salt and
pepper’ patterns in different mutant embryos.

Mutants with weaker phenotypes offer further opportunities
to investigate the interplay between the clock and wavefront.
Hes6 (formerly Her13.2) is a member of the Her family of
transcriptional regulators that has previously been identified as
a potential molecular link between the somitogenesis clock and
Fgf wavefronts (Kawamura et al., 2005). Schréter and Oates
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(2010) constructed a Hes6 zebrafish mutant and measured the
change, relative to wild-type embryos, in somitogenesis period,
Texp, and somite length, Seyp. In this experiment the mutant had a
longer somitogenesis clock period, while the wavefront velocity
was measured as having remained constant. Using a standard
interpretation of Cooke and Zeeman'’s clock and wavefront model,
the somite length is predicted to be the distance travelled by the
wavefront in one cycle of the clock, i.e.

Sexp = UTexp, (2)

where v is the wavefront velocity. Intriguingly, and in agreement
with Eq. (2), larger somites were observed in the mutant and
somite length increased proportionally with the clock period.

In order to experimentally define the quantities in Eq. (2) in
zebrafish embryos, time lapse imaging is used to determine the
somitogenesis period whilst the position of the wavefront is
assumed to be defined by the position of a stripe of gene
expression that appears just prior to somite formation (Herrgen
et al., 2010). Two distinctive methods of measuring anterior
pattern wavelength in the PSM have been considered: somite
length and segment length. The somite length is defined to be the
distance between formed somites while the segment length is a
more posterior measurement of pattern wavelength using the
distance between consecutive stripes of mesp-b expression in the
anterior PSM (Herrgen et al., 2010). Herrgen et al. (2010) propose
that the more posterior measurement is superior as a host of
anteriorly occurring processes, such as epithelialization, changes
in packing, expression of adhesion and segment polarity mole-
cules, muscle fibre elongation and somite shape and size changes,
may influence the more anterior measurements. However, in
modelling the clock behaviour the need to avoid describing the
myriad of processes occurring in the anterior PSM must be
balanced against the need to obtain a sufficiently anterior
measurement of pattern wavelength such that the distance
between the narrowing stripes of gene expression is sufficiently
close to a steady-state value. Later we will see how this relatively
subtle point can influence our interpretation of experimental
measurements.

Reconciling somitogenesis models with recent observations

There is a rich history in the mathematical modelling of
somitogenesis (see Baker et al., 2008 for a review). The clock
and wavefront model (Cooke and Zeeman, 1976) is now widely
accepted and used as a paradigm from which to explain the
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process of somitogenesis. The discovery of some of the governing
molecular components of the clock and wavefront has led to the
development of many molecular models of the clock in particular
(see, for example, Hirata et al., 2002; Lewis, 2003; Goldbeter and
Pourquié, 2008; Momiji and Monk, 2008). However, there are
presumably many molecular constituents of the clock still undis-
covered, and, even with those already identified, we cannot yet
say precisely how they interact. Together with the ubiquitous
problem of parameter identification, the result is that coarse-
grained approaches are often taken (Keern et al., 2000; Giudicelli
et al., 2007; Riedel-Kruse et al., 2007; Morelli et al., 2009; Schréter
and Oates, 2010; Ishimatsu et al., 2010; Murray et al., 2011)
which can be used to investigate concepts such as cell-cell
coupling and, in principle, link molecular models to tissue scale
readouts of pattern formation.

The steady improvement in the quantification of somitogenesis
motivates the refinement and development of existing modelling
paradigms and in this study we ask whether our recently published
clock and wavefront model of somitogenesis (Murray et al., 2011)
can provide self-consistent and mechanistic explanations for a range
of recent measurements of somitogenesis patterns in perturbed
zebrafish embryos. We make a number of quantitative predictions
about the zebrafish somitogenesis system that we hope can be used
to both promote discussion and validate the assumptions on which
our model relies.

Furthermore, our analysis has led us to two previously unex-
plained features of the most recently published data that are of
general interest (Herrgen et al., 2010): firstly, Herrgen et al.
(2010) have measured that the speed of the wavefront (defined
using mesp-b stripe expression) is unchanged (relative to wild-
type experiments) in the different Delta-Notch mutant and DAPT-
treated embryos. Hence Eq. (2) predicts that the ratio of somite
length to somitogenesis period should be unchanged in the
perturbed embryos. As presented in Fig. 2(a), this is clearly not
the case, regardless of whether somite length or segment length
measurements are used to define S, in Eq. (2). Secondly, there is
a peak in the autocorrelation functions of Delta-Notch mutant
embryos at approximately four cell diameters (see Fig. 2(b)). We
suggest that one would not expect a Gaussian noise in the phase
dynamics, arising, for example, from transcriptional stochasticity
in the somitogenesis clock, to yield the observed spatial frequen-
cies, thus it appears unlikely that the mutant data supports a
desynchronisation hypothesis in which transcriptional noise
causes desynchronisation in the posterior PSM of Delta-Notch
mutant embryos.
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Fig. 2. (a) A plot of wavefront velocities (relative to wild type) for the mib, aei, des and DAPT-treated embryos. The velocities are calculated using measurements of anterior
pattern wavelength, S.,, and somitogenesis period, Texp, from the perturbed embryos (Herrgen et al., 2010) and the formula v = Sexy /Texp (see Table 1 for values). Crosses
and circles denote calculations made using somite and segment length measurements, respectively, as proxies for pattern wavelength. Error bars depict standard error of
the mean. (b) Autocorrelation measurements from the anterior PSM of Delta-Notch mutant embryos. Data are replotted from Herrgen et al. (2010).
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The layout of the paper is as follows: firstly, we briefly review
the relevant results from our previous study (Murray et al., 2011);
secondly, we parameterise the model using data from different
Delta-Notch mutant strains; thirdly, we demonstrate how the
model produces an ALD-like phenomenon upon the perturbation
of cell-cell coupling; fourthly, we investigate mechanisms that
could give rise to the peaked autocorrelation functions measured
by Herrgen et al. (2010); and, finally, we conclude with a
discussion of our main results.

Methods

Before moving on to the main topic of this paper, we
introduce the reader to the most relevant details from our
previous work (Murray et al.,, 2011) in which the progression
of a cell through the segmentation clock cycle is modelled using
a single variable, oscillator phase. Assuming symmetry of phase
dynamics about the AP axis, we define the phase of the jth
oscillator to be 0;(t) (see Fig. 1(e)) and postulate the governing
equations

do;
dt Z[A sin(0;—0;)+B(cos(0;—0)—1)]+w, 3)
where the sum is taken over nearest neighbours,  is the natural
oscillator frequency, A and B are the inter-cell coupling strengths,
the oscillators reside on a fixed, discrete one-dimensional lattice
and N is the number of oscillators in the system. The combination
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of attractive, sinusoidal coupling, which has a synchronising
effect as it pushes the phases of neighbouring oscillators together,
and cosine coupling results in a travelling gradient that slows
the oscillation rate anteriorly. The sinusoidal coupling term
represents the experimentally observed synchronising coupling
between neighbouring oscillators mediated by juxtacrine signal-
ling (Horikawa et al., 2006) while the cosine coupling term is a
postulated, additional component of oscillator coupling (Murray
et al., 2011).

Upon taking the continuum limit of Eq. (3) (see Appendix A),
we obtain the partial differential equation

o0 20 o0
o= asa (5 ) @

and, motivated by the patterning profile observed in the in situ
hybridisation presented in Fig. 1(a), we assume the boundary
conditions

o o
X——00 B' aXXHOO

ox

In Fig. 3(b) we plot a snapshot of a periodic readout (sin 0) of
the phase distribution that is qualitatively similar (compare with
the schematic illustration of the expression intensity snapshot in
Fig. 1(a)) to experimentally observed patterns of gene expression
(spatial and temporal periodic oscillations behind and ahead of a
moving wavefront, respectively). In Fig. 3(c) we plot a space-time
diagram of the model solution that is conceptually equivalent to
the real-time oscillatory gene expression patterns presented in

=0, (5)
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Fig. 3. Pattern propagation in a wild-type embryo. (a) A schematic illustration of snapshots of clock gene expression at consecutive time points. Posterior phase gradient
motion is accompanied by PSM tip growth and oscillations in the tail. Dots denote the centre of a stripe of gene expression. (b)-(d) Plots of the numerical solution of
Egs. (4) and (5). Ahead of the wave (large x, small t) the pattern oscillates with period 27/ in time but is spatially constant. Behind the wave (large t, small x) the pattern
oscillates in space with wavelength S, but is constant in time. (b) A snapshot of phase patterns along the AP axis. sin 0 is plotted against x at t=0 min. Compare with
Fig. 1(a). The dots in (a) correspond to the peaks in sin 0. (c) sin 0 plotted against x and t (black — 1, white 1). The solid line denotes the position of the centre of the phase
gradient. Compare with Fig. 1(b). (d) The phase gradient, ¥, plotted against x at t = {0,20,40,60,80,100} min. Compare with Fig. 1(d). See Table 2 for parameter values.
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Fig. 1(b). We note that whilst the travelling wave nature of the
solution is evident in the space-time plot, plotting the spatial
gradient of the phase profile (Fig. 3(d)) provides an unambiguous
definition of a travelling wavefront. Mathematical expressions for
the phase gradient, ¥(x,t), and the pattern wavelength, S(x,t), are
provided in Appendix A.

An attractive feature of the model is that the parameters A, B
and w can be directly related to the experimental observables
Sexp» Lexp and Texp, via the derived relationships

_ 2n ngp

_ _ Lexpsexp
= onr A= ©6)

w )
AT exp

Texp

where L, is the length scale of the phase gradient, Sy, is the
somite length and Ty, is the somitogenesis period (see Murray
et al., 2011 for further details). Similarly, inverting the relation-
ships in Egs. (6) allows one to explain how changes to the model
parameters A, B, and o result in different values for the obser-
vables Lexp, Sexp and Tey,. We note that in our previous work
(Murray et al., 2011) measurements from wild-type zebrafish
embryos (Giudicelli et al., 2007) were used to determine, via
Egs. (6), the model parameters A, B and w.

Given that measurements of somite length and somitogenesis
period in Delta-Notch perturbed embryos indicate that Delta-
Notch signalling can potentially influence wavefront velocities
(see Fig. 2(a)), an attractive feature of the proposed model
(Murray et al., 2011) is that somite size scales with the square
root of oscillator period, i.e.

Sexp =V 21By/Texp, 7)

with the proportionality ‘constant’ dependent on the oscillator
coupling strength B. Thus a mutation that increases the oscillator
period, say, does not necessarily cause an increase in somite
length. For example, if the mutation also sufficiently decreases B,
then somite length could decrease even though the period has
increased. Given that there is strong evidence that the somito-
genesis clock is regulated by the Delta-Notch signalling pathway,
it appears to be an entirely justifiable assumption that both the
oscillator frequency and oscillator coupling could be influenced
by a single mutation.

Later in this study we will investigate, within the context of
the proposed model, the hypothesis that noise in the PSM is
responsible for the ALD phenotype (Jiang et al., 2000; Riedel-
Kruse et al., 2007; Ozbudak and Lewis, 2008). Hence we introduce
stochasticity into the discrete model (Eq. (3)) by including a
Gaussian noise term and obtain

% = Z[A sin(0;—6;)+ B(cos(6;—0;)—1)]+w+D(t), 8)
1

where {j(t) represents a zero average un-correlated random noise of
strength D. The additional noise term can be thought of as
representing the effect of intrinsically stochastic subcellular
processes, such as gene transcription. Simulation results (not
shown) indicate that, so long as the noise strength is sufficiently
small relative to the coupling parameter A, the addition of noise
does not affect qualitative features of the simulation results. We will
return to the discrete stochastic model later.

Results

Having introduced the key features of our recently proposed
clock and wavefront model (Murray et al., 2011), we now investi-
gate how the model can be used to provide novel, mechanistic and
quantitative explanations of phenomena observed upon disruption
of Delta-Notch signalling in zebrafish embryos.

Parameterising the model using measurements from different mutant
strains

Variation in somite length and somitogenesis period has
previously been quantified (Schroter and Oates, 2010; Herrgen
et al,, 2010) in a range of perturbed embryos (aei, bea, des, mib
DAPT-treated, and Hes6) (see Table 3) and in this section we use
Egs. (6) to determine corresponding model parameters in each of
the different cases. Subsequently, we discuss the biological
significance and plausibility of the results.

For notational convenience, we define wild-type (Swr, Lwr, Twr)
and mutated (Sp;, Ly, Ty) experimental measurements, and asso-
ciated model parameters (Awr, Bwr, Twr) and (Ay, By, Ty), respec-
tively. Letting barred variables represent the ratios of mutated to
wild-type parameters, the relative changes in model parameters in
the different mutants can be written, upon manipulation of Egs. (6),
in terms of the relative changes in observed measurements as
follows:

%]
¥}

B= ©)

;o o=

<
Il
~|| v

~|
| =

A slowed oscillation rate and increased repulsive coupling strength
can explain the Hes6 mutant phenotype

Schroéter and Oates (2010) constructed a Hes6 mutant embryo
and found that it has a segmentation clock period which is
lengthened by ~ 7% relative to a wild-type embryo, somites are
7% bigger and the wavefront in the mutant embryo progresses at
the same rate as in the wild-type embryo (see Table 3). As axis
elongation speed is unaltered, fewer, larger, somites form in the
mutant embryo. This observation fits the scaling relationship
between somite length and oscillator period predicted by Cooke
and Zeeman’s clock and wavefront model (Eq. (2)), but can it be
reconciled with the relationship predicted by our model (Eq. (7))?

If the parameter B changes in inverse proportion to the
parameter o in the Hes6 mutant, the somite length, Sexpoc
/B/w, increases while the wave speed, voc+/@B, remains
constant. If our model is correct, Hes6 both accelerates the clock
and inhibits repulsive coupling, i.e. the repulsive coupling
strength has an inverse dependence on the clock oscillation rate
(see Table 3). Thus, in the absence of Hes6, the clock slows (w
decreases) and repulsive coupling is increased (B increases).

Somite length measurements imply that repulsive coupling is
independent of canonical Delta-Notch signalling

Herrgen et al. (2010) used measurements of both somite and
segment length to define pattern wavelength in the anterior PSM.
As the measurement of pattern wavelength affects, via Eq. (9), the
inferred value for the repulsive coupling strength, the differences in
the measurements of pattern wavelength matter when one
attempts to compare our model with the experimental observations.

Using the segment length data as a measurement of Sy, in
Fig. 4(a) we plot the Herrgen et al. (2010) measurements in S—T
space. Clearly, the DAPT-treated and aei mutant embryos can be
grouped together and do not lie on the line where the relationship
given by Eq. (2) holds. In contrast, using the somite length
measurements, the DAPT-treated, mib and aei mutant embryos
can be grouped together and have a different phenotype to both
the Hes6 and des mutants. The differences between the measure-
ment protocols are clearly indicated in Fig. 2(a) where we
compare wavefront velocities.

It is not well understood what mechanisms underly the observa-
tions in the different mutants, nor is it clear whether the segment
or somite measurements provide the more faithful representation
of pattern wavelength in a given mutant. The conflict between
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Fig. 4. Top row: plot of the Herrgen et al. (2010) segment (left) and somite (right) measurements in S—T parameter space. The solid line is a line with constant wave speed.
Bottom row: segment (left) and somite (right) measurements (Herrgen et al., 2010) are used in Egs. (9) to identify the positions of the perturbed embryos in @—B
parameter space. The parameter space is divided into four quadrants by the solid line B =@ (constant somite length) and the dashed line B = 1/@ (constant wave speed).
When B > @ (above solid line) larger somites are obtained. If B < 1/@ (below dashed line) the wave speed is reduced.

measurements is perhaps best illustrated by the mib mutant: the
segment and somite measurements suggest unchanged and reduced
wavefront velocities, respectively.

Using Eqgs. (9) we can attempt to address some of these issues
by relating the Herrgen et al. (2010) measurements to the
phenomenon of oscillator coupling in our model (see Table 3 for
numerical values) and the mutants can be interpreted in a
corresponding w—B parameter space (see Fig. 4(c) and (d)). This
approach allows us to provide mechanistic explanations for the
mutant measurements and to determine, at least within the
context of the proposed model, whether segment or somite
measurements are more appropriate.

In Fig. 4(c) we use the segment length data to plot the mutants
in @—B parameter space. Notably, when Eq. (2) holds (mib, Hes6
and des mutants), a decrease in oscillator frequency is accom-
panied by a proportional increase in repulsive coupling strength
and the wave speed remains approximately constant. However, in
the aei and DAPT-treated embryos, the decrease in oscillator
frequency is accompanied by a decrease in the repulsive coupling
strength. In summary, when interpreted in our model framework,
it is not clear why the Delta-Notch mutants are separated in
parameter space and we conclude that analysis of the perturbed
embryos in @—B parameter space does not lend any additional
insight into potential mechanisms underlying the measurements
made by Herrgen et al. (2010).

In Fig. 4(d) we use the somite length data to plot the mutants
in w—B parameter space. Notably, the aei, mib and DAPT-treated
embryos all show a decrease in oscillator frequency with no
change in the repulsive coupling strength. This observation
permits the insight that repulsive coupling is not mediated via
canonical Delta-Notch signalling. In contrast, the des mutant

shows a decrease in the repulsive coupling strength. As des
encodes for the notchla receptor, we interpret this result as
follows: repulsive coupling is partially mediated by the notchla
receptor but not via the canonical Delta-Notch signalling
pathway. In summary, the somite length data permit an intuitive
description of the Delta-Notch mutant measurements in which
repulsive coupling is independent of canonical Delta-Notch
signalling but dependent on the notchla receptor.

Reduced phase gradient velocity hypothesis supported by mib mutant
embryo expression data

Whilst the parameter space analysis in the previous section
represents a novel method of analysing Delta-Notch mutant
measurements, a comparison of clock gene expression profiles
between wild-type and perturbed embryos should allow the
hypothesis that phase gradient velocities are reduced in some
Delta-Notch embryos to be tested directly.

For instance, after a time 7, or when N somites have formed in
the wild-type embryo, perturbed and wild-type wavefronts will

be separated by a distance
X: = (1-V)V 0Bt = (1—T)NSeyp, (10)

where v is the relative change in the wavefront velocity (see
Table 3). Thus at the four somite stage in the mib mutant, say, one
expects, using the somite length data, a relatively small lag of

1-7v)

Sexp 4Ty =0.08 x 4.0=0.32, (11
exp

T

somite lengths in the mutant embryo relative to the wild-type
(using mib data from Table 3). In contrast, using the segment
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length data the wavefront velocity in the mib mutant embryo is
the same as in the wild-type case (see Fig. 2(a)).

This clear quantitative prediction can be tested by comparing
measurements of pattern wavelength in wild-type and mib
mutant embryos at the four somite stage (see Fig. 5 where data
are reproduced from Herrgen et al, 2010). In the Appendix
(Eq. (21)) we have shown that an expression for the pattern
wavelength, the quantity that Herrgen et al. (2010) have directly
measured, is given by

_ Binib Amib .1 (it (TBmip
Sy)=2r w<l+Bsmh sinh .

mib TtOmip mib

by the parameter A. Hence, in order to simulate Delta-Notch
mutant and DAPT-treated embryos, we set A=0.

A well-studied feature of Eq. (4) in this case is that, upon removal
of attractive coupling (diffusion), the gradient continues to propagate
but steepens (see Fig. 6) until it eventually stalls after a finite time
(see Appendix B for the derivation of this standard result). This
phenomenon is therefore a key testable prediction of the proposed
clock and wavefront model: phase gradient steepening upon treat-
ment of zebrafish embryos with DAPT. Such a finding, which would
be immediately apparent in real-time expression profiles of a DAPT-
treated embryo, would provide strong evidence that canonical Delta-
Notch signalling is not the only mechanism of oscillator coupling in

the zebrafish somitogenesis system.
v/ O mibBmi . .. . . .
xexp <WO}_C2)>>>' (12) Whilst it is an attractive hypothesis that the stalling of the
mib phase gradient might significantly contribute to the ALD phenom-

The parameters B, and wg; have already been determined,
using Eqgs. (9), in the previous section but the parameters A,;;;, and
¢, cannot be explicitly determined so we fit them to the Herrgen
et al. expression measurements using a least squares fitting
algorithm. We find that A,,;; and c; take the values (1.76, 0.308)
and (1.58, 0.263) when fitted to the wild-type and mutant data,
respectively (see Fig. 5). Hence, the best-fit value of A, is less
than that of the wild-type embryo, indicating a steeper wave-
front (+10%), while the centre of the phase gradient is shifted
anteriorly by an amount 0.046Lpsy/Sexp = 0.28 (after rescaling to
units of somite lengths) in the mutant. The residual mean-
squared error is 0.07. Thus a least-squares fit of our model to
the mib stripe expression data is consistent with the prediction of
a reduced phase gradient velocity and hence the somite length
measurements. We highlight that the prediction of phase gradient
slowing could be further validated by analysis of clock gene
expression patterns in DAPT-treated embryos.

Phase gradient steepening and stalling upon removal of diffusive
coupling

As it is well accepted that canonical Delta-Notch signalling
plays a crucial role in oscillator coupling in the PSM, and we have
deduced that repulsive oscillator coupling is independent of
canonical Delta-Notch signalling, we now make the assumption
that canonical Delta-Notch signalling is represented in our model

enon, we highlight that Riedel-Kruse et al. (2007) have found that
11 further somites (accounting for a two somite pharmacological
delay) form upon treatment of wild-type zebrafish embryos with
DAPT solution. In contrast, the time taken for stalling of the phase
gradient in our model corresponds to the formation of

_ 4A _ Lexp ~6
~/wB Sexp

somites (wild-type zebrafish embryo with parameter values
taken from Table 2).

If phase gradient steepening contributes towards ALD, we
suggest three plausible hypotheses that might explain the under-
estimate in Eq. (13): (a) our model derivation is based upon the
assumption of constant cell density along the AP axis. Whilst we
are not aware of direct measurements in zebrafish, Bénazéraf
et al. (2010) have observed, in chick embryos, that there is a
posteriorly decreasing density gradient along the AP axis, with
the density decreasing by a factor of two posteriorly. If such a
density gradient were found in zebrafish, the method by which
we currently fit Eq. (21) to the stripe expression data (e.g. Fig. 5)
would result in an underestimate of the parameter A. Subse-
quently, our prediction for the number of somites that form after
disruption of attractive coupling (see Eq. (13)) would be an
underestimate. Thus a posteriorly decreasing density gradient
might account for a number of the missing somites in the current
model; (b) the parameter A might tend to zero over some finite

. (13)
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Fig. 5. Comparison of stripe expression patterns between wild-type and mutant embryos provides evidence for altered phase gradient velocities in mutant embryos. (a) A
schematic illustration of the measurement of inter-stripe distance (pattern wavelength) as a function of axial position. (b) Least squares fits of Eq. (12) to the Herrgen et al.
(2010) stripe expression data from both wild-type (dots, dashed line) and mib (circles, dot dashed line) mutant embryos are consistent with a phase gradient lag in the
mutant embryo. The distance between stripes of gene expression is plotted against position along the AP axis.
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Fig. 6. The continuum model predicts phase gradient steepening and stalling upon removal of diffusive coupling. (a) A schematic illustration of the predicted phase
gradient steepening upon embryo treatment with DAPT solution. (b)-(f) Egs. (4) and (5) were solved with the parameter A set to zero at t=0. The wavefront steepens for
0 <t <t; and eventually stalls at x=100. (b)-(c) Snapshots of oscillation pattern plotted along the AP axis. sin 0 is plotted against x at t = {0,15} min. (d) A space-time
illustration of phase dynamics. sin 6 plotted against x and t (black —1, white 1). (e) The phase gradient, ¥, is plotted against axial position, x, at t = {0,15,30,45,60,75} min.
(f) S plotted against x at t ={0,15,30,45,60,75} min. Note the bilinear profile as t—t; (see Appendix B). The spatial coordinate, x, in the laboratory frame, increases
posteriorly. See Table 2 for parameter values and Fig. 1 for comparable experimental figures.

Table 1

A table summarising the observed effect of somitogenesis perturbations. T - fractional change in somitogenesis period relative to wild-type;

S - fractional change in segment length relative to wild-type; S' - fractional change in somite length relative to wild-type; ALD - anterior limit of
defects. Data (mean + 95% confidence intervals) taken and replotted from Schréter and Oates (2010) and Herrgen et al. (2010).

Observation Hes6 mib aei des DAPT

Salt and pepper N Y Y Y Y

ALD N/A 10-12 7-9+2 7-9+2 18+0.2

T 1.07 £0.01 1.19 £ 0.02 1.23 +0.04 1.07 + 0.03 1.18 +£0.01
S N/A 1.18 +0.05 1.08 +0.02 1.05+0.03 1.06 + 0.02
5t 1.07 + 0.02 1.09 £+ 0.02 1.10 £ 0.05 1.0 +0.02 1.08 +0.02

Table 2
A description of the model parameters.

Parameter  Definition Value Unit

A Attractive coupling strength 2.32 c.d.?/min
B Repulsive coupling strength 0.24 c.d.?/min
[0} Oscillation frequency 0.22 min~!
Lexp PSM length 40 c.d.

Sexp Somite length 6.5 cd.

Texp Somitogenesis period 28 min

v Wavefront velocity Sexp/Texp  €.d./min
D Noise strength 0.02 min~!

N Number of cells in discrete simulations 200 Nondim

c.d. (cell diameters).

time rather than instantaneously; and (c) as the phase gradient
steepens, the length scale over which it varies tends to that of a
single cell and the continuum model is no longer an accurate

description of cellular phase dynamics (see Fig. 7 and Appendix B).
In each case, Eq. (13) can be viewed as a lower bound on the number
of somites that can form.

Phase gradient steepening in the discrete stochastic model reproduces
ALD but not autocorrelation measurements

Motivated by the hypothesis that the discrete nature of cells in
the PSM may become important as the length scale over which
the phase gradient varies tends to that of a single cell, we now
explore behaviour in the discrete model (Eqs. 3) when A=0.
We again find that the phase gradient steepens, as in the
continuum case, but continues to propagate (see Fig. 7), thus
allowing for the potential for further somite formation beyond the
six predicted by the continuum model analysis. Thus the discrete
model with A=0 predicts that somite formation continues
unbounded, a result that is again not in agreement with the
observations of Riedel-Kruse et al. (2007).
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Fig. 7. The discrete model predicts phase gradient steepening but continued pattern formation upon removal of diffusive coupling. (a) A schematic illustration of the
predicted effect. (b)—(f) Equations (3) and (5) were solved with the parameter A set to zero at t=0. Note the continued propagation of pattern after t = t; (see Appendix B).
(b)-(e) sin 0 plotted against x at t ={0,51,102,154} min. (f) sin 0 plotted against x and t (black —1, white 1). The spatial coordinate in the laboratory frame, x, increases

posteriorly.
See Table 2 for parameter values.

Table 3

Changes in somite length and somitogenesis period in different mutants relative
to wild-type (Herrgen et al., 2010) and the corresponding changes in the model
parameters B and o (barred notation represents fractional change with respect to
wild-type values). See Fig. 4 for a graphic illustration of these data.

Observation Hes6 mib aei des DAPT

1.07 £0.01
1.07 £ 0.02

1.19 £ 0.02
1.09 +0.02

1.23+0.04
1.10 £ 0.05

1.07 +0.03
1.0+ 0.02

1.18 + 0.01
1.08 +0.02

wnl ~

1.09 £ 0.04
1.07 +£0.04

0.93 +0.01
1.0 +£0.03

1.10+£0.04 1.00+0.11
1.00 +0.04 0.98 +£0.11

0.84 +0.02 0.81+0.04
0.92 +0.02 0.90 + 0.06

1.08 +0.05
0.93 +0.05

0.93 +0.03

1.07 +£0.04
0.99 + 0.04

0.85 +0.01

g = =i

0.93 +0.04 0.92+0.02

However, when A=0 we expect stochasticity in the clock
dynamics to play a fundamental role in pattern formation, as
there is no longer synchronisation between neighbouring oscilla-
tors. We now investigate whether the discrete stochastic model
(Egs. (8)) can reproduce a standard explanation for the ALD
phenomenon: noise in the absence of oscillator coupling results
in neighbouring oscillators randomly drifting out of phase until
the clock pattern is completely disrupted in the posterior PSM
(Jiang et al., 2000; Riedel-Kruse et al., 2007). The addition of noise
to the discrete phase dynamics has little qualitative effect when
wild-type parameters are used (results not shown) as the
diffusive coupling smooths out stochastic fluctuations. However,
in the limit A=0 there is no homogenising term to counteract the
destabilising effects of noise and repulsive coupling, and neigh-
bouring oscillators in the posterior PSM eventually drift out-of-
phase . The combination of noise and repulsive coupling is
sufficient to completely disrupt the formation of a regular pattern

(see Fig. 8). Hence, the discrete stochastic model appears to have
all the ingredients necessary to recapitulate the ALD observations
in DAPT-treated and Delta-Notch mutant embryos.

However, there is one further set of data that can be used to
validate models of ALD: the autocorrelation measurements made
by Herrgen et al. (2010) in Delta-Notch mutant embryos
(see Fig. 2(b)). Following Herrgen et al. (2010), we equate
fluorescence intensities with the sine of the phase (I(x)=
sin(f(x))) and our simulation results confirm what one might
expect intuitively: the autocorrelation function shows no inter-
mediate peak (see Fig. 9(c)) and is indistinguishable from the
autocorrelation function of a population of oscillators with
randomly distributed phases. Thus, in our model, the experimen-
tally observed autocorrelation function cannot be reproduced by a
Gaussian noise term representing intrinsic noise in the somito-
genesis clock and the unanswered question remains: what
mechanism can give rise to the peaked autocorrelation function
measured by Herrgen et al. (2010)?

M phase block of somitogenesis clock yields phase lags consistent
with peaked autocorrelation functions

Having found that the discrete stochastic model cannot repro-
duce the peaked autocorrelation function measured by Herrgen
et al. (2010), we sought an alternative mechanism. Recalling
Horikawa et al.’s observation that a cell’s somitogenesis clock is
paused during M phase of the cell cycle, with the consequence
that a mother-daughter cell pair lag neighbouring cells upon M
phase exit (Horikawa et al., 2006), we deduced that M phase block
might be responsible for peaked autocorrelation functions and
hence play a role in the generation of ‘salt and pepper’ patterns in
Delta-Notch mutants.
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Fig. 8. The discrete stochastic model predicts phase gradient steepening, limited somite formation and ‘salt and pepper’ patterns. (a) A schematic illustration of the
predicted effect. (b)-(f) Egs. (8) and (5) were solved with the parameter A set to zero at t=0. Note the emergence of the ‘salt and pepper’ pattern ahead of the wavefront.
(b)-(e) sin 0 plotted against x at t ={0,51,102,153} min. (f) sin 0 plotted against x and t (black —1, white 1). The spatial coordinate in the laboratory frame, x, increases

posteriorly. See Table 2 for parameter values.

We reasoned that in Delta-Notch mutant and DAPT-treated
embryos, the ability of the phase differences induced by M phase
block to dissipate is lost and the relative lengths of M phase of the
cell cycle and the period of the somitogenesis clock could
gradually induce a new spatial periodicity into the oscillator
population, as, after M phase of the cell cycle, a divided cell in
the posterior-most PSM will be out-of-phase with neighbouring
cells by an amount given by

Tm

AO =271 .
Texp

(14

However, as the maximum observable phase difference between
a pair of oscillators is 7m, we define the measurable phase
difference using the ‘hat’ function
T o T 1
2n-M if =M <=,
_ Texp Texp 2

0=
TM) .1 Ty
2n( 1— if = < <1.
( Texp 2 Texp

In a population of oscillators separated in phase by an amount A0,
we expect an observed spatial periodicity (i.e. a peak in the
autocorrelation function) at wavelength

15)

Tew if Tew >2

Tm Tm
— T
Sy =2m/A0 = Te*p T (16)
M if 1 <22 <2,
M_1 Tu
Tm

but is this prediction borne out by the data? The results from the
zebrafish mutants are encouraging (see Fig. 9(b)). Horikawa et al.
(2006) have estimated that M phase of the cell cycle takes at least

15 min, while the somitogenesis clock period is approximately
30 min. This lower bound for the M phase length would yield a
spatial frequency of approximately two cell diameters. However,
an M phase length of 21 min yields a spatial frequency that is in
good agreement with the different mutant autocorrelations. Thus
a heuristic argument suggests that an M phase block desynchro-
nisation mechanism could yield a peak in the auto-correlation
function that is in qualitative agreement with the Herrgen et al.
(2010) measurements. This hypothesis implies that it is not
intrinsic stochasticity in the clock dynamics that is responsible
for the ‘salt and pepper’ patterns observed in Delta-Notch and
DAPT-treated embryos. Rather, the desynchronisation results
from the pausing of the somitogenesis clock during M phase of
the cell cycle and the subsequent inability of neighbouring cells to
resynchronise, yielding a forced periodicity in the oscillator phase
distribution, as described by Eq. (16). The quantitative prediction
given by Eq. (16) could be verified experimentally by perturbing
the length of M phase of the cell cycle in DAPT-treated embryos
and calculating autocorrelation functions.

Whilst the proposed M phase block hypothesis is independent of
the particular form of the clock and wavefront model under
consideration, we can demonstrate that the phase coupled model
proposed in this study can reproduce the peaked autocorrelation
functions observed in vivo. In order to mimic the phase difference
imposed by cell proliferation in the posterior-most PSM, Eq. (3) has
been simulated with the boundary condition (15), representing an
M phase block induced phase lag in the posterior PSM, imposed on a
boundary moving with velocity ~/wB that corresponds to the
posterior-most tip of the PSM. This, admittedly coarse, approxima-
tion is equivalent to assuming that cell proliferation occurs only on
the posterior boundary rather than throughout the PSM. However, it
can be justified, to a certain extent, by noting that the induced phase
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Fig. 9. Autocorrelation functions, C(d), plotted against o. (a) A schematic illustration of autocorrelation calculations. (b) Experimental data: autocorrelation functions from
wild-type (solid line) and mutant embryos (Herrgen et al., 2010). Positions of predicted maxima (Eq. (16), circles) are compared with measured maxima (crosses) for an M
phase length of 21 min. (c) The autocorrelation function from a simulation of the noise driven desynchronisation hypothesis (solid line) is compared with that from a
wild-type pattern (dot-dashed line) and a random phase distribution (dotted line). (d) The autocorrelation function from a simulation of the cell proliferation-driven
desynchronisation hypothesis (solid line) is compared with that from a wild-type pattern (dot-dashed line) and a random phase distribution (dotted). Error bars denote

standard errors.

lag will be maximal in the posterior PSM where the clock oscillation
rate is largest. In the anterior PSM the clock oscillation rate slows
significantly, hence the phase-lagging effect of M phase block will be
progressively reduced. The resulting autocorrelation function is
presented in Fig. 9(d).

Discussion

The relatively recent discovery in multiple vertebrate species
of the somitogenesis clock and molecular gradients along the AP
axis provides strong evidence for the clock and wavefront
mechanism of somitogenesis. In the classical interpretation of
the model, the wavefront and the clock determine where and
when somite formation occurs, respectively, with somite length
predicted to be related to the clock period via the relationship
Sexp = VTexp. However, in recent experiments in zebrafish, the
wavefront velocity is measured to be unchanged while the ratio
of somite length to clock period varies between the different
mutants.

Herrgen et al. (2010) quantified spatial autocorrelation in the
posterior PSMs of a range of zebrafish mutant embryos, allowing
the quantitative comparison of ‘salt and pepper’ patterns across
different mutant embryos. Intriguingly, they have found a peak in
the autocorrelation function at a wavelength of approximately
four cell diameters. It is not well understood what mechanisms
could give rise to the observed spatial patterning.

We have recently developed a new variation of the clock and
wavefront model in which a system of phase coupled oscillators,
where the coupling behaviour is resolved into two distinct types that
are at least partially mediated by Delta-Notch signalling, is sufficient
to explain a range of observations of zebrafish somitogenesis. Whilst
the previous work proposed a generic mechanism for somitogenesis
and was parameterised in a number of different species, the aim of
the current study is to apply the model to recent observations in
zebrafish and, consequently, make testable predictions (see Fig. 10)
that can be validated in future experiments.

In the Hes6 mutant embryo, the wavefront velocity has been
measured to be unchanged and somite length increases (relative
to wild-type) proportionally with somitogenesis period, a result
that is consistent with the classical interpretation of the clock and
wavefront model. This observation can be accounted for in our
model if the repulsive coupling strength increases in proportion
with the (observed) decrease in oscillation frequency. We spec-
ulate that this effect could simply be accommodated by competi-
tion for Hes6 binding. For example, suppose that a complex X can
exist in an unbound state where it activates repulsive coupling
and in a complex with Hes6 where it accelerates the clock.
Removal of Hes6 would result in a slowing of the clock and an
increase in repulsive coupling, in agreement with the experi-
mental observations.

Herrgen et al. (2010) used two measurements of pattern
wavelength in the anterior PSM: somite and segment length.
Upon consideration of the more anterior somite length measure-
ments, none of the Delta-Notch mutants satisfy the relationship
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Canonical Delta-Notch signalling can be represented by a
sinusoidal coupling term in the phase dynamics.

We explore the hypothesis that there is an additional
coupling between neighbouring oscillators.

Interaction between the coupling terms results in the
emergent propagation of the phase gradient.

The additional coupling term is not affected
by perturbations to canonical Delta-Notch
signalling.
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Fig. 10. A schematic illustration of testable model predictions.

Sexp = VTexp. Moreover, the DAPT-treated, aei and mib embryos are
grouped together and do not display a significant change in
repulsive coupling strength. We suggest that the des mutant does
not lie with the other Delta-Notch mutants because the notchla
receptor is used to mediate repulsive oscillator coupling via
noncanonical Delta-Notch signalling.

Analysis of our model suggests that the somite length
measurement is favourable over the segment length for the
following reasons: when using the somite length data: (a) the
mib, des and DAPT-treated embryos group together; (b) the
parameter B is independent of canonical Delta-Notch signalling,
thus allowing the Delta-Notch mutants to be modelled by chan-
ging the parameters A and w; and (c) the phase gradient velocity
is consistent with a least squares fit of our model to the mib stripe
expression data. Although the somite measurements lead to the
conclusion of a reduced phase gradient velocity that is consistent
with mib expression profiles, we highlight that Herrgen et al.
(2010) measured that the speed of the wavefront, calculated
using the position of a gene expression stripe that appears just
prior to somite formation (mesp-b) as a proxy for its position, is
unchanged in the different Delta-Notch mutant embryos. How
can these two opposing viewpoints be reconciled? We suggest
that the prediction of a reduced phase gradient velocity can be
married to experimental observations if the phase gradient can
move independently of the mesp-b stripes in the mutant
embryos, i.e. a prediction of the model is that the phase gradient
slowly drifts out of synchrony with the unchanged global growth
rate of the mutant embryos. We highlight that the prediction of a
reduced phase gradient velocity in Delta-Notch mutants can be
validated using real-time expression assays.

In a classical interpretation of Cooke and Zeeman’s clock and
wavefront model, the wavefront moves independently of the
clock. Thus, upon removal of synchronising coupling, the cellular
oscillators desynchronise and, eventually, the spatiotemporal
patterning that precedes somitogenesis is completely disrupted.
In this model ALD is a measure of the time taken for the effects of
noise to gradually accumulate in the posterior PSM.

In our model the wavefront is an emergent phenomenon that
arises as a result of the combination of repulsive and attractive
coupling. A complete cessation of both repulsive and attractive
coupling would result in the instantaneous stalling of the wave-
front. However, upon disruption of just diffusive coupling (A=0),
the nonlinear (repulsive coupling) term dominates and the phase
gradient steepens until the wavefront eventually stalls, thus
providing a mechanism for the delayed formation of somites
upon removal of diffusive coupling. However, the continuum
model predicts the formation of approximately six somites which
is five somites fewer than the experimentally observed value. We
have suggested a number of factors that might contribute
towards the underestimate and highlighted that the analysis of
real-time expression patterns of DAPT-treated zebrafish embryos
will allow the phase gradient steepening hypothesis to be
experimentally validated.

A further consideration to take into account when trying
to relate the phase-coupled model to experimental data is
that complexes which mediate communication between neigh-
bouring oscillators could change on much slower time scales than
the concentration of individual molecules. Therefore, although
Ozbudak and Lewis (2008) have placed a 60 min upper bound on
the time for DAPT to penetrate into PSM cells, it may be the case
that phase diffusion (i.e. the parameter A) is disrupted on a much
longer time scale. Hence, somites that form beyond the six
predicted by the continuum model could at least partially arise
as a result of a delay in the perturbation of the phase parameters.
Whilst such a delay might be measurable experimentally, it could
only be fully theoretically understood by relating the phase model
parameters A, B and w to models for the underlying molecular
networks that control clock oscillations and oscillator coupling.
As discussed in Murray et al. (2011), it is theoretically possible to
derive Eq. (4) from an underlying molecular-level model of the
segmentation clock network. This would provide a direct between
the gene regulatory network of the clock and the characteristics of
the spatial pattern and allow us to make further predictions from
our model.
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In order to investigate whether intrinsic transcriptional noise
could yield agreement with the peaked autocorrelation measure-
ments made by Herrgen et al. (2010) in Delta-Notch mutant
embryos, we introduced a Gaussian noise term that represented
noise in the somitogenesis clock to our description of the phase
dynamics. We found that, upon removal of synchronising cou-
pling, a combination of noise and repulsive coupling desynchro-
nises oscillators in the posterior PSM and the propagation of
pattern is halted. Thus our model simulations were broadly
consistent with the desynchronisation hypothesis. However,
the introduction of a Gaussian noise term, perhaps expectedly,
resulted in autocorrelations that were not in agreement with the
Herrgen et al. (2010) measurements.

In order to explain the peak of the autocorrelation function in
Delta-Notch mutants, we have examined an alternative hypothesis
in which the pausing of the somitogenesis clock during M phase of
the cell cycle forces phase distributions in the posterior PSM to
have a characteristic frequency. This hypothesis can explain
qualitative features of the autocorrelation function in mutant
embryos. Moreover, assuming that the length of M phase of the
cell cycle is unaltered in the Delta-Notch mutants, variation in
the position of the peaks of the autocorrelation functions in the
different mutants might be accounted for by the measured
differences in somitogenesis periods. However, we note that if cell
proliferation plays a role in the patterns observed in the PSM of
mutant embryos, biophysically realistic models of cell proliferation
and movement and how they couple to oscillator phase dynamics
will be required in order to explain the quantitative variation in the
ALD in the Delta-Notch mutants. This topic will be investigated in a
future study.

The keen reader will have noted a logical flaw in our descrip-
tion of ALD in Delta-Notch mutant embryos: the model requires
the presence of an initial phase gradient and it is not clear how
this could be set up if the synchronising coupling strength was
always zero. Answering this question is beyond the scope of this
paper as we believe that the solution requires a detailed under-
standing of the first clock cycles that occur along the vegetal
boundary of the blastoderm upon formation of the germ ring
(Riedel-Kruse et al.,, 2007; Ishimatsu et al., 2010), and of cell
movements that occur as gastrulation, epiboly and involution
proceed (Warga and Kimmel, 1990). However, we speculate that
there is the potential for the formation of an initial phase gradient
as cells undergoing involution and convergent extension are
actively moving through the oscillating region of the blastoderm
and, thus, could record a spatio-temporally varying signal that
might specify the initial phase gradient.

In summary, we have recently proposed a generic clock and
wavefront model of somitogenesis in which the wavefront that
slows the clock oscillation rate along the AP axis is an emergent
function of oscillator coupling. In the current study we apply the
model to a range of measurements taken from zebrafish and
make a number of predictions that will be testable using real-
time expression assays. The validation of the proposed model
predictions in future experiments would add strong support to
the hypothesis that, as well as synchronising neighbouring
oscillators, coupling plays a role in the slowing of oscillations
along the AP axis.
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Appendix A. An outline of the model derivation and relevant
solutions

The steady-state phase difference in Eq. (3) is

AH:cos*(l—%):\/%(1+%+O<(%)2>>, 17)

while ahead of the wavefront 0 = wt. Upon taking the continuum
limit of Eq. (3), we obtain the partial differential equation (PDE)
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where 0(x,t) is the phase distribution along the AP axis at time t.
Making the further assumption that neighbouring oscillators are
close together in phase, ie. |0;—0;_1| <27, and Taylor expanding
the sine and cosine terms in Eq. (18) about zero we obtain the
leading order equation (Murray et al., 2011)
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We note that, although the steady-state of Eq. (4) (1/w/B) appears
at leading order of Eq. (17), the correction term is approximately
4% for wild-type zebrafish parameters (see Table 2), a discrepancy
that arises as a result of the truncated Taylor expansions of the
sine and cosine functions.

The relatively simple form of Egs. (19) and (5) has the
consequence that it is possible to derive an expression for the
phase gradient given by

Vvw/B , 20)
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where the wave speed v =+ ®B and ¥ = 80/0x denotes the phase
gradient. The pattern wavelength, a readily measurable quantity,
is given by

St = wg(l + A sinnt <smh (%8)exp (@) ))
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Appendix B. Phase gradient steepening

Assuming that at t =ty the phase gradient is initially given by
Yo(x) = Y(x,t =tg), we disrupt synchronising coupling by setting
A=0 and the governing equation for the phase gradient, found by
differentiating Eq. (4) with respect to x, is given by
oY oY
E+23‘I’a =0. 22)
Assuming Wo(x) is a decreasing function of x, it can be shown,
using the method of characteristics, that the phase gradient
develops a singularity after a time

1

ti= 77—,
*T 2B max| ¥ (x)|

(23)
where the prime denotes differentiation with respect to x, and the
spatial domain eventually splits into two regions: x < Xxg+Xs,
where ¥ takes the value \/w/B and x> Xo+X;, where ¥ =0.
Thus, after setting A=0 the phase gradient propagates for the
finite time t;, becomes infinitely steep (see Fig. 6(e)) and stalls.
We can use the expression for the time taken for the wavefront
to stall to derive an expression for the number of somites that
form after the disruption of diffusive coupling. As the wavefront
steepens, the centre point of the phase gradient (¥ =1/2\/w/B)
continues to move with velocity vwB and hence travels a
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Fig. B1. A schematic illustration of the steepening wavefront in ¥.
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before the wavefront stalls. Whilst the distance travelled by the
centre of the phase gradient, x;, could, in principle, be experi-
mentally measured and compared with Eq. (24), if we wish to use
the ALD data we must relate our model for pattern propagation to
somite formation (see schematic in Fig. B1), i.e. we need to know
how many somites are morphologically observable at t=tq in
order to be able to count how many somites form after the
perturbation. As somite formation does not occur until the
moving stripes of gene expression have come to rest, ie.
¥ —./w/B in our model, we use a linear approximation to the
phase gradient at t =t to estimate x,, the length of the region of
the PSM anterior to the centre of the phase gradient which will
yield further somites, and obtain

vw/B 25)

Xa=3 max| ¥ (xo)|

Hence, after disrupting synchronising coupling at t=tg,
a length of the PSM measuring x, +xs will yield a further

N, — Xa+Xs vw/B 26)

Sexp  Max|¥h(xo)|Sexp

somites before the wavefront stalls. We highlight that a precise
measurement of ¥ at the instant when diffusive coupling is
disrupted is necessary to quantitatively validate our model
against the ALD data. As such, the simplest case in which to
validate the prediction made in Eq. (26) is when the embryo has
already generated a sufficient number of somites such that the
phase gradient is in dynamic equilibrium and hence given by
Eq. (20). In this limiting case we obtain that

, 0]
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We note that as the phase gradient becomes increasingly steep,
the length scale over which it varies from /w/B to zero decreases
(see Fig. 6(e)). However, as the length scale of the phase gradient
approaches that of a single cell, we expect that the continuum

model is no longer a valid description of cellular phase dynamics.
In the solution of the discrete model (Eq. (1)) with A=0, the phase
gradient steepens, as in the continuum case, as t—t;. At t > t;, the
spatial domain separates into two distinct regions: anteriorly,
the pattern wavelength is approximately S.xp, while posteriorly it
is zero. However, for t > t; the discrete model behaviour differs
from the continuum case, as the wavefront does not stall but
continues to propagate posteriorly (see Fig. 7). Hence the discrete
nature of the oscillators in the limit of a steepening wavefront
permits the formation of further pattern segmentation after the
breakdown of the continuum model.

The discrete model in the absence of attractive coupling

Defining ¥;=0;—0;_,, the governing equation for the phase
differences in the absence of synchronising coupling (A=0) can be
shown, upon manipulation of Eq. (3), to be

dy;
d_tl = B(cos(¥Pj 1)—cos(¥_1)). (29)

Thus the phase differences attain steady state values when
¥;,1= + ¥j_; and propagate from the posterior boundary of
the PSM. Hence, if one was to induce a phase difference of A6 in
the posterior-most PSM, the repulsive coupling term could allow
that phase difference to propagate through the posterior PSM.
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