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3D Multiscale Modelling of Angiogenesis

and Vascular Tumour Growth

H. Perfahl, H.M. Byrne, T. Chen, V. Estrella, T. Alarcón, A. Lapin,
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and M.R. Owen

Abstract We present a three-dimensional, multiscale model of vascular tumour

growth, which couples nutrient/growth factor transport, blood flow, angiogenesis,

vascular remodelling, movement of and interactions between normal and tumour

cells, and nutrient-dependent cell cycle dynamics within each cell. We present

computational simulations which show how a vascular network may evolve and
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interact with tumour and healthy cells. We also demonstrate how our model may be

combined with experimental data, to predict the spatio-temporal evolution of a

vascular tumour.

3.1 Introduction

Angiogenesis marks an important turning point in the growth of solid tumours.

Avascular tumours rely on diffusive transport to supply them with the nutrients

they need to grow, and, as a result, they typically grow to a maximal size of

several millimetres in diameter. Growth stops when there is a balance between the

rate at which nutrient-starved cells in the tumour centre die and the rate at which

nutrient-rich cells on the tumour periphery proliferate. Under low oxygen, tumour

cells secrete angiogenic growth factors that stimulate the surrounding vasculature

to produce new capillary sprouts that migrate towards the tumour, forming new

vessels that increase the supply of nutrients to the tissue and enable the tumour to

continue growing and to invade adjacent healthy tissue. At a later stage, small

clusters of tumour cells may enter the vasculature and be transported to remote

locations in the body, where they may establish secondary tumours and

metastases [12].

In more detail, the process of angiogenesis involves degradation of the extracel-

lular matrix, endothelial cell migration and proliferation, capillary sprout anasto-

mosis, vessel maturation and adaptation of the vascular network in response to

blood flow [29]. Angiogenesis is initiated when hypoxic cells secrete tumour

angiogenic factors (TAFs), such as vascular endothelial growth factor (VEGF)

[27, 13]. The TAFs are transported through the tissue by diffusion and stimulate

the existing vasculature to form new sprouts. The sprouts migrate through the

tissue, responding to spatial gradients in the TAFs by chemotaxis. When sprouts

connect to other sprouts or to the existing vascular network via anastomosis, new

vessels are created. Angiogenesis persists until the tissue segment is adequately

vascularised. The diameter of perfused vessels changes in response to a number of

biomechanical stimuli such as wall shear stress (WSS) and signalling cues such as

VEGF [31, 26]. For example, vessels which do not sustain sufficient blood flow will

regress and be pruned from the network [10, 28].

Tumour growth and angiogenesis can be modelled using a variety of

approaches (for reviews, see [18, 35]). Spatially averaged models can be

formulated as systems of ordinary differential equations (ODEs) (see [8, 7]).

Alternatively, a multiphase approach can be used to develop a spatially structured

continuum model that describes interactions between tumour growth and angio-

genesis and is formulated as a mixed system of partial differential equations

(PDEs) [9]. Alternatively, a 2D stochastic model that tracks the movement of

individual endothelial cells to regions of high VEGF concentration is introduced

in [6]. Following [6], McDougall and co-workers [19] have developed a model for

angiogenesis and vascular adaptation in which the tissue composition is static and
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attention focusses on changes in the vasculature. This framework has been

extended by Stéphanou et al. [33] to produce 3D simulations of angiogenesis

and vascular adaptation. More recently, Macklin et al. [17] coupled a multiphase

model to a discrete model of angiogenesis that accounts for blood flow, non-

Newtonian effects and vascular remodelling. The models are coupled in two ways:

via hydrostatic pressure which is generated by the growing tumour and acts on the

vessels and via oxygen which is supplied by the vessels and stimulates growth.

Lloyd et al. [16] have developed a model for neoplastic tissue growth which

accounts for blood and oxygen transport and angiogenic sprouting. The strain

(local deformation) in the tumour tissue is assumed to be an increasing function of

the local oxygen concentration. In separate work, Owen et al. [20], building on the

work of Alarcón and co-workers [1, 2, 3, 4], proposed a 2D multiscale model for

vascular tumour growth which combines blood flow, angiogenesis, vascular

remodelling and tissue scale dynamics of multiple cell populations as well as

the subcellular dynamics (including the cell cycle) of individual cells. More

recently, this framework was extended by Owen et al. [21] to analyse synergistic

anti-tumour effects of combining a macrophage-based, hypoxia-targeted, gene

therapy with chemotherapy.

While several two-dimensional models of angiogenesis consider tumour

growth, few groups account for vascular tumour growth in three space-

dimensions. In an extension to work by Zheng at al. [37], Frieboes et al. [14]

couple a mixture model to a lattice-free continuous-discrete model of angiogene-

sis [24] to study vascular tumour growth. However, the effects of blood flow and

vascular remodelling are neglected. Lee et al. [15] studied tumour growth and

angiogenesis, restricting vessel sprouting to the tumour periphery and

surrounding healthy tissue. They incorporated vessel dilation and collapse in

the tumour centre and analysed the micro-vessel density within the tumour.

Building on work by Schaller and Meyer-Hermann [30], Drasdo et al. [11]

developed a lattice-free model for 3D tumour growth and angiogenesis that

includes biomechanically induced contact inhibition and nutrient limitation.

However, they do not consider an explicit cell cycle model, they neglect the

effects of flow-induced vascular remodelling and they ignore interactions

between normal and tumour cells. Similarly, Shirinifard et al. [32] present a 3D

cellular Potts model of tumour growth and angiogenesis in which blood flow and

vascular remodelling are neglected, as are the cell cycle and competition between

normal and tumour cells.

In this chapter, we present a 3D multiscale model of angiogenesis and vascular

tumour growth, based on Owen et al. [20]. In Sect. 3.2, the mathematical model

and the associated computational algorithm are introduced. Computational

simulations are presented in Sect. 3.3. There we start by illustrating the growth

of a tumour, nested in healthy tissue with two straight initial vessels. We also

show how vascular networks derived from experimental data can be integrated

in our model.
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3.2 Multiscale Model

The computational model that we use describes the spatio-temporal dynamics of a

tumour located in a vascular host tissue. Cells are represented as individual entities

(agent-based approach), each with their own cell cycle and subcellular-signalling

machinery. Nutrients are supplied by a dynamic vascular network, which is subject

to remodelling and angiogenesis. Interactions between the different layers are

depicted in Fig. 3.1.

Our model is formulated on a regular grid that subdivides the simulation domain

into lattice sites. Each lattice site can be occupied by several biological cells whose

movement on the lattice is governed by reinforced random walks, and whose

proliferation is controlled by a subcellular cell cycle model. The vascular network

consists of vessel segments connecting adjacent nodes on the lattice, with defined

Vessel
pruning

Haemo-
dynamics

Radius Haematocrit New
vessels

Oxygen VEGF

Normal cells

- Cell-cycle proteins
- p53
- VEGF

Cancer cells

- Cell-cycle proteins
- p53
- VEGF

Endothelial
sprouts

Fig. 3.1 Multiscale model overview (interaction diagram). This figure shows the connections

between the different modelling layers. In the subcellular layer, the cell cycle protein

concentrations and the p53 and VEGF concentrations are modelled via systems of coupled

ordinary differential equations. The local external oxygen concentration influences the duration

of the cell cycles. Cells consume oxygen, and produce VEGF in the case of hypoxia. Extracellular

VEGF also influences the emergence of endothelial sprouts and their biased random walk towards

hypoxic regions. If endothelial sprouts connect to other sprouts or the existing vascular network,

new vessels form. Vessel diameter is influenced by the local oxygen concentration and flow-

related parameters, such as pressure and wall shear stress. The vascular network delivers oxygen

throughout the tissue
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inflow and outflow nodes with prescribed pressures. We also specify the amount of

haematocrit entering the system through the inlets. The vessel network evolves via

(1) sprouting of tip cells with a probability that increases with the local VEGF

concentration, (2) tip cell movement described by a reinforced random walk, and

(3) new connections formed via anastomosis. In addition, vessel segments with low

WSS for a certain time are pruned away. Elliptic reaction-diffusion equations for

the distributions of oxygen and VEGF are implemented on the same spatial lattice

using finite difference approximations, and include source and sink terms based on

the location of vessels (which act as sources of oxygen and sinks of VEGF) and

the different cell types (e.g. cells act as sinks for oxygen and hypoxic cells as

sources of VEGF).

In summary, after initialising the system, the diffusible fields, cellular and

subcellular states are updated (including cell division and movement), before the

vessel network is updated; this process is then repeated until the simulation ends.

A more detailed description of the mathematical model is presented in the

following subsections. We start at the smallest spatial scale, namely, the subcellular

layer. Then the cellular and diffusible layers are introduced, before the vascular

layer. Interactions between these layers are highlighted in the final part of this

section where the computational algorithm is presented. The parameter values can

be found in Perfahl et al. [22].

3.2.1 Subcellular Layer

Coupled systems of non-linear ODEs are used to model progress through the cell

cycle, and changes in expression levels of p53 and VEGF [3]. In practice, the cell

cycle can be divided into four phases: during G1, the cell is not committed to

replication, but if conditions are favourable, it may enter the S (synthesis) phase, in
which DNA replication takes place. During the G2 phase, further growth, and DNA

and chromatid alignment occur, before the cell divides during M (mitosis) phase.

For the cell cycle, we consider the cell mass M and the proteins cycCDK (cyclin-

CDK complex), Cdh1 (Cdh1-APC complex), p27 and npRB (non-phoshorylated

retinoblastoma protein). The cell cycle model that we use focuses on the G1-S
transition. It extends an earlier model due to Tyson and Novak [36] by accounting

for the p27-mediated effect that hypoxia has on the cell cycle [2]. Using square

brackets to represent intracellular protein concentrations, we have

d½Cdh1�
dt

¼ ð1þ b3½npRB�Þð1� ½Cdh1�Þ
J3 þ 1� ½Cdh1� � b4M½cycCDK�½Cdh1�

J4 þ ½Cdh1� ; (3.1)

d½cycCDK�
dt

¼ a4 � ða1 þ a2½Cdh1� þ a3½p27�Þ½cycCDK�; (3.2)
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dM

dt
¼ �M 1� M

M�

� �
; (3.3)

d½p27�
dt

¼ c1 1� w
M

M�

� �
� c2c02
Bþ c02

½p27�; (3.4)

d½npRB�
dt

¼ d2 � ðd2 þ d1½cycCDK�Þ½npRB�; (3.5)

where b3, J3, b4, J4, a1, a2, a3, a4, Z, M
* , c1, c2, B, w, d1 and d2 are constants,

specified in [22].

In (3.1)–(3.5), whenM is small, the cell is maintained in a state corresponding to

G1 for which levels of Cdh1 are high and levels of cycCDK are low. Growth in the

cell mass increases Cdh1 degradation and reduces p27 production, so that cycCDK

increases. This leads to inhibition of npRB and Cdh1 and, hence, positive feedback

on cycCDK. At a certain point, corresponding to the G1-S transition, the state with

high Cdh1 and low CDK is lost, and a state with low Cdh1 and high cycCDK is

attained. Finally, when Cdh1 levels are sufficiently low and CDK levels sufficiently

high, cell division occurs. The external O2 concentration c02 couples the subcellular
and diffusible scales by influencing progress through the cell cycle. Decreasing c02
reduces p27 degradation, and the resulting increase in levels of p27 counteracts the

effect of the increasing mass on cycCDK. In particular, if c02 levels are sufficiently
low, the G1-S transition cannot occur. Further details about the model can be found

in [2, 3].

The intracellular concentration of p53 regulates normal cell apoptosis, and that

of VEGF controls VEGF release by normal cells. The dynamics of p53 and VEGF

are coupled to one another and to the extracellular oxygen concentration, as

described by the following differential equations:

d½p53�
dt

¼ k7 � k07
c02

Kp53 þ c02
½p53�; (3.6)

d½VEGF�
dt

¼ k8 þ k008
½p53�½VEGF�
J5 þ ½VEGF� � k08

c02
KVEGF þ c02

½VEGF�; (3.7)

with the constants k7, k
0
7, Kp53, k8, k

0
8, k

0
8, J5 and KVEGF (see [22]). The ODEs

(3.1)–(3.7) are solved subject to the initial conditions specified in [22], using the

open source CVODE library.1

1 https://computation.llnl.gov/casc/sundials/main.html.
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Cell death, quiescence and proliferation are determined by a cell’s internal

protein concentrations. We apply the following rules to identify the different cell

states and show their application for a particular cell i (intracellular concentrations
of the cell i are denoted by [ �](i )). In normal cells, cell death occurs if [p53]

(i) > p53THR(i ), where p53THR(i ) is the maximal threshold they can sustain before

undergoing apoptosis, and is given by

p53THRðiÞ ¼
p53

high
THR for rnormalðiÞ> rTHR

p53lowTHR for rnormalðiÞ � rTHR

(
: (3.8)

We define the set of cells in the neighbourhood of cell i asYi. The normal cell ratio

in (3.8) is given by

rnormalðiÞ ¼
P

k2Yi
normal cells at site kP

k2Yi
normal or cancer cells at site k

: (3.9)

Definition (3.9) accounts for the fact that healthy cells are more likely to die if they

live in a tumour environment. This can be caused by the altered microenvironment

in tumours. Tumour cells enter quiescence if [p27](i ) > p27e or leave quiescence if

[p27](i) < p27l. If a cancer cell is in quiescence for too long ( > Tdeath), the cell

dies. It should be noted that cancer cell death is not influenced by p53.

The condition to be satisfied for the proliferation of cells is

½Cdh1�ðiÞ<Cdh1THR and ½cycCDK�ðiÞ>cycCDKTHR: (3.10)

The daughter cell is placed in the current location if there is free space; otherwise, it

is moved to an empty neighbour location with a high oxygen concentration. If there

is no free space in the neighbour CA-cells, the parent cell dies and no daughter is

produced.

3.2.2 Cellular Layer

The following section focuses on the creation and movement of new vessels. For a

detailed description, see Owen et al. [20]. New sprouts form at site i (which must be

a vessel site) with probability psprout
i where

psprout
i ¼ Psprout

max cVEGF
Vsprout þ cVEGF

Dt; (3.11)

with the timestep size Dt. Since VEGF stimulates sprout formation, the probability

of sprouting is assumed to increase with the VEGF concentration, cVEGF. The
maximum sprouting probability is Pmax

sprout, and Vsprout is a constant. New sprouts
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can only emerge if sufficient space is available. Around the base of each sprout, a

radius of exclusion is defined, in which new sprouts cannot occur. For the vessel tip

cells, we define pði ! jÞ as the probability of moving from i to j, to be

pði ! jÞ ¼ DtD

d2ijDx2

ðNm � NjÞ 1þ g cVEGF;j�cVEGF;i
dijDx

� �
P
k2Oi

ðNm � NkÞ þ Nm � Ni þ NmMc

; (3.12)

for i 6¼j 2 Oi. Herein, D represents the cell motility; Dx the CA-lattice size; Nm is

the maximal carrying capacity of the cell type attempting to move; Ni is the number

of cells; Mc is a constant and cVEGF, i the VEGF level at site i g is the chemotactic

sensitivity and Oi is the set of sites in the neighbourhood of i, not including i itself.
The probabilities are weighted with the distance between lattice site i and j, written
as dij. In the three-dimensional case, Oi has at most 26 neighbour elements for each

lattice point i. We set the probability to zero if an endothelial cell crosses a vessel.

The probability of not moving is

pði ! iÞ ¼ 1�
X

j; k 2 Oi

j 6¼ k

pðj ! kÞ: (3.13)

Whenever a tip cell moves to another location, an endothelial cell remains at

the former lattice site. This is equivalent to the snail-trail concept also applied in

[5, 34, 23]. A sprout dies if it does not connect to another sprout or the existing

vasculature within a certain time period.

3.2.3 Diffusible Layer

The diffusible layer facilitates the coupling between the vascular and subcellular

layers. We consider two diffusible components in our model, namely, oxygen and

VEGF, and denote their concentrations by cVEGF and c02, respectively. The vascular
system acts as an oxygen source, while the normal and tumour cells act as sinks.

This behaviour is described by the following, quasi-stationary, reaction-diffusion

equation:

D02r2c02 þ 2p ~Rðt; xÞP02ðcblood02 � c02Þ � k02ðt; xÞc02 ¼ 0; (3.14)

with the diffusion coefficient of oxygen, D02. In (3.14), the vessel radius indicator

function ~R returns the vessel radius if a vessel is present at position x and zero

otherwise. Equation (3.14) also accounts for the vessel permeability to oxygen

(P02), the blood oxygen concentration c02
blood and the cell-type-dependent oxygen

consumption rate k02. If cells become hypoxic or quiescent, they start to secrete
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VEGF, which then can be removed by the vasculature. The concentration of VEGF

is determined by

DVEGFr2cVEGF � 2p ~Rðt; xÞPVEGFcVEGF þ kVEGFðt; xÞ � dVEGFcVEGF ¼ 0; (3.15)

wherein DVEGF is the diffusion coefficient of VEGF, PVEGF the permeability of the

vessels to VEGF, kVEGF the cell-type-dependent VEGF production rate and the

decay rate dVEGF. In our numerical algorithm, (3.14) and (3.15) are discretised with

a finite difference scheme, and the resulting sparse linear system of equations is

solved with a GMRES-solver.

In case of a non-periodic simulation domain, it is assumed that there is no flux of

diffusible substances over the boundary, and thus, homogeneous Neumann bound-

ary conditions are imposed. For simulations in a periodic domain, we apply periodic

boundary conditions for the calculation of diffusible substance concentrations.

3.2.4 Vascular Layer

We follow very closely the work of Secomb et al. and refer the reader to [26] for full

details. We assume a laminar Poiseuille flow in each vessel. The flux _Qi through

vessel i is given by

_Qi ¼
pR4

i

8mðRi;HiÞLi DPi; (3.16)

where DPi is the pressure difference at the vessel segment i, Li the vessel length,

m(Ri, Hi) is the radius Ri and haematocrit Hi dependent blood viscosity [26]. In

(3.16), we can identify the resistance of vessel i by Resi ¼ 8mðRi;HiÞLi=ðpR4
i Þ. In

(3.16), the blood viscosity is defined by

mðR;HÞ ¼ m0mrelðR;HÞ; (3.17)

where m0 is a positive constant,

mrelðR;HÞ ¼ 1þ ðm0:45ðRÞ � 1Þ ð1� HÞC � 1

ð1� 0:45ÞC � 1

2R

2R� 1:1

� �2
" #

2R

2R� 1:1

� �2

;

(3.18)

m0:45ðRÞ ¼ 6e�0:17R þ 3:2� 2:44e�0:06ð2RÞ0:645 (3.19)

and
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C ¼ CðRÞ ¼ 0:8þ e�0:15R
� � �1þ 1

1þ 10�11ð2RÞ12
 !

þ 1

1þ 10�11ð2RÞ12 :

(3.20)

Using (3.16)–(3.20), we can calculate the flux through each vessel segment in terms

of the pressure at each junction of the vascular tree. At any node of the vascular

network, the total flow into that node must balance the total flow out of that node.

With the pressures at each inlet and outlet (Pin and Pout, respectively) prescribed,

we obtain a linear system of equations for the pressures at each vessel node. This

system is solved with the direct SuperLU solver.2

When updating the vascular network, there are two different timescales of

interest, the timescale for flow and the timescale for vascular adaptation. While

changes in flow may be rapid, we assume that vascular adaptation occurs on the

same timescale as endothelial cell movement and cell division. Consequently, we

model the temporal evolution of a vessel segment’s radius by applying the follow-

ing discretised ODEs

Rðtþ DtÞ ¼ RðtÞ þ aRDtRðtÞðSh þ Sm � ksÞ; (3.21)

where Dt is the timestep size and the updated radius must satisfy the constraint

Rmin � R (t þ Dt ) � Rmax. The factor aR that appears in (3.21) relates the stimuli

to our timestep size Dt. In the absence of any details on the rate of vascular

adaptation (since all previous studies of which we are aware consider quasi-steady

state vessel radii), we set aR ¼ 3:3� 10�6 min�1 so that the rate of change of the

vessel radius is typically less than 10 % per hour. ks is the shrinking tendency of a

vessel which takes into account that vessels tend to regress in the absence of stimuli.

Sh and Sm are haemodynamic and metabolic stimuli for vascular adaptation:

• Haemodynamic stimulus:

Sh ¼ logðtw þ trefÞ � kp logððtðPÞÞ; (3.22)

with the WSS

tw ¼ RDP
L

; (3.23)

the constant reference WSS tref and the corresponding set point pressure of the

WSS t(P ), described by the empirical function

tðPÞ ¼ 100� 86 exp �5000 logðlogPÞ½ �5:4
� �

: (3.24)

2 http://crd.lbl.gov/~xiaoye/SuperLU/.
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• Metabolic stimulus:

Sm ¼ kmðcVEGFÞ log
_Qref

_QH þ a _Qref

þ 1

 !
; (3.25)

with

kmðcVEGFÞ ¼ k0m 1þ kVEGFm

cVEGF
V0 þ cVEGF

� �
; (3.26)

where _Qref, a, km
0, km

VEGF and V0 are parameters. _Qref is a reference flow, and the

term a _Qref (where a is a small parameter) in the denominator of (3.25) is

introduced to avoid extreme vessel dilation in poorly perfused vessels (and

hence, Sm differs slightly from the original model [20, 25]).

In addition to being created, new vessels can also be removed by pruning. If a

vessel is exposed to a WSS that is below a threshold (tw
crit) for a certain time

(Tprune), we remove that vessel from the system. In general, the vascular adaptation

algorithm includes the following steps. First, the vessel radii evolve according to

(3.21). Then we calculate the flows in the network. In contrast to the previous model

[20], the evolution of the radius is considered separately and is not iterated until a

steady state is reached.

3.2.5 Computational Algorithm

The basis of our model is a regular grid that subdivides the simulation domain into

cellular automaton lattice sites. Each lattice site can be occupied by several

biological cells and vessels. Figure 3.1 shows the high degree of coupling between

the different spatial scales. We enumerate the main steps below:

1. Initialisation (vascular and cellular layers) We specify an initial vascular

network as a system of straight pipes with fixed inflow and outflow nodes and

prescribed pressures. We also prescribe the amount of haematocrit that enters

through each inlet, and the initial location of the different cell types in the

cellular automaton domain.

2. Update cells, oxygen and VEGF (diffusible, cellular and subcellular layers)

• Calculation of oxygen concentration (diffusible layer) The reaction-

diffusion equation (3.14) is used to calculate the quasi-stationary oxygen

concentration c02(t, x ) in the simulation domain. Oxygen consumption by

normal and cancer cells is included in (3.14) via sink terms, assuming first-

order kinetics. On the other hand, perfused blood vessels deliver oxygen to

the tissue and thus account for oxygen sources.
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• Calculation of cell cycle, p53 and VEGF ODEs (subcellular layer) The
subcellular layer is coupled to its local environment via the oxygen concen-

tration. Oxygen drives the cell cycle of individual cells, whose current state is

described by the time-dependent concentrations of the proteins Cdh1,

cycCDK, p27, npRB and the cell mass M. Internal p53 and VEGF

concentrations are also considered. All subcellular variables are modelled

by the coupled systems of non-linear ODEs (3.1)–(3.7).

• Check for cell division (cellular layer) Cells divide if their Cdh1 and

cycCDK concentrations are under, respectively, over a predefined threshold

[see (3.10)].

• Cell movement (cellular layer) Vascular tip cells perform a biased random

walk through the tissue. The probability of moving in a certain direction is

influenced by the local VEGF gradient and cell densities [see (3.12)].

The motility of normal and cancer cells is also included via (3.12).

• Calculation of VEGF concentration (diffusible layer) Quiescent tumour

cells and hypoxic normal cells produce VEGF, and so contribute to the source

term in the reaction-diffusion equation (3.15) for the VEGF concentration

cVEGF(t, x ). VEGF is removed by the vascular system.

• Check for cell quiescence (cellular layer) Tumour cells enter or leave

a quiescent state depending on the internal cell p27 concentration, which

is described in (3.4). Oxygen is the external factor that influences the

level of p27.

• Check for cell death (cellular layer) Normal cells die if their subcellular

p53 concentration exceeds a threshold value. If a normal cell is surrounded by

a high number of tumour cells, then its p53 threshold for cell death is

reduced [see (3.8)]. This models the degradation of a tumour’s environment

by tumour cells. Tumour cells die if they are quiescent for a certain period

of time; unlike normal cells, their death is not influenced by p53.

3. Update vasculature (cellular and vascular layer) The vascular system continu-

ally remodels and evolves in response to external and internal stimuli:

• Check for new tip cells (cellular layer) A raised VEGF concentration in the

tissue stimulates the vasculature to form new sprouts. The probability that

new sprouts emerge is specified by (3.11) and is an increasing function of the

local extracellular VEGF concentration.

• Check for anastomosis (cellular layer) New vessels are formed if sprouts

connect to other sprouts or to the pre-existing vascular network.

• Vessel pruning (vascular layer) Vessels that are underperfused (tw < tw
crit)

for a certain period of time (Tprune) are removed from the vascular network.

• Calculation of radius adaptation (vascular layer) The vessel radii are

updated at each timestep according to (3.21). The change in vessel radii is

influenced by haemodynamic and metabolic stimuli as well as the general

tendency of vessels to shrink [see (3.22)–(3.25)].
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• Calculation of pressures and flows within vasculature (vascular layer)
Poiseuille’s flow (3.16) is considered in each branch of the vascular network,

and the pressure at each node is calculated by applying conservation of mass.

The haematocrit is assumed to split symmetrically at bifurcations.

In 1, the successive cellular automaton model is initialized. Then 2 and 3 are

carried out on each time interval Dt until the final simulation time is reached.

3.3 Simulations

The results from a typical simulation, showing the development of a tumour and its

associated network of blood vessels, are depicted in Fig. 3.2. Simulations were

performed on a 50 �50 �50 lattice with spacing 40 mm, which corresponds to a

2 mm �2 mm �2 mm cube of tissue. For the following simulations, each lattice

site can be occupied by at most one cell (either normal or cancerous), which

implies that, for the grid size used (40 mm), the tissue is not densely packed. A

small tumour was implanted at t ¼ 0 h in a population of normal cells perfused by

two parallel parent vessels with countercurrent flow (i.e. the pressure drops and

hence flows are in opposite directions). Initially, insufficient nutrient supply in

regions at distance from the vessels causes widespread death of the normal cells.

The surviving tumour cells reduce the p53 threshold for death of normal cells,

which further increases the death rate of the normal cells and enables the tumour to

spread. Initially, due to inadequate vascularisation, most of the tumour cells are

quiescent and secrete VEGF which stimulates an angiogenic response. After a

certain period of time, the quiescent cells die and only a small vascularised tumour

remains, encircling the upper vessel. The tumour expands preferentially along this

vessel, in the direction of highest nutrient supply. Diffusion of VEGF throughout

the domain stimulates the formation of new capillary sprouts from the lower parent

vessel. When the sprouts anastomose with other sprouts or existing vessels, the

oxygen supply increases, enabling the normal cell population to recover. Because

the tumour cells consume more oxygen than normal cells and they more readily

secrete VEGF under hypoxia, VEGF levels are higher inside the tumour, and the

vascular density there is much higher than in the healthy tissue. The tumour

remains localised around the upper vessel until new vessels connect the upper

and lower vascular networks. Thereafter, the tumour cells can spread to the lower

region of the domain until eventually the domain is wholly occupied by cancer

cells and their associated vasculature.

As a further step, we document preliminary results of a vascular tumour growth

simulation for which the initial vascular geometry was taken from multiphoton

fluorescence microscopy (a detailed description of the experimental setting can be

found in [22]). The aim here is to integrate the mathematical model with in vivo
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Fig. 3.2 Tumour growth in healthy tissue. The tumour cells and vasculature are depicted in the

left column, the vasculature and normal cells in the middle column and the vessel network in the

right column. The figure shows a realisation of a 50 �50 �50 domain with a cube of tumour cells

implanted in healthy tissue initially with two straight vessels
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experimental data. Experimental data defining a vascular network associated with a

tumour were obtained by implanting a tumour construct comprising a central core

of human breast cancer cells surrounded by rat microvessel fragments, embedded in

a collagen matrix into a mouse dorsal window chamber. The cancer cells and rat

microvascular cells express different fluorescent proteins so that, following implan-

tation, the tumour and its vascular network can be visualised.

We used experimental data to reconstruct the vascular graph model, locating

nodes in the vessel centres and connecting them by edges. We embed the vascular

system into healthy tissue and then simulate vessel adaptation until a steady state is

reached. This example provides proof of concept.

Currently in the computational models, the vasculature is embedded in a healthy

tissue into which a small tumour is implanted and its evolution is studied. A

projection of a 3D image set of the tissue is presented on the left-hand side of

Fig. 3.3, while the virtual reconstruction is shown on the right-hand side. In

Fig. 3.4, we observe that the tumour expands radially into the surrounding healthy

tissue which it degrades by decreasing the p53 death threshold for normal cells.

Normal cells in the lower left and right corners of the simulation domain (first

column) are exposed to low oxygen (hypoxia), and hence produce VEGF which

induces an angiogenic response in our model. While the new vessel in the lower left

corner is persistent and increases in radius, the vessel in the lower right corner is

pruned back. In this case, pruning occurs because the new blood vessel connects

vessels from the initial network that have similar pressures. In general, the normal

cells are adequately nourished by oxygen as only a few hypoxic cells can be

real vasculature

a b

virtual vasculature

inflow (pressures 35...45mmHg)
outflow (pressures 15...25mmHg)

Fig. 3.3 Image reconstruction. We reconstructed the vascular network by applying the following

strategy. 3D multiphoton fluorescence microscopy images (a ) taken from mouse models in vivo

formed the basis of our geometrical reconstruction. Based on the data, we reconstructed the

vascular graph model that describes the connectivity of the vascular network. (b ) We assigned

inflow (red points ) and outflow (blue points ) nodes at various pressures in order to obtain a

persistent and stable network. The vascular graph is characterised by the spatial coordinates of the

nodes and the connections between them
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Fig. 3.4 Proof of concept: tumour growth in an experimentally derived vascular network. (a –d )

show the computed temporal evolution of a tumour in a real vascular network embedded in normal

tissue. As initial condition, we have taken a vascular network from multiphoton fluorescence

44 H. Perfahl et al.



observed in simulations with normal cells only. In contrast, we find a high percent-

age of quiescent cancer cells in all states of tumour growth, leading to further

angiogenesis in our simulations (see Fig. 3.4). The dark red vessels in row 3 indicate

new vessels that develop after tumour implantation. In conclusion, our model with

the chosen parameter values predicts an increase in the vascular density following

tumour implantation.

3.4 Conclusions

In this chapter we have presented a multiscale model of vascular tumour growth and

angiogenesis. After the introduction, the mathematical model was presented in

Sect. 3.2 where we gave a detailed description of the mathematical models on the

different length scales. Finally, we introduced the computational algorithm that we

use to simulate the model. In the third section, simulation results were shown. We

started by considering the growth of a tumour nested in healthy tissue initially

perfused by two straight and parallel vessels and then studied the evolution of cells

and the vascular system. As proof of concept, we then used an experimentally

derived vessel network to initialise a simulation of tumour growth and angiogene-

sis. To the best of our knowledge, this is the first time this has been done—Secomb,

Pries and co-workers (e.g. [31, 26]) have used such networks to study structural

adaptation alone. Our work paves the way for further research which will be more

closely linked with experimental data. In particular, it would be of great interest to

compare our model simulations with experimental data from two or more time

points. The first time point defining the initial conditions for the simulations and

data from later time points used to test the model’s predictive power or to estimate

parameter values. We would not expect to obtain a detailed match at later time

points, since we simulate a stochastic system, but we would expect agreement

between experimental and simulated values for certain characteristics, such as

vessel volume fractions and the distributions of vessel radii and segment lengths.

One problem is the large number of parameters contained in multiscale models

such as ours. This makes it nontrivial to parametrise them. One strategy would be to

start by parametrising small and well-defined submodels independently of each

other. In this way, it should then be possible to determine whether coupling the

submodels together gives physiologically realistic results or if additional effects

have to be incorporated. Another important issue is determining the influence that

each system parameter has on the simulation results. This could be established by

performing a comprehensive parameter sensitivity analysis. Such knowledge would

�

Fig. 3.4 (continued) microscopy and embedded it in a 32 �32 �6 cellular automaton domain. In

the first column, the tumour expands radially, and degrades the healthy tissue (second column).
The predicted adaptations of the vascular system are shown in the third column where the

experimentally derived network is shown in light red, while the new vessels are coloured in red
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enable us to identify those biophysical mechanisms that dominate the system

dynamics and to use this information to derive simpler models which exhibit the

same behaviour. Unfortunately, simulations are very time-consuming—the simula-

tion shown in Fig. 3.2 takes several days on a desktop computer, and then several

realisations of the Monte Carlo simulation have to be carried out for a statistical

analysis. Therefore, future optimisations and the parallelisation of the computer

programme are essential. One also has to investigate to which extent the models are

overdetermined, meaning that changes in different parameters lead to the same

pattern in the simulations.

Beside these limitations, multiscale models build promising frameworks for

future developments. They enable us to investigate how processes operating on

different space and time scales interact and to study the effect that such interactions

have on the overall system dynamics. They also enable researchers in different

areas to link and couple their models. To simplify this model exchange, model

interfaces have to be defined and standardised. Equally, multiscale models can be

used to develop and parametrise simpler continuum models that can be solved more

efficiently. Most current multiscale models generate qualitatively accurate and

meaningful results, and, therefore, they can be applied to identify sensitive

mechanisms that then stimulate biological experiments.
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