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Abstract-We consider a reaction diffusion system in one spatial dimension in which the diffusion 
coefficients are spatially varying. We present a non-standard linear analysis for a certain class of 
spatially varying diffusion coefficients and show that it accurately predicts the behaviour of the full 
nonlinear system near bifurcation. We show that the steady state solutions exhibit qualitatively 
different behaviour to that observed in the usual case with constant diffusion coefficients. Specifi- 
cally, the modified system can generate patterns with spatially varying amplitude and wavelength. 
Application to chondrogenesis in the limb is discussed. 

1. MODEL EQUATIONS 

We consider a general reaction diffusion mechanism for pattern formation with spatially hetero- 
geneous diffusion coefficients. Such a system could arise from a two step patterning process in 
which the spatial pattern in a control chemical regulates morphogen diffusivity in an overlying 
reaction diffusion system. Although several authors have considered reaction diffusion systems 
with spatially varying parameters [l-5], we are not aware of an analytic treatment for the case 
of spatially varying diffusion coefficients. 

The model, in one space dimension, is described by three coupled partial differential equations; 

w = rf(u, v) + (a&(C)~z)z, (l.la) 

Vt = Y!9(% u) + (@(c)u,),, (l.lb) 

Ct = ezc - u2czz, (l.lc) 

where u(z, t) and ~(5, t) are the concentrations of chemicals (termed morphogens) at position z 
and time t, and f and g represent their chemical reaction kinetics. The system has been non- 
dimensionahsed so that y is a scale factor proportional to the length of the domain, and the 
diffusion coefficients of u and w are respectively &(c) and O,,(c). Here c is the concentration of 
the control chemical which is assumed to degrade at a rate e2 and have diffusion coefficient u2. 
Equations (l.la-l.lc) are defined on the interval [0, l] with zero flux boundary conditions in u 
and V. The boundary conditions in c are 

cz(O, t) = 0, c(l,t) = co. (14 

If we now assume that equation (1.1~) reaches a stable equilibrium on a fast time scale in 
which no significant changes in morphogen concentration take place, then equation (1.1~) for c 
can be replaced by the equilibrium concentration of c, CO cosh6x/cosh6 where S = e/v. The 
system then reduces to the pair of reaction diffusion equations (l.la) and (l.lb) with diffusion 

DLB acknowledges the Wellcome Trust for a Prize Studentship in Mathematical Biology. JAS was supported by 
a Junior Research Fellowship at Merton College, Oxford. 

Typeset by dM-TBX 

29 



30 D.L. BENSON et al. 

coefficients a function of x. We first consider a simple case in which we assume that the diffusion 
coefficients of u and v are respectively D- and pD_ when c is less than a value 4, and D+ 
and pD+ otherwise. Here p, D- and D+ are positive constants. Hence were are assuming that 
each diffusion coefficient can be approximated by a simple step function with discontinuity at the 
spatial position x = t, where c = 4, that is, D, and D, are given by 

D, = 
D- x-cc, 

D, = 
PD- x<t, 

D+ XL<, 0 x L 5. 
(1.3) 

Without loss of generality, we consider only the case D- < D+. 

2. LINEAR ANALYSIS 

The system of equations (l.la)-( 1 .lc) will produce diffusion driven spatial patterns [6] only 
if the uniform steady state (ue,~c) is stable to homogeneous perturbations and unstable to 
inhomogeneous perturbations. We linearise the model about (~0, ~0) and look for solutions of the 
form u - ue = exp MX, (x), 2, - wo = exp MX, (z) , with X > 0. Substituting these expressions 
into the linearised model gives a pair of ordinary differential equations for X, and X,,. 

(DuX;)’ + (a - X)Xu + bX, = 0, (2.4a) 

(DvX;)’ + cX, + (a! - X)Xv = 0, (2.4b) 

where ! denotes differentiation with respect to x. On each of [O,<) and (c, 11, D, and D, are 
constant. We may therefore solve equations (2.4a) and (2.4b) separately on each of these intervals 
and match the solutions at x = < according to the conditions 

(2.5a) 

(2.5b) 

Equation (2.5a) guarantees that the solution is continuous; equation (2.5b) ensures continuity of 
flux. 

Consider first [O,t). On this interval we add s/D- times (2.4b) to (2.4a) to give 

(2.6) 

We choose s such that 
b + (d - X)SIP = s, 
a - x + cs/l.l (2.7) 

which defines a quadratic in s, which is independent of D-, with roots si and ~2. For each 
j = 1,2, equation (2.6) becomes an equation in the single variable X, + six,, with general 

solution Aj cos(cr~x) + Bj sin(a;x). Here Aj and Bj are constants of integration and CZ~ = 

[U - X + CSj//l]1’2, so that CY~ and a; are inversely proportional to &De). This gives us two 
simultaneous equations in X, and X,, which we solve by introducing the parameters rzl = XU(c) 
and I?,, = Xv(c) and imposing zero flux boundary conditions at x = 0; 

(JJ, + slrv)s2 

cos(W) 

cos(a;x) - (ru + s2rv)s1 cos(E% 1 cos(cy;x) 1 7 
(2.88) 

(r, + s2w 
cos(@,) cos(,,x) - 

(r, + slw 

cos(&G-) 
cos(qx) ) 1 (2.8b) 

for z E [O, c). Similarly for x E (E, l] 

-L(x) = (s2 : sl) cos((l _ <)&) cos(a~(l-x))- cos((l - ,c)&) cos(ayz+(l-x)) ’ (2*8c) 

[ 

(r, + slws2 (r, + s2rv)s1 
1 

[ 

(r, + s2w (r, + slrv) 
X4x) = (s2 : sl) cos((l_<)cr;) cos(a,f(l-x))- cos((l - [)a;) cos(a31 - x)) I . (2_8d) 
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It may be noted that in deriving the solution (2.8) we have assumed that each of si - sz, and 
cos(@;) and cos((1 - c)o;) for j = 1 or 2, are non-zero. Similar analysis may be carried out 
in these special cases, but the solutions for u and v cannot, in general, satisfy continuity of flux 
at 5 = < (2.4b). Th e solution (2.8) trivially satisfies the continuity condition (2.8a), and satisfies 
the continuity of flux provided 

J’(X)r, + Q(X)r, = 0, 

mm, + S(Xp?, = 0, 

where 

p(A) = (Slq!-- - s2q-)(& - s257,+) 

s2 - Sl 
7 

Q(A) = sls2 CT,- - T;-) + CT,+ - T:) = sls2R(X) 

(s2 - 31) 
7 

S(X) = (SPY- - sx-) + (SlT; - szT,+) 
(s2 - Sl) 

7 

and TJT = D-aj tan(<cr;), Tjf = D+aj+ tan((1 - t)crT), for j = 1,2. Thus nontrivial solutions 
for X, and X,, exist for values for X that satisfy the dispersion relation 

F(X) = P(X)S(X) - Q(X)R(X) = (T; + T-f)(T,- + T,+) = 0. (2.9) 

In contrast to the case of homogeneous diffusion coefficients, this dispersion relation cannot be 
solved analytically. We can show, however, that the roots of (2.9) are real and bounded above; 
and this enables us to find their values by simple numerical solution. In Figure 1 we plot a 
modified form of the dispersion relation as a function of A. This modified form is qualitatively 
similar to the actual dispersion relation but grows more slowly, so we can see more clearly the 
behaviour of the dispersion relation near the roots and the infinities. The infinities correspond 
to values of X for which F(X) is undefined because, either (Y’ = (2n + 1)n for some integer n 
and i = 1,2 or sf = s$, contradicting the assumptions under which the dispersion relation is 
derived. The infinities are therefore artifacts of our analysis which may be ignored. 

c‘ 
.T 

4 iz 6. 

t, 2.6 

5 1 
_ 0.0 
l =: 

x Y -2.6- 

Y 
N) -i5.0- 
%i 

-7.6- 

7.6 Y 

1 

:. ;: 

Figure 1. Typical form of the dispersion relation for system (1.1) for Schnackenberg 
kinetics, f = a - u + u2v,g = b - u2v [7]. Parameter values are a = 0.1, b = 0.9, 
-y = 1000, D- = 0.1, D+ = 1.0 and p = 10. 
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In general both T; + T;’ and T; + T$ cannot be zero. Without loss of generality, we may 

therefore assume that Ty + Tz = 0 and TT + T$ # 0. This implies that rU + sal?,, = Cl and that 
the solutions for X,, and X,, take the form 

ru cos(a,x) 
Xv(x) = 

rv cos(a,x) 

cos(cq~) ’ cos(a;~) ’ x E p,t), 

ru COS(C&I - x)) 

cos(4>(1 - r>> ’ 
Xv(x) = rv c44(1 - 4) 

cos(a~(1 - E)) ’ 
x E [O,S). 

Our linear analysis therefore predicts that the amplitude and wavelength of solutions will be 
constant on each of [O,<) and (5, l], but that these constants will have different values on the 
two intervals. In particular, for D- < D +, the analysis predicts that pattern wavelength will be 
smaller on [0, S) than it is on (<, l]. This is in contrast to the homogeneous environment in which 
both the amplitude and wavelength of patterns are constant throughout the domain. For a wide 
range of parameter values the spatial patterns of the full model are qualitatively similar to the 
predictions made by the linear analysis. A typical profile is shown in Figure 2. 

1.4 

1.2 

g 1.0 

0.2 

0.6 

~ 

6 
. 
I 

0.6 0.8 1 

(4 

1 

*- 
:.4 

l-2- 

s l-O- 

O.o- 

0 

Figure 2. Typical solution profile of u for (1.1) with Schackenberg kinetics when the 
diffusion coefficients of both u and v vary (a) stepwise, (b) continuously. Note that 
in (a) the wavelength of the final pattern varies discontinuously across the domain, 
but in (b) this variation is continuous. The v solution profile is out of phase with 

that of u. In (a) the parameter values are the same as those in Figure 1, except here 
D+ = 2.0. We have choosen 5 = l/2. In (b) D+ = pD_ = pc(z), where j~ = 10 and 

c(z) is the solution of (1.1~) and (1.2) for cc = 2.0, and cosh6 = 20.0. The solutions 
shown here, and all subsequent solutions, were computed using NAG library routine 

DOIPGF which discretises the space derivatives using finite differences, and integrates 

in time using Gear’s method. 

Our method of analysis is also applicable when only one diffusion coefficient is regulated in 
a threshold way. Here we consider the simplest case wherein the diffusion coefficient of u is 
independent of the concentration of c but that of v changes in a simple step function manner, 
such that 

D, = 
1 

D- x<t, 

D+ x2(. 
(2.10) 

As before the solutions of the linearised model capture the key qualitative behaviour of the 
patterns generated by the full model. In this case, however, the solutions may be isolated in one 
part of the domain, or are oscillatory with spatially varying amplitude of oscillation (Figure 3). 
The behaviour is therefore more complicated than for the previous case and our linear analysis 
may be used to delimit regions of the parameter space in which the different types of spatial 
pattern occur. (For full details of the analysis see [8].) 
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Figure 3. Typical solution of u for (1.1) and (1.2) with Schnackenberg kinetics when 

only the diffusion coefficient of v is spatially varying. Here D, E 1 and D, = c(z). 
Parameter values are co = 15.0, -y = 1000 and (a) cash(d) = 15.0, (b) cash(6) = 

15.0/7.0. Again the solution profile of v is out of phase with that of u. 
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Figure 4. For model (l.l), imposing symmetric boundary conditions on c increases 

pattern complexity. (a) Solution for boundary conditions (1.2), (b) solution for 
symmetric boundary conditions (3.11). The solution profile shown is that for u for 
Schnackenberg kinetics with D, E 1.0 and D, = c(z). Here the parameter values 
are co = 15.0, cash 6 = 5.0, 7 = 500. 

3. APPLICATION 
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Recently, Wolpert and Hornbruch [9] have shown that double anterior recombinant chick limbs 
produce two humeral elements. In these experiments the size of the limb is the same as that 
of a normal limb, which produces a single humerus. This result contradicts the usual reaction 
diffusion model for it is well-known that in this model the complexity of patterns depends on the 
size and geometry of the domain. However, if we now apply the model (1.1) assuming that the 
source of the control chemical is at the anterior margin of the limb we see that the experiment 
corresponds to imposing the symmetric boundary conditions on c; 

40, q = co c(l,t) = cc. (3.11) 

If we assume that the diffusion coefficient of v is proportional to the concentration of the control 
chemical c, then we have D, = at(s) = co cosh(6(z - l/2))/ cosh(6/2) where cr is the constant of 
proportionality. This represents a smoothly increasing diffusion coefficient for v which, biologi- 
cally, could represent an increase in gap junction permeability of cells to v due to the presence 
of c [lo]. The solution is a profile with two peaks in concentrations; the pattern in the right 
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hand side of the domain being a mirror image duplicate of that in the left, in agreement with 
the experimental results (see Figure 4). Here we have assumed that the diffusion coefficient is 
spatially-varying. However, as the dimensional diffusion coefficient occurs in the dimensionless 
system (1.1) in terms which also involve L, this can be thought of as a built-in scale factor which 
is transplanted with the tissue. 
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