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H I G H L I G H T S
� We explore the influence of spatial heterogeneity in biological systems.

� We consider how local transport mechanisms impact behaviour near interfaces.
� We study cell movement between white and grey matter in the brain, as an example.
� Profound differences in population behaviour emerge in the presence of interface.
� The commonly used Fickian diffusion transport model cannot predict this dynamics.
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a b s t r a c t

Extracting the population level behaviour of biological systems from that of the individual is critical in
understanding dynamics across multiple scales and thus has been the subject of numerous investiga-
tions. Here, the influence of spatial heterogeneity in such contexts is explored for interfaces with a
separation of the length scales characterising the individual and the interface, a situation that can arise in
applications involving cellular modelling. As an illustrative example, we consider cell movement
between white and grey matter in the brain which may be relevant in considering the invasive dynamics
of glioma. We show that while one can safely neglect intrinsic noise, at least when considering glioma
cell invasion, profound differences in population behaviours emerge in the presence of interfaces with
only subtle alterations in the dynamics at the individual level. Transport driven by local cell sensing
generates predictions of cell accumulations along interfaces where cell motility changes. This behaviour
is not predicted with the commonly used Fickian diffusion transport model, but can be extracted from
preliminary observations of specific cell lines in recent, novel, cryo-imaging. Consequently, these findings
suggest a need to consider the impact of individual behaviour, spatial heterogeneity and especially
interfaces in experimental and modelling frameworks of cellular dynamics, for instance in the
characterisation of glioma cell motility.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

One of the major themes in current biological modelling is the
development of theoretical frameworks which allow the investi-
gation of systems characterised by multiple length scales. For
instance, in ecology, this is motivated by assessing the impact of
individual and species' behaviour on large scale ecosystems, while
ll rights reserved.

te-Beitia).
physiological modelling ultimately demands consideration of
interactions ranging from the genome to the organism.

However, the combinatorics of extrapolating population scale
observations from individual dynamics typically necessitate the
consideration of asymptotic representations at larger length scales.
The simplest, and textbook, exemplar is that of an ensemble of
unbiased randomwalkers in a homogeneous environment, be they
cells in physiology or animals in ecology, which exhibit diffusive
behaviour at the population level. This has been generalised in
numerous investigations, for example in off-lattice models
(Lipkova et al., 2011), whereby the framework at the individual
level does not rely upon a discretisation of space and/or time, as
well as the incorporation of numerous physical and biological
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features. Examples in this popular field (Chowdhury et al., 2005;
Othmer and Stevens, 1997; Hillen and Othmer, 2000; Deroulers
et al., 2009) include the consideration of exclusion processes
(Landman and Fernando, 2011), motility biases such as chemotaxis
(Hillen and Painter, 2009), competing cell populations (Penington
et al., 2011), contact interactions (Lushnikov et al., 2008; Painter
and Sherratt, 2003) and cell–cell adhesions (Stein et al., 2007).

In particular, the importance of considering spatial heteroge-
neity in ecological dispersal has been emphasised in studies where
the pattern and scale of movement have been characterised, for
instance the dispersal of forest beetles (Turchin and Thoeny, 1993;
Cronin et al., 2000), and is regularly considered in cellular model-
ling, which is our focus below. Consequently, the influence of
spatial heterogeneity on randomly walking ensembles of indivi-
duals has been derived for a variety of contexts with, for example,
Painter and Sherratt (2003), as well as Othmer and Stevens (1997),
presenting numerous continuum limits. Fickian diffusion, which is
ubiquitously invoked in modelling studies at the cellular scale
(Murray, 2003), in fact requires non-local sensing in the presence
of small scale heterogeneity (Painter and Sherratt, 2003). Ulti-
mately, cells are not point particles, so non-local sensing has been
incorporated into numerous models of dispersion, especially those
involving cellular mechanics and mechano-sensing (e.g. Murray,
2003; Murray et al., 1988; Moreo et al., 2010). However, in
homogeneous media, the subtlety of whether nearest neighbour
non-local sensing is present or absent typically does not emerge at
the population level in models that do not consider mechanics;
this is in distinct contrast to environments possessing spatial
heterogeneity, as illustrated below.

A fundamental example of where such a modelling application
may be relevant at the cellular scale is the consideration of glioma,
which is the most common adult primary brain malignancy and
possesses an infiltrative behaviour; in its most aggressive state,
glioblastoma, this tumour is characterised by life expectancies of
less than 2 years from diagnosis and has no cure (Stupp et al., 2009).
Hence, an extensive literature has developed with the purpose of
assessing the spread of malignant glial cells given clinical imaging
data (Swanson et al., 2002a, 2002b; Hatzikirou et al., 2005;
Ellingson et al., 2011; Konukoglu et al., 2010a; Kim et al., 2009;
Bearer et al., 2009; Eikenberry et al., 2009), utilising modelling
frameworks that exploit the fact that these cells are highly motile
and dispersive, which has been observed and even quantified
in vitro and in vivo (Chicoine and Silbergeld, 1995). Quantitative
comparisons with Fickian diffusion have also exhibited favourable
agreement for malignant glial cells within a collagen gel, on
supplementing the theoretical model with cell proliferation and a
distinction between the glioma core and its invasive rim, which
allows for cell shedding dynamics (Stein et al., 2007). In addition,
and as recognised in current modelling frameworks (Konukoglu
et al., 2010a, 2010b; Rockne et al., 2008), invading gliomas infiltrate
highly heterogeneous brain tissue, due to the presence of disparate
levels of myelin withinwhite and grey matter. This, in turn, result in
substantially different motilities estimated for each of these
two phases, differing by a factor of between 5 and 25 according to
the parameter estimation method (Rockne et al., 2008; Konukoglu
et al., 2010b), with faster motility in white matter.

Our objective is to consider how local transport mechanisms
impact population behaviours near interfaces, comparing and
contrasting studies of interfacial behaviours for Fickian diffusion
and population level representations of locally sensing individual
transport. A specific illustrative context will consider the scales
involved with glioma invasive dynamics in white and grey matter
though, more generally, we are exploring how interfacial archi-
tecture interplays with cellular behaviour to influence population
level predictions, given a separation of length scales for the
individual, the interface and the population.
2. Cellular level dynamics in the presence of spatial
heterogeneity

We briefly review the derivation of equations describing the
population level dynamics of individuals that are random walkers
and sense only locally, which we refer to as myopic walkers below,
with a generalisation to the sensing required for Fickian diffusive
dynamics. We also briefly describe how to perform simulations
incorporating the stochasticity for these systems to allow a study
of the influence of intrinsic noise as well as the investigation of the
thermodynamic continuum limit.
2.1. From microscopic to macroscopic description of cell migration
with local sensing

We consider a population of motile cells within a one-
dimensional domain, subject to reflecting (zero flux) boundary
conditions. Each cell is considered as a discrete entity subject to
logistic growth kinetics that can independently move, according to
probabilistic rules, between k boxes of length Δx¼ L=k on the
domain x∈½0; L�. Hence box i constitutes the interval ½ði−1ÞΔx; iΔx�
and a cell in box i sits at xi ¼ ð2i−1ÞΔx=2; i¼ 1;2;3;…; k. Volume
exclusion is not considered as our aim is to investigate the
simplest transport processes in this initial study of interfaces.

Let Si denote the species associated with cells in box i∈f1;…; kg
and define n¼ ðn1;…;nkÞ to be numbers of species ðS1;…; SkÞ
present at a given time. All changes in these species numbers
can be associated with a set of transitions T1;…; TJ corresponding
to cell transitions between boxes and also the logistic kinetics;
with a given reaction Tj, j∈f1;…; Jg, there is a corresponding
stoichiometric vector vj and propensity function ajðnÞ, which have
the following definitions:

Definition 1. The stoichiometric vector vj ¼ ðv1j;…; vkjÞ is the state
change vector of reaction Tj. Thus, if the system is in the state n, and
reaction Tj occurs, then the state becomes nþ vj (Gillespie, 2007).

Definition 2. The propensity function ajðnÞ is defined to be such
that ajðnÞ dt is the probability that, given the system is in state n at
time t, one Tj reaction will occur within the time interval [t,t+dt)
for sufficiently small dt.

The propensity function has the empirical mathematical form
(Gillespie, 1976)

ajðnÞ ¼ kjhjðnÞ ð1Þ

where (i) the function hjðnÞ is the number of distinct combinations
of reactants contributing to the transition Tj that are available in
state n and its form depends on the order of the reaction, and (ii) kj
is the specific probability rate constant and is defined to be such
that kjdt is the probability that any randomly chosen reactant
molecules associated with the Tj transition will undergo this
transition in the next infinitesimal time interval [t,t+dt).

With Pðn; tjn0; t0Þ denoting the probability that the system is in
state n at time t, conditional on being in the state n0 at time t0, a
probabilistic balance yields the master equation (van Kampen,
2007; Woolley et al., 2011b)

∂
∂t

Pðn; tjn0; t0Þ ¼ ∑
J

j ¼ 1
Pðn−vj; tjn0; t0Þajðn−vjÞ−Pðn; t n0; t0ÞajðnÞ:

�� ð2Þ

For our specific system we consider the following J ¼ 4k−2 transi-
tions between species:

S1 ⇌
q1R

q2L

S2 ⇌
q2R

q3L

… ⇌
qk−1R

qkL

Sk; Si ⇌
p2

p1
Si þ Si; i¼ 1…k: ð3Þ



Fig. 1. Diagram of the space-jump description of diffusion and proliferation. Rj is
defined as the right diffusion reaction and Lj as the left diffusion reaction. For a cell
in box j, the left and right jumping stochastic coefficients are given by qjL and qjR,
respectively, and the proliferation stochastic coefficient is given by p2. For two cells
in the same box, there is also the possibility of a competition induced, logistic-type,
reduction in cell number with a stochastic coefficient denoted by p1.
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where q1R;…; qk−1R ; q2L ;…; qkL ; p1; p2 are stochastic transport and
kinetic coefficients (see Fig. 1). Thus, the specific probability rate,
denoted by kj in Eq. (1), is given by one of the parameters
fq1R;…qk−1R ; q2L ;…; qkL ; p1; p2g according to the reaction under con-
sideration. Hence the propensity functions for, respectively, right
movements, left movements, proliferation and saturation induced
cell loss are given by

q1Rn1;…; qk−1R nk−1; q2L n2;…; qkLnk; p1n1;…; p1nk; p2n
2
1;…;p2n

2
k :

ð4Þ
The stoichiometric vectors are straightforward to determine,

for example the vector associated with the transitions between
species S1-S2, which simultaneously increase n2 and decrease n1
by one, is given by ð−1;1;0;…;0Þ. Hence inserting the propensity
functions and stoichiometric vectors into the master equation (2),
we have a stochastic representation of our system via the evolu-
tion of Pðn; tjn0; t0Þ in the master equation. In particular, note from
(3) that the cells are myopic, i.e. they only sense locally which,
although an assumption, is a reasonable hypothesis if the length
scale of the cell is much smaller than the length scale of variation
of the surrounding environment. As discussed in Appendix B, this
is the relevant parameter regime for a cell (without extended
processes) traversing between white and grey matter, where the
interfacial scale is around 100–300 μ.

2.1.1. Stochastic simulations
While the master equation provides a fundamental representa-

tion of the stochastic system, it is rarely implemented directly. For
the stochastic simulations below a single realisation of the classic
Gillespie algorithm (Gillespie, 1976) is implemented with unbiased
motility (i.e. qiL ¼ qiR in Eq. (3) and qiR ¼ si, where si is a signal
localised to box i) via the use of Dizzy 1.11.3 (Ramsey et al., 2005),
using the propensity functions and stoichiometric vectors
described above. Initially, we consider 200 particles in each of
the first two discrete boxes. The fact that single realisations are
sufficient for our purposes below emphasises that the relatively
large cell numbers associated with tumour physiology in the
context of glioma are adequate to consider weak noise limits.

2.1.2. The weak noise, continuum, limit with unbiased motility
In Appendix A a detailed derivation of the continuum limit of

the above stochastic system is presented in the weak noise limit
using van Kampen's (2007) expansion, given unbiased motility,
that is qjR ¼ qjL in Eq. (3). This derivation highlights that one must
assume that the amplitude of the fluctuations scale with the
inverse square root of the system size; however the saturation
dynamics entails cell behaviours are not independent, preventing
the use of the central limit theorem to rigorously justify this
assumption. While this scaling is frequently observed even when
system elements are not independent (Kubo et al., 1973) it is an
explicit assumption, and thus we do need to justify the validity of
the continuum approximation a posteriori below. Equally, the
initial conditions being zero outside a compact set suggest that
the expansion is not justified a priori.

With this caveat, and with c denoting the cell density, scaled so
that the carrying capacity is unity, the result emerging from
Appendix A is the continuum governing equation

∂c
∂t

¼ ∂2

∂x2
D

x
ϵ

� �
c

h i
þ cð1−cÞ; ð5Þ

with zero flux boundary conditions. Note that we have non-Fickian
transport. D is assumed to be a positive, smooth and bounded
function for all ϵ40. For the simulations D is specified to be either
of a tanh form or sinusoidal, modelling a single and multiple sharp
transition regions. Further, the parameter ϵ is the ratio of the
diffusive heterogeneity length scale to the reaction-diffusion
length scale (i.e. ½Dn

dim=ρdim�1=2, where Dn

dim is a measure of the
cellular diffusion scale and ρdim is a measure of the cellular
proliferation rate). Hence, for an interface the parameter ϵ is the
ratio of the interfacial length scale to ½Dn

dim=ρdim�1=2. Below, we
consider the parameter regime ϵ⪡1 and thus focus on systems
with a separation of scales, with the individual scale much smaller
than that of the interface, which in turn is taken to be much
smaller than the macroscopic “reaction–diffusion” length scale,
½Dn

dim=ρdim�1=2.

2.2. Unbiased Fickian diffusion in the continuum limit

Analogously, we can consider the microscale dynamics that is
required for Fickian diffusion to emerge in the continuum limit. In
particular, this does not occur for myopic sensing but necessitates
that cells sense non-locally, which requires justification if the
environment is changing on a much longer length scale than
the cell.

For the simpler case of unbiased cell level motility, we must
have stochastic transport coefficients of the form

qiR ¼ si þ siþ1; qiL ¼ si þ si−1; i∈f2;…; k−1g; ð6Þ
where si is a signal localised with box i and thus the above is
clearly non-local. The deduction of Fickian diffusion can proceed as
above and has been presented (without the complication of
microscale kinetics) on numerous occasions in the literature (e.g.
Baker et al., 2010).

Following such derivations with logistic kinetics and appro-
priate rescalings one finds

∂c
∂t

¼ ∂
∂x

D
x
ϵ

� � ∂c
∂x

� �
þ cð1−cÞ; ð7Þ

where Dðx=ϵÞ is a (rescaled) continuum interpolation of fs1;…; skg
and ϵ inherits the above interpretation as a ratio of length scales.
Finally, again note that this derivation is also subject to the same
caveat that the fluctuations scale with the inverse square root of
the system size, which is an explicit assumption in the presence of
the non-linear kinetics that requires a posteriori checking.

2.3. Summary

Thus, to explore the effects of the different modelling frameworks
we have four systems. Firstly for myopic cell transport we have
(i)
 the stochastic system associated with the master equation (2)
plus the propensity functions (4) and the associated stoichio-
metric vectors with the assumption that left ðqiLÞ and right ðqiR)
stochastic transport coefficients are equal so that the micro-
scale dynamics is unbiased.
(ii)
 the continuum limit in this case, as given by Eq. (5).
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For Fickian transport we instead have
(iii)
 the non-local stochastic system of Section 2.2 which uses
propensity functions derived from Eq. (6).
(iv)
 Fickian diffusion in the continuum limit, Eq. (7).
Below, we always assume zero flux boundary conditions at domain
edges and we explore these four systems in spatially heteroge-
neous environments reflecting transitions in the diffusion coeffi-
cient to observe how microscale details impact on population level
behaviours in the presence of interfaces. In particular, we focus on
systems with a separation of scales, with illustrations and para-
meter choices motivated by the context of glioma cell infiltration
of white and grey matter.
3. Analytical results

We firstly analytically consider the myopic and Fickian systems
in the presence of an interface to assess whether differences are
generically predicted. Here, we assume D is isotropic and a
function of space only. Extensions of the analytical conclusions
below for more general forms of D are illustrated in Appendix C.

3.1. Fickian diffusion

We have

∂c
∂t

¼∇ � D
x
ϵ

� �
∇c

n o
þ cð1−cÞ; ð8Þ

where ϵ is the dimensionless length scale of the heterogeneity, i.e.
it is the ratio of the diffusive heterogeneity length scale to
½Dn

dim=ρdim�1=2, as discussed above.
Suppose in (8) there is a single interfacial transition in the

diffusion coefficient centred at a manifold C of dimensionless
length scale ϵ in its normal direction, n, which is smaller than any
other length scale in the continuum model, including the radius of
curvature of C. On the length scale of the transition region, the
manifold C can be treated as planar and with the boundary layer
rescalings X¼ x=ϵ, τ¼ t=ϵ2 we have at leading order

∂c
∂τ

¼ ∂
∂X

DðXÞ ∂c
∂X

� �
þ Oðϵ2Þ; ð9Þ

where X ¼X � n and, without loss of generality, the interface is
centred at X¼0.

The variable τ is a fast time scale and yet, within the context of
cellular models, the system is being driven on much slower time
scales, associated with matching into the regions away from the
interface, where the system is dictated by the population
dynamics which does not evolve on this fast time scale. Hence,
the above diffusion equation would relax to its quasi-steady state;
on dropping the Oðϵ2Þ correction we have

∂
∂X

DðXÞ ∂c
∂X

� �
¼ 0: ð10Þ

Integrating across the transition region twice gives

cð∞Þ−cð−∞Þ ¼ A
Z ∞

−∞
dX

1
DðXÞ

where A is constant. Given that the diffusion coefficient is finite
and non-zero and that the population density, c, is finite, we must
have A¼0. Hence

cð∞Þ ¼ cð−∞Þ: ð11Þ
Thus, once any rapid transient dynamics have equilibrated, which
occurs on non-dimensional time scales of t∼Oðϵ2Þ and thus much
faster than the population dynamics time scale, no jump is
predicted to occur across the interface. Hence, after cells initially
encounter a transition region, the modelling prediction is that
there is neither a sharp change in cell density across the interface
nor an accumulation of cells on one side of the interface.

3.2. Myopic transport

For myopic transport, the analogue of Eq. (10) is

∂2

∂X2 ðDðXÞcÞ ¼ 0 ð12Þ

via an analogous derivation. Hence

c¼ AX þ B
DðXÞ ;

and finiteness as X-7∞ enforces A¼0 since c matches into the
values of cell density either side of the interface. Thus, there is a
sharp transition of cell density in the interfacial boundary layer
with

cð−∞Þ
cð∞Þ ¼ Dð∞Þ

Dð−∞Þ : ð13Þ

In the context of glioma, with cells moving from grey matter for
X⪡−1 into white matter for X⪢1, one has that the ratio Dð∞Þ=Dð−∞Þ
ranges from 5 to 25 and thus a sharp change in cell density is
predicted across the interface. More generally, this emphasises
that one can expect the interfacial behaviour to be very different to
the Fickian case, highlighting that the microscale dynamics will
have a large impact on interfacial population behaviours. This is
explored in detail below via numerical simulation.
4. Numerical results

4.1. A single transition region in one spatial dimension

In Figs. 2 and 4, a single transition region in the centre of a one-
dimensional spatial domain is considered for both deterministic
and stochastic simulations with cells initially in a region of low
diffusivity at the left of the domain. On passing through the
interface the diffusivity increases by a factor of 25, as depicted in
Fig. 3(a), which is consistent with an upper estimate of the ratio of
cell diffusion coefficients in grey and white matter (Rockne et al.,
2008; Konukoglu et al., 2010b). One can immediately note that the
deterministic simulation, within the left column of the plots,
accurately approximates the stochastic simulation, in the right
column. Furthermore, by comparing Fig. 2 with Fig. 4, these results
show a profound difference between the predictions of Fickian
transport, Fig. 2, compared to myopic transport, Fig. 4. The former
predicts a smooth transition through the interface with no
impediment to cells; though travelling waves do not develop on
this domain they are observed on larger domains (results not
shown). The latter case of myopic transport, in contrast, exhibits
a sharp cellular condensation in the region of the interface and a
much slower penetration of cells beyond the interfacial region.
Finally, we have considered different ratios of diffusion coefficients
across the interface, for instance reducing the diffusion coefficient
to five, and analogous results are predicted.
4.2. Multiple transition regions in one spatial dimension

In Figs. 5 and 6, transport across multiple transition regions is
modelled in the case of a sinusoidal variation in the diffusion
coefficient with 20 oscillations across the domain, as depicted in
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Fig. 3(b), to illustrate the effects of multiple transitions regions.
The left hand columns show the results from the deterministic
model, while results from their stochastic analogues are presented
in the right hand columns. Once more we see that noise is not
important, but that there is a dramatic difference between the
Fickian diffusion model, Fig. 5, and the myopic transport model,
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density cðx; tÞ possessing a unit carrying capacity. There is an initial small cell density around x¼0, within a domain x∈½0;10�, where x is in units of millimetres, which is also a
representative cellular reaction–diffusion length scale (see Appendix B). Now, the dimensional diffusion coefficient, in units of mm2 per day, is given by
D¼ ðDþ

dim þ D−
dimÞ=2þ ðDþ

dim−D
−
dimÞ sin ð4πxÞ=2, where Dþ

dim ¼ 0:25 mm2=day and D−
dim ¼Dþ

dim=25 are dimensional cellular diffusion coefficients for grey and white matter,
respectively. Thus the diffusion heterogeneity transitions sharply over an interfacial length scale of Ltr∼0:25 mm and changes by a factor of 25. Note that the square ratio of
the (smallest) diffusive length scale to the length scale of the transition is given by ϵ2 ¼ ρL2tr=D

−
dim∼0:075, which is within the range of parameter estimates given in Appendix B.

(a) The Fickian continuum limit (case (iv), Eq. (7)). (b) The associated stochastic simulation (case (iii)).
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Fig. 6. Effects of oscillatory diffusion coefficient. Myopic transport. Here, we have the same domain, initial conditions, boundary conditions, parameters, heterogeneous
diffusion coefficient and cell kinetics as in Fig. 5. The one and only contrast is that we now have myopic cell transport. (a) The scaled cell density cðx; tÞ predicted by the
deterministic simulation (case(ii), Eq. (5)). (b) The associated stochastic system (case (i)).
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Fig. 6. Note that when extensive oscillations in the diffusion
coefficient are present, as in Fig. 7, Fickian diffusion effectively
homogenises the influence of the variations in the diffusion
coefficient but the myopic transport model predicts a more
complex dynamics with cell condensations in the transition
regions. In this instance, it can also be seen that predicted
infiltration speeds and time scales are similar for myopic and
Fickian transport, in distinct contrast to Figs. 2 and 4.

4.3. Interfaces in two spatial dimensions

A simulation of the Fickian diffusion equation (8) with zero flux
boundary conditions is presented in Fig. 8 for the scaled cell
density, c, possessing a unit carrying capacity within a two-
dimensional domain with a transition region in the diffusion
coefficient, bisected by the black line. Here, the diffusion coeffi-
cient changes by a factor of 25, increasing in the y-direction, while
the initial conditions are such that the cell density is at carrying
capacity within the region enclosed by the black-dashed circle and
is zero elsewhere. The explicit form of the parameters, as detailed
in the caption, is motivated by glioma cell data and the scale of the
white–grey matter transition (see Appendix B). Note in particular
that the cell density subject to Fickian diffusion is neither hindered
by the interface nor are there any sharp gradients or cell
accumulations near the interface as the cells spread through the
domain. Also, the relatively rapid transport of the cells in the
regions associated with larger diffusion coefficient is clearly
evident.

In Fig. 9 we consider myopic transport with zero flux boundary
conditions in an analogous two-dimensional domain with a
diffusion coefficient that again transitions sharply between the
lower and upper halves of the domain. We observe predictions for
a condensation of cells around the transition region, with a sharp
population gradient in this region.
4.3.1. Imaging observations
Recent imaging studies (Burden-Gulley et al., 2011) not only

reveal that the selected glioma cell lines extensively utilise the
abluminal niche as a conduit, which we do not consider here, but
also present results that appear to show that the other cell lines
have sharp gradients of tumour cell accumulations that delimit
grey matter–white matter interfaces, as depicted in Fig. 10. While
definitive conclusions based on this initial high resolution imaging
may be inappropriate as, for example, it is a single snap-shot, one
can nonetheless note the analogy between the modelling and the
imaging observation of Fig. 10 where the tumour cell density also
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Fig. 7. Effects of oscillatory diffusion coefficient. Differences between Fickian and myopic transport. Here, we illustrate the effects of a highly oscillatory diffusion coefficient
in one-dimensional simulations with zero flux boundary conditions for a scaled cell density cðx; tÞ, though now the domain is x∈½0;40�, where x is in units of millimetres.
The dimensional diffusion coefficient, in units of mm2 per day, is given by D¼ ðDþ

dim þ D−
dimÞ=2þ ðDþ

dim−D
−
dimÞ sin ð30πx=8Þ=2, where Dþ

dim ¼ 0:25 mm2=day and D−
dim ¼Dþ

dim=5
are dimensional cellular diffusion coefficients for grey and white matter, respectively. Thus the diffusion heterogeneity transitions sharply over an interfacial length scale of
Ltr∼0:27 mm and changes by a factor of 5 with faster diffusion as x increases. Note that, as in previous figures, ϵ2 ¼ ρL2tr=D

−
dim∼0:03, which is within the range of parameter

estimates given in Appendix B. Left. Fickian cell transport. Right: Myopic cell transport.
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Fig. 8. A simulation of the two-dimensional Fickian diffusion equation (8) at fixed
time with zero flux boundary conditions for the scaled cell density cðx; y; tÞ
possessing a unit carrying capacity. The domain is given by x∈½0;50�, y∈½0;10�,
where x and y are the horizontal and vertical coordinates respectively, in units of
millimetres, which is also the order of the reaction–diffusion length scale discussed
in Appendix B. The dimensional diffusion coefficient, in units of mm2 per day, is
given by D¼Dþ

dim þ ðD−
dim−D

þ
dimÞ � ð1−tanh½ðy−5Þ=0:2�Þ=2, where Dþ

dim ¼ 0:25 mm2

=day, D−
dim ¼Dþ

dim=25. Thus, the diffusion heterogeneity transitions sharply over
an interfacial length scale of Ltr∼0:2 mm and by a factor of 25. The square ratio of
the (smallest) diffusive length scale to the length scale of the transition is given by
ϵ2 ¼ ρL2tr=D

−
dim∼0:01, which is within the range of parameter estimates given in

Appendix B. Note the region outlined by the black dashes; the initial conditions are
c¼1 inside this region, and c¼0 elsewhere and the above plot is for t¼230 days.
Note that the density c is predicted to readily pass through the interface with no
cellular accumulations. This simulation was produced using COMSOL 4.2.1.166.
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Fig. 9. A simulation of the two-dimensional generalisation for the continuum limit
of the myopic equation (7) at fixed time with zero flux boundary conditions for the
rescaled cell density cðx; y; tÞ possessing a unit carrying capacity. The domain is
given by x∈½0;50�; y∈½0;10�, where x and y are the horizontal and vertical
coordinates, respectively, with units of millimetres, which is also a representative
cellular reaction–diffusion length scale (see Appendix B). Note the region outlined
by the dashed black line. The initial conditions are c¼1 inside this region, and c¼0
elsewhere and the above plot is for t¼230 days. The dimensional diffusion
coefficient, in units of mm2 per day, is given by D¼Dþ

dim þ ðD−
dim−D

þ
dimÞ

�ð1−tanh½ðy−5Þ=0:2�Þ=2, where Dþ
dim ¼ 0:25, D−

dim ¼Dþ
dim=5 are dimensional cellular

diffusion coefficients for grey and white matter, respectively. Thus the diffusion
heterogeneity transitions sharply over an interfacial length scale of Ltr∼0:2 mm and
changes by a factor of 5. Note that the square ratio of the (smallest) diffusive length
scale to the length scale of the transition is given by ϵ2 ¼ ρL2tr=Dg∼0:05, which is
within the range of parameter estimates given in Appendix B. Clearly, the above
plot demonstrates sharp transitions at the interface, and, in addition, cell con-
densations in this region. The simulation was produced using COMSOL 4.2.1.166.
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appears to track the interface, and the very different behaviour
compared with Fickian diffusion, as illustrated in Fig. 8.
5. Discussion and conclusions

In this study we have explored the behaviour of stochastic and
deterministic models of cell motility, coupled with cell prolifera-
tion and logistic saturation, near interfaces. This has been moti-
vated, in particular, by characterising how individual behaviour
alters invasion through interfaces and illustrated by considering
modelling frameworks for infiltrative glioma cell dynamics, where
malignant tumour cells invade highly heterogeneous brain tissue.

We first observed that our simulations of the stochastic
systems for relatively small cell numbers by observable tumour
standards are not particularly noisy and further that van Kampen's
(2007) weak noise expansion yields continuum limits with essen-
tially the same behaviour. This is an important observation as the
van Kampen expansion is based on an ansatz without a priori
justification given the non-linear dynamics inherent in cell satura-
tion. The latter introduces correlations between cells, preventing
the use of rigorous results, such as the central limit theorem, to
classify the scale of the system fluctuations. Thus, it cannot be
guaranteed, a priori, to yield the correct deterministic limit.
Furthermore, the infiltration speeds of the continuum limit PDEs
are determined in the far field asymptotic region of the wavefront
(Murray et al., 1988), precisely where the continuum approxima-
tion is strictly invalid. Despite such difficulties, one has, a poster-
iori, that continuum limits derived via van Kampen's procedure are
observed to yield deterministic models that match stochastic
predictions. Notably, this validates the use of continuum theory
for modelling invasions in heterogeneous environments, as with
simulating glioma tumour spread, despite the fact that for the
continuum system, wave speed selection occurs in the asymptotic
wavefront, where the continuum approximation is not strictly
valid.

In these deterministic continuum limits we have analytically
observed that the microscale details of cellular behaviour pro-
foundly alter macroscale interfacial behaviours. For example, there
is an absence of sharp transitions for Fickian transport, in distinct
contrast to the continuum limits of myopic cellular transport, even
though the analogous dynamics for both systems in homogeneous
media is mathematically identical. In particular, the generality of
these analytical studies emphasises that the sensitivity induced by
microscale dynamics in the presence of interfaces cannot be



Fig. 10. Reprinted by permission from The American Association for Cancer Research: Burden-Gulley et al. (2011). Snapshot images reproduced from the supplementary
material movies of Burden-Gulley et al. (2011) for high resolution imaging of the CNS-1 glioma tumour cell line within an in vivo mouse model. The pseudo-colour is such
that green represents the core of the tumour, yellow represents dispersing cells within grey matter and pink denotes cells within the white matter, which is given by
the subtle grey shading. On the left image the red line shows a mass of glioma cells delimiting the grey matter-white matter boundary, and this is magnified in the image on
the right. The irregularity of the border region, and the fact that this irregularity is also present in the glioma cell density distribution, indicates that cells are accumulating at
the interface rather than immediately crossing it. The fact that the interface is in a radial direction relative to the tumour core indicates that this is not simply a snap-shot of
the cells before they infiltrate the white matter on spreading out from the tumour core.
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resolved via different parameter choices. Similarly, the analysis
presented in Appendix C illustrates that anisotropic or non-linear
transport does not radically alter Fickian dynamics near an
interface.

From numerical simulations, Fickian transport and its asso-
ciated stochastic counterpart fail to respect interfaces, with cells
predicted to readily pass through transition regions without sharp
changes, exhibiting a monotonic profile with no tendency for cell
accumulation. In contrast, myopic cellular transport yields a
fundamentally different stochastic system and consequently
a different approximate continuum limit in the presence of
interfaces arising from spatial heterogeneity. Both the stochastic
myopic transport system and its continuum limit exhibit sharp
transitions at interfaces with cell condensations in transition
regions, emphasising that cells are predicted to accumulate in
these regions.

In heterogeneous media in one spatial dimension, with multi-
ple transition regions and myopic transport, the interfaces are
predicted to serve as multiple nucleation sites for the condensa-
tions of cells. Nonetheless, the invasive speed of a wavefront
appears to be similar between the two modelling frameworks, as
emphasised by Fig. 7. Thus, despite many quantitative differences,
especially at isolated interfaces, we have also observed modelling
regimes where important behaviours, such as invasion speeds,
appear to be very similar between the myopic and Fickian frame-
works. An intuitive explanation is that myopic transport has an
additional advective term, with an advective velocity given by
∂D=∂x in one spatial dimension and ∇Dðx=ϵÞ more generally,
which can be readily determined by expanding the derivatives in
Eq. (5). Hence, in the one-dimensional setting, wave propagation
enhancements while crossing an interface from grey to white
matter may be compensated when the wave passes back to grey
matter from white matter, thus generating very similar invasion
speeds. Nonetheless, the dynamics in higher dimensions does not
indicate similarities between myopic and Fickian transport, with
propagation along interfaces, illustrating that the difference in
population-scale behaviour in the two models is more complex in
generality. Thus further work is required to understand when
individual-based behaviour produces important differences for
population dynamics within heterogeneous media. Nonetheless,
in the context of glioma tumour spread, these observations might
suggest that the distinction between myopic and Fickian transport
appears to be most relevant at white–grey matter transitions,
rather than regions of the brain, such as the reticular formation,
where the intermix of heterogeneity entails that a division into
grey and white matter is not typically feasible (Nieuwenhuys and
Donkelaar, 2003).

In higher spatial dimensions, myopic cell transport results in
population level predictions of cell accumulations along interfaces
between distinct homogeneous media with, in addition, cell
guidance along these regions, despite the absence of anisotropic
cellular transport. Further, our modelling prediction of cell gui-
dance along interfaces is not inconsistent with the apparent
predilection of CNS-1 glioma cells to accumulate at the juncture
of grey and white matter in mouse (Burden-Gulley et al., 2011 and
Fig. 10), in distinct contrast to Fickian-based models. These pre-
dictions also emphasise that glioma cell assays in homogeneous
media provide insufficient information on cell transport to enable
predictions for global behaviour in situ and instead more complex
environments need to be considered for empirically characterising
glioma cell behaviour. We close by remarking that our observa-
tions need not be restricted to glioma infiltration and more
generally emphasise that individual behaviours need to be care-
fully assessed whenever considering population models near
interfaces.
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Appendix A. Derivation of the weak noise, continuum, limit
for myopic transport

We have the master equation (2) with transitions defined by
Eq. (3) and the propensity functions given by Eq. (4). Using van
Kampen's (2007) expansion, we define a new random variable, η,
through the following relation:

n¼ ϕΩþ η
ffiffiffiffi
Ω

p
¼Ω ϕþ 1ffiffiffiffi

Ω
p η

� �
; ðA:1Þ

where η characterises the fluctuations in the species numbers and
Ω is a suitable system parameter, which we take to be the initial
cell number. In the absence of fluctuations, that is η¼ 0, ϕ¼ n=Ω is
the weak noise limit of the number of cells per box, which can be
readily scaled to give a density with unit carrying capacity.
The above van Kampen ansatz supposes that the fluctuations scale
with the square root of the number of initial cells. Given the
saturation dynamics, each cell's dynamics is not independent
of the other cells, and thus the central limit theorem cannot
be utilised to prove the fluctuations scale in this manner.
Nonetheless, it is commonly asserted that this scaling of fluctua-
tions is apparent at statistical equilibrium, except for delicate
situations such as if the system is near an unstable equilibrium
point (Kubo et al., 1973). Thus we may anticipate the validity of van
Kampen's ansatz, though this does need to be explicitly checked a
posteriori.

Following van Kampen (2007), we can define

Πðη; tÞ ¼ Pðn; tÞ
using (A.1). In addition, we use the transition rates of Eq. (3) to
define the macroscopic rate constants

diR ¼
def

qiR; djL ¼
def

qjL; ρ1 ¼
def

p1; ρ2 ¼
def

Ωp2; ðA:2Þ

for i∈f1;…; k−1g, j∈f2;…; kg and we treat 1=
ffiffiffiffi
Ω

p
⪡1 as a small

expansion parameter. dL and dR are the microscopic diffusion
coefficients. The weak noise limit and its corrections then emerge
from a regular perturbative expansion of the master equation (2),
given the propensity functions of (4) and the associated stoichio-
metric vectors, with the additional substitution of the stochastic
rate and kinetic coefficients with macroscopic rate constants of
Eq. (A.2).

After extensive, but conceptually straightforward and standard
algebra (Woolley et al., 2011b, 2011a), the leading order contribu-
tion to van Kampen's expansion yields the weak noise limit:

dϕ1

dt
¼ d2Lϕ2−d

1
Rϕ1 þ ρ1ϕ1−ρ2ϕ2

1; ðA:3Þ

dϕi

dt
¼ diþ1

L ϕiþ1 þ di−1R ϕi−1− diR þ diL
� �

ϕi

þρ1ϕi−ρ2ϕ
2
i ; i¼ 2‥k−1; ðA:4Þ

dϕk

dt
¼ dk−1R ϕk−1−d

k
Lϕk þ ρ1ϕk−ρ2ϕ

2
k : ðA:5Þ

In order to derive a continuum description of cell movement from
the weak noise limit we expand terms such as diþ1

L ; di−1R and ϕiþ1
about diL; d

i
R and ϕi, respectively:

diþ1
L ¼ dLðxi þ ΔxÞ ¼ dLðxiÞ þ Δx

∂dL
∂x

ðxiÞ þ
1
2
ðΔxÞ2 ∂

2dL
∂x2

ðxiÞ þ⋯ ðA:6Þ

di−1R ¼ dRðxi−ΔxÞ ¼ dRðxiÞ−Δx
∂dR
∂x

ðxiÞ þ
1
2
ðΔxÞ2 ∂

2dR
∂x2

ðxiÞ þ⋯ ðA:7Þ

ϕiþ1 ¼ ϕðxi þ ΔxÞ ¼ ϕðxiÞ þ Δx
∂ϕ
∂x

ðxiÞ þ
1
2
ðΔxÞ2 ∂

2ϕ

∂x2
ðxiÞ þ⋯ ðA:8Þ
where Δx is the box width. Substituting into Eqs. (A.(3), A.4) and
(A.5) and taking the limit as Δx-0, we obtain

∂ϕ
∂t

¼ 1
2
∂2

∂x2
½ðDLðxÞ þ DRðxÞÞϕ� þ

∂
∂x

½ðDLðxÞ−DRðxÞÞϕ�
þρ1ϕ−ρ2ϕ

2; ðA:9Þ
where

DLðxÞ þ DRðxÞ ¼ ðΔxÞ2½dLðxÞ þ dRðxÞ�; DLðxÞ−DRðxÞ ¼Δx½dLðxÞ−dRðxÞ�:
In particular, for unbiased microscale motility, as assumed below,
the left and right diffusion functions are equal, DLðxÞ ¼DRðxÞ ¼def DðxÞ,
so that we have

∂ϕ
∂t

¼ ∂2

∂x2
½DðxÞϕ� þ ρ1ϕ−ρ2ϕ

2; ðA:10Þ

where ϕ is the cell density. A simple rescaling of the density ϕ to
give a density of unit carrying capacity, denoted c, together with a
rescaling of length and time, yields the continuum limit, which can
be written in the form

∂c
∂tn

¼ ∂2

∂x2
n

Dn

xn
ϵ

� �
c

h i
þ cð1−cÞ; ðA:11Þ

with zero flux boundary conditions. Here asterisks highlight
rescaled variables and the parameter ϵ is the ratio of the diffusive
heterogeneity length scale to the reaction–diffusion length scale
(i.e. ½Dn

dim=ρdim�1=2, where Dn

dim is a measure of the cellular diffusion
scale and ρdim is a measure of the cellular proliferation rate).
Dropping asterisks for notational simplicity we finally have

∂c
∂t

¼ ∂2

∂x2
D

x
ϵ

� �
c

h i
þ cð1−cÞ; ðA:12Þ

which represents non-Fickian transport. This transport term also
arises in the Fokker–Planck approximation of lattice-free stochas-
tic differential equation models of diffusion (Gardiner, 1985),
indicating that this is not a lattice artefact of the derivation.
Appendix B. Parameter estimation

Although the mathematical formalism presented here is
general we specifically consider scales pertinent to glioma invasion
to fix parameters. As recognised in current modelling frameworks
(Konukoglu et al., 2010a; Rockne et al., 2008; Konukoglu et al.,
2010b), invading gliomas infiltrate highly heterogeneous brain tissue,
due to the presence of highly disparate levels of myelin in the white
and grey matter resulting in substantially different motility estimates
for each phase, differing by a factor of between 5 and 25 according to
the parameter estimation method (Rockne et al., 2008; Konukoglu
et al., 2010b), with faster motility in white matter. Relatively few
parameters are required to parameterise the model:
�
 Dg
dim and Dw

dim, the dimensional diffusion coefficients in grey
matter and white matter, respectively.
�
 ρdim, the dimensional proliferation rate of cells

�
 Lcell and Ltr, respectively, the dimensional length scales of the

cell and the interfacial transition region. Note that implicit in
the analysis presented in this paper is that the scale of the cell
is much smaller than that of the interface, which, in turn, is
much smaller than the reaction–diffusion length scale, denoted
LD below.

A non-dimensionalisation reduces the effective number of para-
meters even further. We start from the dimensional deterministic
Fickian equations

∂cdim
∂tdim

¼ ∂
∂xdim

Ddim
xdim
Ltr

� �
∂cdim
∂xdim

� �
þ ρdimcdim 1−

cdim
K

� �
;



Table 1
A summary of the parameter estimates.

Parameter Interpretation Value or
Range

Comments and Citations

Dw
dim ¼def Dþ

dim
White matter diffusion
coefficient

0.25 mm2/day Konukoglu et al., 2010b, Highly variable.

Dw
dim=D

g
dim ¼def Dþ

dim=D
−
dim

Ratio of white to grey matter
diffusion coefficient

5–25 Rockne et al. (2008), Konukoglu et al. (2010b).

ρdim Proliferation time scale 0.012/day Konukoglu et al. (2010b), Highly variable.
Lcell Cell length scale 10 μ Glioma cell, Rouzaire-Du Bois et al. (2005).
Ltr Interfacial length scale 100–300 μ Kruggel et al. (2003), Vogt and Vogt (1919), Hellwig (1993).
ϵ2 Squared ratio of interfacial and

diffusive length scales
0.008–0.07 typically
used

Wide range. Typical value based on Wang et al. (2009);
Kruggel et al. (2003); Vogt and Vogt (1919); Hellwig (1993); Ellingson et al. (2011);
Konukoglu et al. (2010a, 2010b); Woodward et al. (1996); Jbabdi et al. (2005).
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where the diffusion coefficient varies on the length scale of the
interface, Ltr. A simple rescaling gives the non-dimensional equa-
tions

∂c
∂t

¼ 1
ϵ2

∂
∂X

DðXÞ ∂c
∂X

� �
þ cð1−cÞ ¼ ∂

∂x
D

x
ϵ

� � ∂c
∂x

� �
þ c 1−cð Þ;

where c¼ cdim=K , ϵ2 ¼ ρL2tr=D
n

dim, tdim ¼ t=ρdim, xdim ¼ LtrX, x¼ ϵX
and D¼Ddim=D

n

dim where Dn

dim is a characteristic diffusion scale.
Thus, while ρdim governs the overall time scales but other-

wise is unimportant in the dynamics, ϵ2, the square ratio of the
interfacial size to the reaction–diffusion length scale, ½Dn

dim=ρdim�1=2,
is likely to be important as is the spatial dependence of the
diffusion coefficient.

We proceed by estimating Ltr and ϵ2, confirming that ϵ2⪡1, as
used in the analytical investigations and numerical simulations in
the main text. Firstly, high resolution magnetic resonance imaging,
with voxels of length scale 0.8 mm, fails to resolve interfacial
regions between white and grey matter (Rees et al., 2007); hence
Ltro0:8 mm. In contrast, staining reveals a transition in myelin in
the final layer of the grey matter cerebral cortex. The total width of
the cortex is variable, but roughly 2 mm (Kruggel et al., 2003), and
hence the order of the transition is around Ltr∼100 μ, by inspection
of the results of Vogt and Vogt (1919), as reported in the literature
by Kruggel et al. (2003). Staining studies reported by Hellwig
(1993) allow an independent estimate of this transition region to
be roughly Ltr∼300 μ.

Extensive studies have attempted to characterise the diffusive
length scale associated with infiltrative gliomas

LD ¼
ffiffiffiffiffiffiffiffiffiffi
Dn

dim

ρdim

s

where Dn

dim is a measure of the cellular diffusion scale and ρdim is
the proliferation rate at small cell densities. In numerous theore-
tical studies, even the extreme estimates for LD are nonetheless
greater than 0.65 mm and are typically often 1 mm or more (e.g.
Konukoglu et al., 2010a, 2010b; Woodward et al., 1996; Jbabdi
et al., 2005), which, respectively, correspond to the bounds
ϵ2o0:21 and ϵ2o0:09. In the patient data samples considered
by Ellingson et al. (2011), one has LD41 mm, with substantially
higher values for high grade gliomas. In the sample of 32 patients
considered by Wang et al. (2009), the average value of LD was
1.1 mm, though Ddim ranged over three orders of magnitude in the
estimates and ρdim varied by two orders of magnitude. None-
theless, for 28 out of the 32 patients, the imaging based estimates
give LD40:55 mm, corresponding to ϵ2 ¼ 0:3. In contrast, at the
other extreme of parameter estimates, one finds a lower bound of
the order of ϵ2∼0:004 (Wang et al., 2009).

Hence, for all but the extremes of the wide ranging patient
data, the small ϵ regime is appropriate and also consistent with the
parameter regimes of numerous previous theoretical studies.
Hence we focus on parameter regimes with ϵ2⪡1. For definiteness,
in our simulations we work with an average LD of 1.1 mm which
arises from an extensive parameter estimation study (Wang et al.,
2009). Since we have upper and lower estimates of Ltr, i.e. 300 μ
and 100 μ, we typically use

100
1100

� �2

≈0:008≤ϵ2 ≤0:07≈
300
1100

� �2

:

In constructing the spatially heterogeneous diffusion coefficient,
the details of

Dg
dim ¼def D−

dim and Dw
dim ¼def Dþ

dim

are required rather than a grouped estimate of the diffusive scale.
For definiteness, we use values of Dw

dim∼0:25 mm2 per day, follow-
ing estimates by Konukoglu et al. (2010b) with the ratio Dw

dim=D
g
dim

in the range of 5–25, which is consistent with the ranges estimated
in previous modelling (Rockne et al., 2008; Konukoglu et al., 2010b).
Similarly, we use ρdim ¼ 0:012=day (Konukoglu et al., 2010b); though
this parameter varies substantially (Wang et al., 2009), it influences
only the time scales of the predictions. A summary of the parameter
estimates is given in Table 1.

One further assumption that is required for model validity is
that the length scale of a glial cell, Lcell, is much less than Ltr∼200 μ.
One observation is that Lcell∼10 μ (Rouzaire-Du Bois et al., 2005) as
required for model validity, though the models in this paper may
not be readily applicable whenever migrating cells exhibit
extended processes on the length scale of Ltr as there is no longer
a separation of length scales.
Appendix C. Analysis of anisotropic nonlinear Fickian
diffusion near an interface

One common generalisation of Fickian diffusion considers an
anisotropy of the diffusion coefficient; a second concerns non-linear
transport, whereby exclusion processes, for instance, generate non-
linearities. With cðx; tÞ again denoting a rescaled cell density with
unit carrying capacity, these models are typically of the form

∂c
∂t

¼ ∂
∂xi

Dij
x
ϵ
; c

� � ∂
∂xj

c

 �

þ cð1−cÞ; ðC:1Þ

where the summation convention is used and the diffusion
coefficient is a positive, bounded and C∞ function of the cell
density (Deroulers et al., 2009; Maini et al., 2004; Sherratt and
Murray, 1990; Sherratt and Marchant, 1996).

Suppose in (C.1) there is an interfacial transition in the diffusion
coefficient centred at a manifold C of length scale ϵ in its normal
direction, which is smaller than any other length scale in the
continuum model, including the radius of curvature of C. Then, on
the length scale of the transition region, the manifold C can be
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treated as planar and with the boundary layer rescalings X ¼ x=ϵ,
τ¼ t=ϵ2 we have, at leading order, that

∂c
∂τ

¼ ∂
∂X

~DðX; cÞ ∂c
∂X

� �
þ Oðϵ2Þ ðC:2Þ

within the transition region, where ~DðX; cÞ ¼ niDijðX; cÞnj is the
contraction of the diffusion tensor onto the unit normal direction
of the interface. The variable τ is a fast time scale and yet the
system is being driven on much slower time scales, associated
with matching into the regions away from the interface, where the
system is dictated by the population dynamics. Hence, the above
diffusion equation would relax to its quasi-steady state; on
dropping the Oðϵ2Þ correction we have

d
dX

~DðX; cÞ dc
dX

� �
¼ 0; ðC:3Þ

where, without loss of generality, the interface is centred at X¼0.
Assuming the weak constraint that the functional form of the

diffusion coefficient is separable, so that we can write it in the
form D0ðXÞD1ðcÞ, where both D0ðXÞ and D1ðcÞ are positive, smooth
and bounded functions, gives us that

d
dX

D0ðXÞ
dD2ðcðXÞÞ

dX

� �
¼ 0; ðC:4Þ

where D′2ðcÞ≔D1ðcÞ. Integrating across the transition region twice
yields

D2ðcð∞ÞÞ−D2ðcð−∞ÞÞ ¼ A
Z ∞

−∞

dX
D0ðXÞ

; ðC:5Þ

where A is the constant of integration. The smoothness of the
diffusion coefficient, and thus the requirement of boundedness for
finite c, forces A¼0, whence

D2ðcð∞ÞÞ ¼D2ðcð−∞ÞÞ: ðC:6Þ
Further, from the positivity of D1(c) we have D2(c) is a monotonic
increasing function of c, by its definition, and thus (C.6) is
sufficient to enforce that

cð∞Þ ¼ cð−∞Þ:
This is valid once any rapid transient dynamics have equilibrated.
Hence, after cells initially encounter a transition region, anisotro-
pic and non-linear transport do not alter the Fickian prediction
that there is neither a sharp change in cell density across the
interface nor an accumulation of cells on one side of the interface
(at least subject to the weak constraints that ϵ2⪡1 and the
diffusion coefficient is separable).
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