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H I G H L I G H T S

� We develop a model for the host-virus dynamics of HTLV-I with target cell latency.
� A balance between proviral activation and latency aids viral persistence.
� Immune efficiency depends on rate of lysis and not on abundance of effector cells.
� Proviral activation may distinguish clinical status independent of proviral load.
� We hypothesise that crossing an activation threshold could increase risk of disease.
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a b s t r a c t

Human T-lymphotropic virus type I (HTLV-I) causes chronic infection for which there is no cure or
neutralising vaccine. HTLV-I has been clinically linked to the development of adult T-cell leukaemia/
lymphoma (ATL), an aggressive blood cancer, and HAM/TSP, a progressive neurological and inflammatory
disease. Infected individuals typically mount a large, persistently activated CD8þ cytotoxic T-lymphocyte
(CTL) response against HTLV-I-infected cells, but ultimately fail to effectively eliminate the virus.
Moreover, the identification of determinants to disease manifestation has thus far been elusive.

A key issue in current HTLV-I research is to better understand the dynamic interaction between
persistent infection by HTLV-I and virus-specific host immunity. Recent experimental hypotheses for
the persistence of HTLV-I in vivo have led to the development of mathematical models illuminating the
balance between proviral latency and activation in the target cell population. We investigate the role of
a constantly changing anti-viral immune environment acting in response to the effects of infected
T-cell activation and subsequent viral expression. The resulting model is a four-dimensional, non-linear
system of ordinary differential equations that describes the dynamic interactions among viral
expression, infected target cell activation, and the HTLV-I-specific CTL response. The global dynamics
of the model is established through the construction of appropriate Lyapunov functions. Examining the
particular roles of viral expression and host immunity during the chronic phase of HTLV-I infection
offers important insights regarding the evolution of viral persistence and proposes a hypothesis for
pathogenesis.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Human T-lymphotropic virus type I (HTLV-I) is a persistent
human retrovirus that infects between 10 and 25 million indivi-
duals world-wide (Bangham, 2000; Gallo, 2005; Goncalves et al.,
2010; Mortreux et al., 2003; Proietti et al., 2005). It is the causative

agent of two major, clinically independent diseases: an aggressive
blood cancer called adult T-cell leukaemia/lymphoma (ATL), and
a slowly progressive neurological and inflammatory disease, HAM/
TSP. Despite significant advances over the past three decades,
there still remain questions about the way in which HTLV-I-
infected cells successfully evade a vigorous and chronically acti-
vated virus-specific host immune response mediated primarily by
cytotoxic T-lymphocytes (CTLs) or the so-called ‘killer T-cells’
(Asquith and Bangham, 2007, 2008; Bangham et al., 2009, 1999).
Furthermore, the precise mechanisms for the development of
HTLV-I-associated diseases are unknown (Asquith and Bangham,
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2000; Bangham and Osame, 2005; Matsuoka and Green, 2009;
Mosley et al., 2005). There is no cure or neutralising vaccine for
HTLV-I, and neither is there an effective treatment available for
HTLV-I-associated pathologies — infection is life-long (Bangham,
2000; Kubota et al., 2007; Mosley et al., 2005; Proietti et al., 2005).

A key unresolved issue in current HTLV-I research is how the
virus is able to persist despite strong immune pressure and the
implications of viral persistence on the outcome of infection. The
focus of this paper is to develop a consistent theoretical frame-
work that can help shed light on specific, biologically relevant
questions that are of interest to experimentalists and theoretical
immunologists trying to understand the complicated host–patho-
gen dynamics of chronic viral infections such as HTLV-I. We will
investigate these questions using a mathematical modelling
approach. Mathematical modelling can help us break apart the
complex mechanisms of HTLV-I persistence and identify the
underlying principles that govern successful viral propagation in
the presence of host immunity. Understanding these interactions
is a crucial step on the road to developing effective ways to disrupt
the virus life-cycle and may help identify promising new treat-
ment strategies to reduce the severity of HTLV-I infection and
minimise the detriment due to the associated disease. More
specifically, we formulate a mathematical model in order to
elucidate the following:

(1) Since viral activation exposes infected cells to immune-
mediated surveillance, why is HTLV-I not silent? In other
words, what benefit does the HTLV-I provirus gain in becom-
ing activated and expressing viral antigens?

(2) What determines the strength of the HTLV-I-specific CTL
response, and why is infection life-long? That is, how can we
evaluate the quality of the HTLV-I-specific CTL response, and
why does host immunity fail to eradicate the virus?

(3) What characterises HTLV-I-linked pathology? Indeed, how can
one determine the severity of viral detriment considering that
the size of the proviral load is insufficient to classify clinical
status? Can a mathematical modelling approach suggest an
alternative, quantifiable measure to determine the outcome of
the infection? If such a measure does exist, what implications
might it have on the diagnosis, development, and treatment of
HTLV-I-associated disease?

The organisation of this paper is as follows. In Section 2, we
present our mathematical model, whose development has been
strongly motivated by the immunological dynamics of HTLV-I
infection in vivo, and motivate a biologically realistic range of
parameter values which are adopted in numerical simulations. In
Section 3, we discuss and establish the global qualitative beha-
viour present in the model. In Section 4, we distinguish two
important measures of viral detriment which our modelling
approach allows us to consider. Following this, we focus on the
biological applications and outcomes of our mathematical model
in Section 5, which we have subdivided into three themes
corresponding to the three points raised above. Namely, in
Section 5.1, we explore the effects of spontaneous viral expression
that accompanies infected T-cell activation to understand why
HTLV-I is not a completely silent infection. Then in Section 5.2, we
consider factors that define an effective virus-specific cellular
immune response and speculate why infection ultimately persists
despite the presence of anti-viral host immunity. Next, we exam-
ine our mathematical model in the context of pathology in
Section 5.3. Results from our investigations provide insights
regarding HTLV-I-associated disease and suggest a novel hypoth-
esis for pathogenesis. Lastly, in Section 6, we provide answers to
the biological questions posed above by summarising the

biological conclusions arising from examination of our mathema-
tical model.

2. Methods

2.1. Mathematical model

Recently, Asquith and Bangham (2008) have proposed an
experimental hypothesis for the infection and persistence of
HTLV-I in vivo which motivated the formulation of a mathematical
model by Li and Lim (2011) illustrating the balance between
latency and activation in the target cell dynamics of the viral
infection. In the model by Li and Lim (2011), the action of anti-viral
host immunity was considered implicitly via fractions of newly
infected cells that survive elimination. However, the pool of HTLV-
I-specific immune effectors is highly dynamic and continuously
changing in response to the virus population.

As cellular immunity is widely believed to be the most significant
factor in determining the outcome of infection, we extend the model
by Li and Lim (2011) to incorporate the two key features of HTLV-I
infection in vivo: (i) viral latency, and (ii) the HTLV-I-specific CTL
response. The separation of infected target cells into two distinct
compartments, latently infected and actively infected, is crucial to
understanding the persistence of HTLV-I in the midst of a chronically
stimulated anti-viral host immune response.

The primary target cells of HTLV-I infection are CD4þ helper
T-cells, which we will initially separate into three different compart-
ments. To model the explicit role of anti-viral cellular immunity, we
also include an additional compartment of HTLV-I-specific CD8þ

cytotoxic T-lymphocytes (CTLs). In particular, we define

xðtÞ : density of healthy CD4þ helper T-cells at time t;
uðtÞ : density of latently infected CD4þ helper T-cells at time t;

yðtÞ : density of actively infected CD4þ helper T-cells at time t;

zðtÞ : density of HTLV-I-specific CD8þ CTLs at time t:

We consider a mathematical model of HTLV-I infection given by the
following four-dimensional non-linear system of ordinary differential
equations:

dx
dt

¼ λ
z}|{T-cell production

� βxy
z}|{infectious transmission

� μ1x
z}|{natural death

du
dt

¼ βxy
z}|{infectious transmission

þ ry
z}|{mitotic transmission

� ðτþμ2Þu
zfflfflfflfflfflffl}|fflfflfflfflfflffl{spontaneous activation & natural death

dy
dt

¼ τu
z}|{spontaneous activation

� γyz
z}|{CTL�mediated lysis

� μ3y
z}|{natural death

dz
dt

¼ νy
z}|{CTL proliferation

� μ4z:
zffl}|ffl{natural death

ð1Þ

A schematic of the biological mechanism of HTLV-I infection in vivo
upon which our model is based is shown for reference in Fig. 1.

Let us now motivate each term one by one. Naïve CD4þ helper
T-cells are produced in the bone marrow, then migrate to the
thymus where they mature before being released into the periph-
eral blood. These mature CD4þ helper T-cells are initially unin-
fected and we describe their rate of entry into the periphery by a
constant λ. There are two routes of transmission for HTLV-I within
the target cell population: horizontal or ‘infectious’, and vertical or
‘mitotic’. Infectious transmission requires direct contact between
an actively infected and a healthy target cell, and involves a
restructuring of the cell cytoskeleton to create a tight junction
known as a virological synapse, across which the viral genome is
transported from the infected target cell to the uninfected one
(Igakura et al., 2003; Shiraki et al., 2003). Upon infection, the
newly infected target cell silences viral expression and becomes
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latently infected. The precise mechanisms behind the suppression
of viral proteins are not yet understood (Asquith and Bangham,
2008). We describe the cell-to-cell virus transmission using
a bilinear incidence term βxðtÞyðtÞ, where β is the coefficient
of infectious transmissibility. The mitotic route of transmission
occurs when an actively infected target cell divides, creating two
genetically identical daughter cells (Bangham, 2000). One way to
represent the mitotic route of viral transmission is to assume that
the proliferation of actively infected cells follows a logistic growth
pattern given by a term ryðtÞð1�ðxðtÞþuðtÞþyðtÞÞ=kÞ, where r is the
rate of rapid selective division, and k is the carrying capacity of
CD4þ helper T-cells. However, from studies of T-cell dynamics, the
proliferation and removal rates of CD4þ helper T-cells have been
quantified (Asquith et al., 2007; Kirschner and Webb, 1996; Nelson
et al., 2000), and suggest that the maximum proliferation rate is
in general less than the rates due to natural death. Thus, it is
plausible that even in the presence of rapid selective mitotic
division, target cell populations do not exceed the total CD4þ

helper T-cell carrying capacity. We have investigated numerically
the dynamics of the model using a full logistic growth term and
observed no qualitative difference in the behaviour of trajectories
(see Figs. B1 and B2 in Appendix B). Hence, with respect to our
model we will assume that xðtÞþuðtÞþyðtÞ5k for all tZ0, so that
the proliferation of actively infected target cells follows an expo-
nential growth profile. As a result, we choose to represent infected
T-cell proliferation using an exponential growth term ry(t) rather
than a logistic growth term. As with infectious transmission, newly
infected target cells via mitotic division immediately hide the
expression of viral genes, thus entering the latently infected cell
compartment and subsequently evading the immune system. At
this point, we would like to remark that although mitosis is a
process that occurs in all target cells, it has been experimentally
shown that the rapid rate of infected target cell proliferation is
significantly faster than normal homeostatic division (Asquith et al.,
2007), but only during intermittent expression of the provirus
(Asquith and Bangham, 2008; Richardson et al., 1997), coinciding in
our model with the pool of actively infected target cells. Latently
infected target cells do not express the provirus and proliferate at the
same rate as normal, healthy CD4þ helper T-cells. To avoid unne-
cessarily complicating the model equations, we do not consider the
passive proliferation of healthy and latently infected target cells.

Latency allows the proviral cell to escape lysis by anti-HTLV-I
CTLs, but hinders both the infectious and mitotic routes of viral
transmission. Meanwhile, activation promotes viral transmission,
but simultaneously exposes the proviral cell to immune surveil-
lance (Asquith and Bangham, 2008). It is becoming increasingly
clear that a dynamic balance between infected target cell latency

and activation exists. Indeed, while the vast majority of proviral
cells are latent at any given time Richardson et al. (1997), it has
been observed experimentally that a small proportion of latently
infected CD4þ helper T-cells spontaneously express viral proteins
and become actively infected (Asquith et al., 2000; Asquith and
Bangham, 2008; Asquith et al., 2007). We represent the transition
of a proviral cell from the latently infected state to the actively
infected state by a term τuðtÞ, where τ is the rate of spontaneous
infected T-cell activation or viral protein expression. In the
activated state, proviral cells are subject to strong selection by
HTLV-I-specific CTLs that recognise expressed HTLV-I antigens,
such as epitopes on the immunodominant virus protein Tax and
the minus-strand viral gene product HBZ (Gaudray et al., 2002;
Goon et al., 2004). We model the elimination of actively infected
target cells by virus-specific CTLs using a bilinear incidence term
γyðtÞzðtÞ, where γ represents the rate of CTL-mediated lysis. The
pool of CTLs is maintained by antigenic stimulation from virus-
expressing activated proviral cells (Asquith et al., 2007; Bangham
et al., 2009). The replenishment of these CTLs is described by the
term νyðtÞ, where ν is the rate of CTL proliferation or turnover, also
referred to as the CTL responsiveness (Nowak and Bangham, 1996;
Wodarz et al., 2001).

Lastly, all T-cell populations under consideration, including CD4þ

helper T-cells and CD8þ cytotoxic T-lymphocytes (CTLs), are removed
from the system via natural cell death. We represent the removal of
each cell type by a rate proportional to its density. Healthy, latently
infected, and actively infected target cells die at respective rates μ1, μ2,
and μ3, and the removal rate of CD8þ CTLs is μ4.

All parameters are assumed to be positive. To close the model,
we need to specify the initial conditions, and this is done in the
next section.

2.2. Parameter values and numerical simulations

In this section, we discuss the parameter values that we use
to simulate model (1), which have been estimated using both
experimental and theoretical methods in studies of CD4þ lym-
phocyte kinetics by Kirschner and Webb (1996) and Nelson et al.
(2000). Asquith et al. (2005, 2007) have also quantified the in vivo
kinetics of CD4þ helper T-cells and CD8þ CTLs in the context of
persistent infection by HTLV-I in both asymptomatic carriers and
in HAM/TSP patients. The production λ of healthy CD4þ helper
T-cells from the bone marrow falls in the range of 0–10 cells/mm3/
day (Kirschner and Webb, 1996). As infection by HTLV-I only
causes minor detriment to T-cell functionality (Asquith and
Bangham, 2007), it is expected that all three populations of target
cells considered in our model display natural death rates similar to

Fig. 1. A schematic representation of the biological mechanism of HTLV-I infection in vivo that motivates the formulation of model (1). Healthy x(t), latently infected u(t), and
actively infected y(t) target cells are represented by blue, green, and red circles, respectively, while HTLV-I-specific CTLs z(t) are represented by grey rectangles. (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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those of healthy target cells, with rates between 0.01 and 0.11 day�1

(Kirschner and Webb, 1996; Nelson et al., 2000; Ribeiro et al., 2002).
Extracting from studies of HIV-1 infection (Ribeiro et al., 2002), it is
assumed that activated CD8þ CTLs die at similar rates in both
uninfected and infected individuals, with the death rate lying
between 0.03 and 0.05 day�1. The rate of rapid Tax-driven selective
mitosis r lies within the range 0.01–0.045 day�1 (Asquith et al., 2007;
Kirschner and Webb, 1996), with higher rates of CD4þ helper T-cell
turnover usually associated with disease status, e.g. HAM/TSP.

We consider values for the coefficient of infectious transmissibility
β to be on the order of 10�3 mm3/cell/day, which is consistent with
those used in recent mathematical models of HTLV-I infection
(Gómez-Acevedo and Li, 2005; Gómez-Acevedo et al., 2010; Li and
Lim, 2011). Asquith et al. (2007) have quantified the rate of expression
τ of Tax in proviral cells to be between 0.0003 and 0.03 day�1, and an
intermediary value of 0.003 day�1 is chosen. The rate of lysis by anti-
HTLV-I CTLs γ in asymptomatic carriers of the virus depends on each
individual, and has been measured to be between 0.007 and 0.220 per
CD8þ cell per day with a median value of 0.029 day�1 (Asquith et al.,
2005). Finally, the proliferation rate of HTLV-I-specific CD8þ CTLs has
been measured to be in the range 0.009–0.161 day�1 with a median
value of 0.036 day�1 (Asquith et al., 2007). The biological meaning of
the parameters, the primary sources for the parameter ranges, and the
specific choices for the dimensional parameter values within the
relevant ranges are summarised in Table 1.

Before we can solve model (1), we discuss a biologically
reasonable initial state of the system at the onset of infection.
In the absence of infection, the normal CD4þ helper T-cell count
averages 850 cells/mm3 of peripheral blood, although it is known
that there is a wide variance between individuals, with healthy
values in adolescents and adults ranging from 500 cells/mm3 to
1200 cells/mm3 (Bofill et al., 1992).1

We assume that the individual is initially healthy, and that the
start of infection occurs after the introduction of a small dose of
infected cells, say on the order of 10�1 cells/mm3. Next, it is known

that CTLs of a diverse range of specificities are continuously being
produced. The average level of CD8þ cytotoxic T-lymphocytes in a
normal, healthy individual is roughly 550 cells/mm3 of peripheral
blood (Bofill et al., 1992). Wewill assume that at the start of infection,
the number of circulating CD8þ CTLs in an individual that can
recognise HTLV-I epitopes is on the order of 10�1 cells/mm3. Here we
remark that although the magnitude of the initial level of viraemia
is small relative to the size of the target cell pool, these values,
measured in units of cells per mm3 of peripheral blood, are assumed
to be homogeneous throughout the entire body of an individual,
whose blood volume is several orders of magnitude higher (�5.5 L
of blood for an average human weighing roughly 70 kg). Thus,
stochastic effects are negligible and we are justified in adopting a
deterministic modelling approach.

To gain some insight as to howwewill approach the mathematical
analysis of model (1), we use these biologically motivated initial
conditions and parameter values (summarised in Table 1), and run
preliminary numerical simulations of the model. Using the built-in
differential equation solver in Mathematica (version 9.0.1.0), we solve
model (1) numerically and plot the solution as in Fig. 2. The NDSolve
command in Mathematica automatically selects a numerical algorithm
to optimally solve the designated system of ordinary differential
equations, and includes both explicit and implicit methods such as
Euler, Adams, and Runge–Kutta of arbitrary order. Fig. 2(a) shows all
four cell populations and highlights their relative abundances. As the
magnitudes of the terms in the u; y; z-equations are much smaller
than those of the x-equation, we take a closer look at their behaviours
by magnifying the vertical axis, roughly 30 times in Fig. 2(b) and 600
times in Fig. 2(c). We observe that after some time, the solution
appears to settle at a positive equilibrium which may be reached by
damped oscillations. In the following section of the paper, we will
examine the underlying dynamical behaviour of model (1) in more
detail.

3. Global qualitative behaviour

Undoubtedly, one of the greatest advantages to modelling the
HTLV-I system using a mathematical rather than a verbal approach
is that we can make use of mathematical techniques to rigorously

Table 1
Table of biologically relevant dimensional initial conditions and parameter values. In general, median values have been selected. The ranges for each parameter can be found
in the text.

Initial condition Value (cells/mm3) Source

xð0Þ �850 Bofill et al. (1992)
uð0Þ 0.1 Assumption on initial infection
yð0Þ 0.5 Assumption on initial infection
zð0Þ 0.1 Assumption on initial HTLV-I-specific CTL

abundance

Dimensional parameter Value Biological meaning Source

λ 10 cells/mm3/day Rate of production of target cells
(CD4þ helper T-cells)

Kirschner and Webb (1996)

β 0.001 mm3/cell/day Infectious transmissibility coefficient Gómez-Acevedo and Li (2005),
Gómez-Acevedo et al. (2010),
Li and Lim (2011), Perelson (1989)

r 0.011 day�1 Selective proliferation rate of actively infected cells Asquith et al. (2007), Kirschner and Webb (1996)
τ 0.003 day�1 Rate of spontaneous Tax expression Asquith et al. (2007), Li and Lim (2011)
γ 0.029 day�1 Rate of CTL-mediated lysis of actively infected cells Asquith et al. (2005)
ν 0.036 day�1 Proliferation rate of CTLs (or CTL responsiveness) Asquith et al. (2007)
μ1 0.012 day�1 Natural death rate of healthy cells Kirschner and Webb (1996), Nelson et al. (2000),

Ribeiro et al. (2002)
μ2 0.03 day�1 Natural death rate of latently infected cells Kirschner and Webb (1996), Nelson et al. (2000),

Ribeiro et al. (2002)
μ3 0.03 day�1 Natural death rate of actively infected cells Kirschner and Webb (1996), Nelson et al. (2000),

Ribeiro et al. (2002)
μ4 0.03 day�1 Natural death rate of virus-specific CTLs Ribeiro et al. (2002)

1 For reference, Acquired Immune Deficiency Syndrome (AIDS) caused by the
human immunodeficiency virus (HIV) is characterised by a CD4þ helper T-cell
count below 200 cells/mm3.
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and unambiguously characterise model behaviour, allowing for a
systematic way to draw inferences from the model results. A well-
defined mathematical model also allows us to identify specific
processes that can lead to experimental designs to test the validity
of the model representation we have chosen and determine its
applicability to the biological system under study.

The purpose of this section is to provide a complete mathema-
tical description of the global qualitative behaviour of all possible
solutions of model (1). Establishing the global dynamics of our
mathematical model means that we have a complete understand-
ing of the qualitative behaviour of solutions of the model. This puts
us in a position where we can fully explore the model without
having to worry about the occurrence of unexpected phenomena,
and allows us to draw robust conclusions from further investiga-
tions of the model in the remainder of this paper.

The first step in the mathematical analysis of model (1) is to
determine a bounding region for the T-cell populations to ensure
that our model is biologically reasonable. In particular, T-cell
populations should neither become negative nor should they
become unbounded. Our first result, Theorem 3.1, formalises such
a notion. For the proof, the reader is referred to A.1. Denote by R4

þ
the closed positive orthant of R4.

It can be seen from the model equations that for any set of non-
negative initial conditions, x;u; y; zZ0 for all tZ0. Let μ¼min
fμ1;μ2;μ3g, and consider the closed, bounded region:

Γ≔ ðx;u; y; zÞAR4
þ : xr λ

μ1
; xþuþyr λ

μ�r
; zr λν

μ4ðμ�rÞ

� �
:

Theorem 3.1. Assuming that roμ, the set Γ is positively invariant
with respect to model (1). All solutions are bounded for tZ0 and
eventually enter Γ.

The assumption that roμ corresponds to experimental evi-
dence indicating that the proliferation rate of CD4þ helper T-cells
is generally lower than the rate of removal due to natural death
(Asquith et al., 2007; Kirschner and Webb, 1996; Nelson et al.,
2000), Therefore, Theorem 3.1 defines the set Γ as a biologically
feasible region on which the model dynamics may be analysed.

The global behaviour of model (1) depends crucially on a
key parameter, the basic reproduction number for viral infection,
defined as

R0 ¼
τ

μ3ðτþμ2Þ
ðβxHþrÞ where xH ¼ λ

μ1
: ð2Þ

Biologically, R0 represents the average number of secondary
infected cells produced from a single actively infected cell over
its lifetime. The expression for R0 derived from model (1) displays
a similar form to the one determined in the model by Li and Lim
(2011).

The following theorem summarises our main mathematical
result and establishes R0 as a sharp threshold that characterises
the global dynamics of model (1) in Γ . We refer the reader to
Appendix A for a rigorous mathematical proof of the result, which
has been separated into three parts to facilitate the ease of
understanding. Appendix A.2 deals with the existence and unique-
ness of equilibria, while Appendices A.3 and A.4, respectively,
demonstrate the stability properties of the infection-free and
chronic infection steady states, whenever they exist. The global
dynamical behaviour of model (1) has been established using the
direct method of Lyapunov, which has been successfully employed
in proving the global stability of equilibria in population models
from epidemiology (Kalajdzievska and Li, 2011; Korobeinikov
and Wake, 2002) and immunology (Gómez-Acevedo et al., 2010;
Korobeinikov, 2004).

Fig. 2. Numerical simulation of the solution of model (1) with initial conditions and parameter values as in Table 1. The level of healthy x(t), latently infected u(t), and
actively infected y(t) target cells are shown in blue, green, and red, respectively, and the level of HTLV-I-specific CTLs z(t) is shown in black. (a) The full dimensional range
showing all cell populations and highlighting their relative abundances. (b)–(c) A closer examination of the behaviour of u(t), y(t), and z(t) in model (1). (For interpretation of
the references to colour in this figure caption, the reader is referred to the web version of this paper.)

A.G. Lim, P.K. Maini / Journal of Theoretical Biology 352 (2014) 92–10896



Theorem 3.2 (Global dynamics).

(1) The infection-free equilibrium P0 always exists. Moreover, if
0oR0o1, then P0 is the only equilibrium in Γ and it is globally
asymptotically stable in Γ .

(2) If R041, then the infection-free equilibrium P0 is unstable.
In addition, a unique chronic infection equilibrium Pn exists in
Γ˚ and it is globally asymptotically stable in Γ˚.

4. Measures of viral burden

One of the most important tasks faced by clinicians after
identifying an HTLV-I seropositive individual is to evaluate the
severity of the infection. How much damage has the virus caused
to the host? Is the infected individual asymptomatic or are there
signs of chronic or malignant disease? For the former, is the
individual at risk of developing symptoms? For the latter, how far
and how fast has the disease progressed? The degree of detriment
caused by the virus is termed the viral burden.

The most common measure of viral burden in the host is the
proviral load, and it is given by the proportion of all target cells in
the peripheral blood that carry a provirus, regardless of their state
of activation (Asquith et al., 2005; Asquith and Bangham, 2008).
With the advance of current experimental techniques, such a
measure, which simply reports the magnitude of the virus infec-
tion, is relatively easy to obtain from host sera and is frequently
reported in experimental data as a percentage of all peripheral
blood mononuclear cells (PBMCs) (Asquith et al., 2005). In terms of
our mathematical model, we define the proviral load at equili-
brium as the infected fraction of all CD4þ helper T-cells:

vn ¼ unþyn

xnþunþyn
: ð3Þ

A defining characteristic of our mathematical modelling approach to
HTLV-I infection is the separation of proviral cells into two distinct
compartments based on infected target cell latency or activation. This
allows us to consider how the two populations of proviral cells co-
exist and how they persist as the infection propagates back and forth
through the latent and activated states. In our model, the total number
of infected target cells, both latent and active, at equilibrium is given
by the expression ðunþynÞ. Thus, we can examine and define a second
measure of viral burden to be the proportion of proviral cells that are
activated, which is represented by the ratio:

yn

unþyn
: ð4Þ

5. Results and discussion

5.1. Exploring spontaneous viral expression: why is HTLV-I
not silent?

In HTLV-I infection, the vast majority of proviral cells do not
express viral proteins at any given time, an observation that lends
support to the traditional viewpoint that HTLV-I is largely inactive
(Asquith and Bangham, 2008; Asquith et al., 2007). Nevertheless,
it has been shown that most HTLV-I seropositive individuals,
regardless of clinical status, mount a vigorous virus-specific
cellular immune response, suggesting continuous stimulation by
expressed viral antigens and thereby raising the important ques-
tion (Asquith et al., 2000): ‘Is HTLV-I infection really silent?’ This
issue has recently been resolved by Asquith et al. (2007), who have
demonstrated experimentally that each day, a small proportion of
infected target cells spontaneously re-activate and express viral

antigens. Such studies have been crucial in establishing that the
strategy of HTLV-I infection is not that of complete latency, but one
that is more dynamic.

In light of our overall theme of understanding HTLV-I persis-
tence, in this section, we consider the following conundrum: Why
is HTLV-I not silent? Indeed, the expression of viral proteins
accompanying infected T-cell activation exposes proviral cells to
immune surveillance, resulting in the risk of destruction. If this is
the case, then why would the evolution of HTLV-I favour a route
for viral expression and activation rather than remaining comple-
tely latent? The fact is that viral activation can be both beneficial
and detrimental to the proviral cell. On the one hand, displaying
viral proteins is required for infectious cell-to-cell transmission
and is believed to drive the rapid, selective expansion of infected
cells (Asquith and Bangham, 2008; Igakura et al., 2003). On the
other hand, it simultaneously allows such cells to be eliminated
by a persistently activated HTLV-I-specific CTL response (Asquith
et al., 2005; Bangham, 2003). The balance between the two
opposing selection forces determines the outcome of infection.
To resolve our conundrum, we switch our perspective to that of
the virus to understand why and how viral activation can be
advantageous.

Our mathematical model (1) explicitly incorporates the inter-
actions among the latent and active states of HTLV-I proviral cells,
and virus-specific CTLs. In particular, the transition from the
latently infected target cell compartment to the actively infected
target cell compartment is encapsulated in the parameter τ, the
rate of spontaneous viral expression that accompanies proviral
activation. We can therefore examine the impact of the parameter
τ on the long-term behaviour of model (1). Our results are
consistent with those of Li and Lim (2011), whose model explored
in detail the role of Tax expression on chronic HTLV-I infection, but
in the absence of a dynamically changing host immune response.

5.1.1. Tax/HBZ expression drives chronic infection and is an
important determinant of proviral load

The basic reproduction number for viral infection R0, defined in
Eq. (2), can be thought of as a measure of viral success with respect
to the ability to establish and propagate the infection. A simple
computation shows that R0 is an increasing function of τ; that is,
the rate of spontaneous viral activation is seen to be a factor that
drives the system towards chronic infection, making it difficult for
infected individuals to clear the virus.

Next, we explore the way in which the expression of viral
proteins affects the proviral load. In Fig. 3, we have plotted
numerically a curve from our mathematical model (1) showing
the impact of the rate τ of spontaneous infected target cell
activation on the equilibrium proviral load vn. Our model results
show that for small values of τ, there is a sharp positive, rather
than negative, correlation between τ and vn. As the value of τ is
increased, we observe that the magnitude of the proviral load vn

begins to level off before gradually decreasing and settling to a
constant positive level for sufficiently large values of τ. Hence, viral
expression is a factor that determines an infected individual's
equilibrium proviral load. This second point provides further support
for a non-latent virus strategy.

A traditional measure of viral success is the proviral load, and a
higher proviral load is a better established infection. With this
perspective, Fig. 3 can be thought of as reflecting a cost–benefit
relationship for infected target cell activation that governs suc-
cessful viral persistence: A rate of spontaneous viral expression
that is too low is of little benefit to the virus as latency does not
propagate the spread of infection; meanwhile, one that is too high
could also be detrimental as it over-exposes proviral cells to host
immunity and places a stronger demand on the virus to replicate
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fast enough to outpace CTL-mediated lysis. Our results suggest
that an intermediate rate of spontaneous infected T-cell activation,
for example in the vicinity of the peak of the graph in Fig. 3, could
be optimal for HTLV-I to successfully establish and maintain a high
proviral load in the presence of host immunity. This observation
supports the theoretical hypothesis by Asquith and Bangham
(2008) that HTLV-I relies on a dynamic balance between viral
latency and activation in order to persist indefinitely in the host:
complete transcriptional latency is counter-productive to viral
transmission and propagation of the infection, whereas full
infected T-cell activation leaves too many proviral cells susceptible
to immune-mediated lysis. Nevertheless, there may be another
consequence of a higher rate of spontaneous viral protein expres-
sion despite its association with lowering the magnitude of the
proviral load, which comes to light by examining the activated
fraction of infected cells.

5.1.2. Tax/HBZ expression increases activated fraction of infected cells
Model (1) allows us to consider the effect of spontaneous viral

expression or activation, represented by the parameter τ, on the
second measure of viral burden or detriment, the equilibrium
proportion of proviral cells that are actively infected, yn=ðunþynÞ.
The result of numerical investigation of this dependence is shown
in Fig. 4, where we observe that the net effect of a faster rate
of spontaneous viral expression is a higher active proportion.
In addition, unlike the proviral load vn, which decreases when τ
is sufficiently large, the active proportion of proviral cells is a
monotonically increasing function of τ. The main implication of
the result here is that the rate of spontaneous viral expression, τ,
determines a characteristic ratio of latent versus activated infected
cells at equilibrium, irrespective of the magnitude of the proviral
load itself.

Our model predicts a relationship between the proviral load vn

and the active proportion of infected cells yn=ðunþynÞ which is
consistent with the recent experimental results by Melamed et al.
(2013), who demonstrated a negative correlation between the
abundance of a given infected T-cell clone and the proportion of
the respective clone that spontaneously expresses the provirus in
HAM/TSP patients. Taken together, the results shown in Figs. 3
and 4 imply such a negative correlation, when the rate of
spontaneous viral expression τ exceeds a threshold value (of about
0.03 day�1 as in Fig. 3; see also Fig. B3 in Appendix B).

5.2. Evaluating CTL quality: what determines the strength of the
HTLV-I-specific CTL response, and why is infection life-long?

In the previous section, we investigated the impact of sponta-
neous viral expression in our model to try and resolve the issue as
to why HTLV-I is not silent. We have discovered that a low level of
viral protein expression can offer tremendous benefits in terms of
viral propagation and success. In other words, the net effect of
viral activation is to drive chronic infection and aid the persistence
of HTLV-I. These observations in turn suggest a complex interac-
tion with the host immune response that we now explore in
further detail.

5.2.1. CTL frequency a CTL efficiency
It is well established that cellular immunity, driven by the

selective expansion of anti-viral CTLs, is an important branch of
the human immune system that aids in eliminating invading
intracellular pathogens such as viruses (Parham, 2005). In the
case of HTLV-I, virus-specific CTLs have been shown experimen-
tally to be highly efficient at killing antigen-expressing proviral
cells and are important determinants of an infected individual's
proviral load (Asquith et al., 2005). Moreover, CTLs are thought to
play a role in the development of HTLV-I-associated pathologies
(Asquith and Bangham, 2000; Bangham et al., 1999; Jeffery et al.,
1999), although there is conflicting speculation as to whether CTLs
are protective or whether they contribute to disease progression
(Biddison et al., 1997; Mosley and Bangham, 2009). It is therefore
essential to investigate how CTLs affect the outcome of chronic
HTLV-I infection.

The strength of the immune response against virally infected
cells has traditionally been thought of as being directly related to
the frequency or magnitude of virus-specific CTLs in the peripheral
blood. In HTLV-I infection, large numbers of circulating anti-HTLV-I
CTLs are often found in blood samples from HTLV-I seropositive
individuals, whether or not malignant disease is present (Bangham,
2003; Biddison et al., 1997; Parker et al., 1992). Such an observation
is somewhat unexpected as the vast majority of the proviral
load is latent and therefore invisible to host immunity. Indeed,
how is it possible for the CTL response to have any impact on the
course of infection when most proviral cells are transcriptionally
silent at any given time and are thus not even visible to immune
surveillance? Asquith and Bangham (2008) hypothesise that since
the expression of HTLV-I proteins is crucial for viral propagation,
then by exerting selective pressure on the small proportion of

Fig. 3. The effect of spontaneous viral activation τ and subsequent expression of
viral antigens on the equilibrium proviral load vn as governed by our mathematical
model (1). The above graph was obtained by solving the equilibrium equations for
model (1) numerically using the parameter values from Table 1 to determine xn, un,
and yn, then plotting the quantity vn ¼ ðunþynÞ=ðxnþunþynÞ as a function of the
parameter τ.

Fig. 4. A faster rate of proviral expression τ increases the proportion of infected
target cells that are transcriptionally active yn=ðunþynÞ at equilibrium. The above
graph was obtained by determining the steady state solutions during chronic
infection for model (1) numerically, then plotting the quantity yn=ðunþynÞ as a
function of the parameter τ. All parameter values have been selected from Table 1.
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virus-expressing cells, CTLs block a key point in the virus life cycle
and can therefore have a substantial effect on the infection
dynamics.

This underlies an important issue that arises in experimental
data on HTLV-I-infected individuals, which is identifying the
aspects of cellular immunity that are responsible for controlling
the proviral load during the chronic phase of infection. A natural
question comes to mind: What determines CTL quality? Does
the size of the CTL response influence its ability to reduce the
proviral load?

We again turn to our mathematical model (1) for some insights,
focussing on two specific factors commonly believed to impact the
proviral load of an infected individual: CTL frequency and CTL-
mediated lysis of antigen-expressing infected cells. In our model,
the equilibrium proviral load is given by vn. Moreover, the abundance
of CTLs is precisely zn and the rate at which CTLs eliminate activated
proviral cells is represented by the parameter γ.

A few straightforward calculations in our model yield
Theorem 5.1, which demonstrates that the proviral load is posi-
tively correlated with the level of CTLs at equilibrium and
negatively correlated with the rate of CTL-mediated lysis. The
proof may be found in Appendix A. What our result suggests is
that the strength or efficacy of the CTL response with respect to
controlling the proviral load is influenced by how fast the HTLV-I-
specific CTL response can eliminate virus-infected target cells
rather than how large the pool of such CTLs is. A significant
implication of this result is that the traditional line of thinking that
the strength of the anti-HTLV-I CTL response is equal to its size
needs to be re-evaluated.

Theorem 5.1. Assume that R041. Then, the equilibrium proviral
load vn is an increasing function of zn, but a decreasing function of γ.

Intuitively, one may expect that the more CTLs there are, the
stronger the immune response, and thus the lower the proviral
load. However, the notion that large numbers of CTLs can be
associated with large numbers of virus-infected cells is not new,
and has been observed in clinical data (Kubota et al., 2000; Nagai
et al., 2001; Wodarz et al., 2001). Moreover, experiments have
demonstrated that a fast rate of clearance of virus-expressing
infected cells is associated with a reduced proviral load (Asquith
et al., 2005).

Fig. 5 shows a positive correlation between the frequency of
HTLV-I-specific CTLs and the proviral load in an HTLV-I seroposi-
tive individual. In Fig. 5(a), the experimental data by Nagai et al.
(2001) measured the percentage of CTLs targeting the immuno-
dominant viral Tax protein in the context of HLA-A2 which
represented the bulk of the anti-HTLV-I CTL response, and the
viral burden was measured in terms of the number of proviral cells
per 100 peripheral blood mononuclear cells (PBMCs), which is
directly proportional to the number of CD4þ helper T-cells that are
infected. Meanwhile, Fig. 5(b) plots the relationship between the
number of CTLs zn at equilibrium and the proviral load vn in terms
of the infected fraction of target cells as determined by our
mathematical model (1). Although quantitative comparisons have
not been done, our theoretical results agree qualitatively with the
experimental data from Nagai et al. (2001).

Fig. 6 displays a negative correlation between the rate at which
actively infected target cells expressing viral antigens are cleared
by CD8þ CTLs, and the proviral load. Asquith et al. (2005) reported
their experimental measurements of anti-viral efficacy as the
number of Taxþ cells cleared per day per CTL and its correlation
with the proviral load in terms of PBMCs (Fig. 6(a)). As Tax is the
immunodominant viral antigen targeted by CTLs, such a measure
is directly related to the parameter γ in our model. In addition, the
viral burden measured in terms of infected PBMCs corresponds

directly to the measure of the proviral load with respect to the
CD4þ helper T-cell population, which is represented in our model
by the quantity vn. We observe that the data from Asquith et al.
(2005) are in qualitative agreement with Fig. 6(b), which shows
how the equilibrium proviral load vn changes with respect to γ
according to our mathematical model (1).

Our model therefore supports the relatively recent idea that
a large CTL response is not necessarily a strong one, and that
CTL frequency is not a reliable measure of immune efficiency
(Bangham, 2009; Bangham et al., 1999). In addition, our findings
agree with previous mathematical modelling work by Nowak and
Bangham (1996) and Wodarz et al. (2001) demonstrating how the
CTL response to persistent viral infections such as HIV and HTLV-I
can be inefficient at controlling the proviral load yet CTLs may
exist in abundance.

5.2.2. Efficient CTLs cannot eliminate the active proportion of
proviral cells

We have shown that effective immune control of the HTLV-I
proviral load is reflected in the rate at which CTLs eliminate
actively infected cells rather than the size of the CTL pool. This
finding motivates the question: Why is there no cure for HTLV-I
infection? Indeed, our results indicate that a fast rate of CTL-
mediated lysis is effective at reducing the proviral load. Yet, the

Fig. 5. Positive correlation between CTL frequency (horizontal axis) and proviral
load (vertical axis). (a) The experimental results from Nagai et al. (2001) show data
points and have been fitted theoretically with a linear curve. (Figure reproduced
with permission from the publisher.) (b) The corresponding curve from our model
(1), which plots the relationship between the proviral load vn and CTL abundance
zn at equilibrium, displays a different form, but agrees qualitatively with the
experimental data. Parameter values have been selected as in Table 1.
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application of vaccines that boost the efficiency of CTL responses
elicited by infected hosts has been unsuccessful at achieving
complete elimination of the virus, and infection remains chronic
(Bangham, 2000).

Using our mathematical model (1), we offer a possible explana-
tion for this failure by examining the impact of CTL efficiency,
encapsulated by the parameter γ, on the proportion of proviral
cells that is activated, yn=ðunþynÞ. We observe from numerical
investigations that for sufficiently large values of γ, further
changes in γ have little effect on the active proportion of proviral
cells (note that we can equally conclude from the results shown in
Fig. 6(b) that, when this same value of γ is exceeded, there is little
further reduction in the proviral load vn). Indeed, combining
this result with our earlier finding that the rate of spontaneous
viral expression τ displays a positive correlation with the active
proportion of proviral cells yields Fig. 7, which illustrates that the
quantity yn=ðunþynÞ steadily increases with larger values of τ for
fixed values of γ, whereas for fixed τ, an increase in γ has only a
minimal impact on yn=ðunþynÞ when γ is sufficiently large.

The main implications of the above result are the following:
(1) an efficient CTL response fails to eradicate the infection because
it cannot eliminate the activated (i.e. ‘aggressive’) part of the infected
target cell population, and (2) a faster rate of proviral activation
which exposes more infected cells to immune surveillance makes it
more difficult for CTLs to achieve clearance of activated proviral cells.
These observations motivate a hypothesis relating to pathogenesis
which is discussed in the following section.

5.3. Insights to HTLV-I-associated disease: what characterises
HTLV-I-linked pathology?

A puzzling issue in HTLV-I infection is why only a small frac-
tion of chronically infected individuals develop the inflammatory

disease HAM/TSP whereas the vast majority remains as life-long
asymptomatic carriers (ACs) of the virus. Although much experi-
mental work has shed light on the way in which several key
factors of the infection may be associated with clinical status,
either AC or HAM/TSP patient, a clear determinant to distinguish
between the two states is not yet known.

In the previous sections, our investigations of key factors
including spontaneous activation of proviral cells, CTL frequency,
and CTL efficiency have illuminated important properties of
HTLV-I infection that help our understanding of viral persistence
in the presence of chronically activated immune responses. In this
section, we take our results one step further by interpreting the
roles of these key parameters in the context of HTLV-I-associated
disease. In particular, we propose a plausible hypothesis for the
identification of disease status and suggest a possible mechanism
for pathogenesis.

5.3.1. A hypothesis for determining clinical status
The equilibrium proviral load is a major correlate of clinical

status: a high proviral load is associated with HAM/TSP develop-
ment, whilst a low proviral load is associated with asymptomatic
carriage. However, it is known that the size of the proviral load
does not, on its own, separate ACs from HAM/TSP patients. Indeed,
there is broad overlap among the proviral loads of ACs and
HAM/TSP patients, and a high proviral load is not a reliable deter-
minant of disease status (Asquith and Bangham, 2007; Asquith
et al., 2005).

We propose instead that the extent of activation of proviral
cells, yn=ðunþynÞ, and not necessarily the absolute magnitude of
the proviral load, vn, may be associated with the inflammatory
disease, HAM/TSP. For example, there may be a threshold level for
the activated proportion of infected target cells above which
asymptomatic carriers develop disease, regardless of the size of
the proviral load. This hypothesis for distinguishing between ACs
and HAM/TSP patients is shown graphically in Fig. 8(a), where the
proposed theoretical threshold for pathogenesis is represented by
the thin, horizontal dotted line. Our hypothesis is consistent with
previous experimental data showing that infected cells from HAM/
TSP patients expressed the Tax protein at higher levels than those
from ACs (c.f. Fig. 2 from Asquith et al., 2005).

In chronic HTLV-I infection, it is well-documented that the
magnitude of the proviral load is not a direct reflection of the

Fig. 6. Negative correlation between rate of CTL-mediated lysis (horizontal axis) and
the proviral load (vertical axis). (a) The experimental measurements from Asquith
et al. (2005) show data points for both ACs and HAM/TSP patients. (Figure reproduced
with permission from the publisher.) (b) Our model results arising from the system of
Eq. (1) are in qualitative agreement. Parameter values are taken from Table 1.

Fig. 7. Evaluating the effects of γ and τ on yn=ðunþynÞ in model (1). CTL quality or
effectiveness may be characterised by high values of γ. For fixed values of τ, when γ

is sufficiently large, a further increase in γ has little effect on the Taxþ/HBZþ

proportion of proviral cells, yn=ðunþynÞ. Therefore, even though efficient CTLs
reduce the magnitude of the proviral load, they do not necessarily decrease the
active (i.e. ‘aggressive’) proportion of proviral cells.
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extent of activation of proviral cells. Although generally a high
proviral load is associated with disease progression, it is not
uncommon for asymptomatic carriers to harbour proviral loads
that are higher than those of symptomatic carriers (Asquith et al.,
2005). The separation of clinical status based on the active
proportion of infected target cells rather than the magnitude of
the proviral load could potentially explain how infected indivi-
duals with a low proviral load could have HAM/TSP due to a high
proportion of activated infected cells, or conversely, how those
with a high proviral load could be asymptomatic due to a low
proportion of activated infected cells. For a wide range of
parameter values, our model exhibits behaviour that is consistent
with experimental observations (c.f. Fig. 2(b) from Asquith and
Bangham, 2008); that is, at a given rate of CTL lysis, the proviral
load in ACs is lower than that in HAM/TSP patients (results not
shown). However, due to the shape of the curve describing how
the activated proportion of infected cells changes with the
proviral load and because the proposed theoretical threshold
for disease manifestation is not precisely known, our model can
also exhibit the converse phenomenon in which the proviral load
in an AC is greater than that of a HAM/TSP patient (for more
details, we refer the reader to Figs. 3 and 4, as well as Fig. B3 in
Appendix B). Indeed, such a scenario is possible in our model as
highlighted in Fig. 8, where we have plotted the efficiency of the
CTL response γ against the two different measures of viral
detriment. Parameter values are selected that lie in the same
range as those in Table 1. In Fig. 8(a), with respect to the activated
proportion of proviral cells, the solid line lies below the threshold
for pathogenesis for all sufficiently large values of γ, and thus
corresponds to asymptomatic clinical status, while the dashed
line lies above the proposed threshold for all γ and would
therefore represent a patient with HAM/TSP. Yet with respect to
the proviral load vn as in Fig. 8(b), it is seen that for all values of γ,
the magnitude of vn for the AC (given by the solid line) is, in fact,
higher than that for the HAM/TSP patient (given by the dashed
line). Our model therefore allows for a consistent framework that
could potentially account for the existence of this phenomenon if
it were to occur. Further studies are needed to deduce better
estimates for the position of the theoretical threshold for disease
manifestation and determine if such a scenario is possible, i.e. can
there exist two HTLV-I seropositive individuals with the same
immune efficiency, one AC and one HAM/TSP patient, in which
the proviral load of the AC is higher than that of the HAM/TSP
patient?

5.3.2. Failure of HAM/TSP treatment
We have observed previously how increasing the rate of

CTL-mediated lysis γ, which is a measure of CTL efficiency, is
effective in lowering the magnitude of the proviral load, but is
ineffective in reducing the activated proportion of infected target
cells. In terms of the efficiency of the CTL response, there is an
additional consequence of our hypothesis for identifying clinical
status. Taking another look at Fig. 8(a), we notice that it is possible
for chronically infected individuals to have less efficient CTLs (i.e. a
low value of γ) and still be asymptomatic because of having an
active proportion of infected cells that lies below the designated
threshold. Alternatively, it may also happen that chronically
infected individuals with very efficient CTLs (i.e. a high value of
γ) could be diagnosed with HAM/TSP due to an active proportion
of infected cells that lies above the proposed threshold.

The above observation has an implication for HAM/TSP treat-
ments and could offer a possible explanation as to why a cure for
the disease has been difficult to discover. Consider an infected
individual with HAM/TSP who has a given immune efficiency γ,
as indicated by the open circle in Fig. 9. The dashed line shows
how the activated proportion of proviral cells of this individual
(i.e. with all other parameters fixed) varies with different rates of
CTL-mediated lysis. Suppose that treatment is administered that
enhances the efficiency of the HTLV-I-specific CTL response, which
although lowering the absolute magnitude of the proviral load vn

does not significantly impact the proportion of proviral cells that
are actively infected. The active proportion continues to lie above
the threshold for pathogenesis and the individual remains with
the inflammatory disease.

5.3.3. Immune compromise is a possible though unlikely
cause of disease

An intriguing aspect of chronic HTLV-I infection is that only a
small fraction of infected individuals develop the inflammatory
disease, HAM/TSP, after a long asymptomatic clinical phase.
It remains unresolved as to how or why disease may manifest
over time during the chronic stage of infection. In the context of
our hypothesis, if there does exist a threshold level for the
activated proportion of infected target cells that distinguishes
clinical status, how could it be possible for the active proportion
to increase and eventually cross the proposed threshold?

One possible route, which occurs in HIV infection, is that
the virus severely compromises the human immune system, and

Fig. 8. A hypothesis for classifying clinical status arising from our mathematical model (1) is that a high activated proportion of infected cells and not necessarily the size of
the proviral load may be an important determinant of disease. In the above figures, the solid line and the dashed line correspond to two different individuals. The individual
represented by the solid line is seen to have a lower activated proportion of infected cells, but a higher proviral load, than that of the individual represented by the dashed
line. Furthermore, for sufficiently high rates of CTL-mediated lysis γ, the individual corresponding to the solid line has an active proportion of infected cells that lies below the
theoretical threshold for disease manifestation and would therefore be classified as an asymptomatic carrier under our hypothesis, despite having a higher absolute
magnitude of the proviral load than the individual corresponding to the dashed line. (a) The thin horizontal dotted line indicates a theoretical threshold for disease
manifestation. (b) A high proviral load is neither necessary nor sufficient to identify the presence of disease.
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a weakened state allows for the progression of disease. For instance,
over time HTLV-I may disrupt the functionality of the immune
system and render virus-specific CTLs ineffective at controlling
viral replication, allowing the population of proviral cells to
expand tremendously. The scenario is illustrated in Fig. 10, where
we first consider an asymptomatic carrier with a given rate of
CTL-mediated lysis γ, represented by the open circle. The solid
black line shows how the active proportion of proviral cells varies
with respect to immune efficiency γ and all other parameters
fixed. It is reasonable to believe that as time progresses, the
efficiency of the CTL response is compromised so that the value
of γ becomes very small. In this case, the active proportion of the
viral burden would increase and could end up above the threshold
for pathogenesis, which is shown in Fig. 10 as an open square.
The infected individual then develops HAM/TSP. However, it
has been experimentally shown that chronic infection by HTLV-I
is not associated with overt immuno-suppression (Asquith and
Bangham, 2007); more or less normal T-cell functionality remains.
If anything, the efficiency of a functional CTL response is thought
to increase over time, rather than decrease, due to continued exposure
and increased specificity towards target antigens (Parham, 2005).
This explanation is therefore unlikely to describe the progression of
HAM/TSP.

5.3.4. A plausible mechanism for pathogenesis
Although silencing the expression of viral proteins allows

HTLV-I to evade immune selection, there is little benefit for
proviral cells to be fully transcriptionally latent. Indeed, continued
propagation of the infection requires that at least a small fraction
of latently infected cells becomes spontaneously re-activated each
day. As we have seen previously in Fig. 4, the rate of spontaneous
infected T-cell activation, τ, displays a strict positive correlation
with the active proportion of proviral cells, yn=ðunþynÞ. In terms of
the development of the inflammatory disease, HAM/TSP, we offer a
hypothesis that as time progresses, the active proportion of
proviral cells may increase, and could eventually cross the thresh-
old for pathogenesis, thus causing disease. One way that this could
happen is that the rate τ of spontaneous expression of viral
proteins, which in our model is treated as a constant, may in fact
increase over time.

A hypothetical situation is illustrated in Fig. 11. As before, we
consider an asymptomatic carrier with a specified CTL efficiency γ.
The position of this individual is given by the open circle on the
graph, and the solid black curve on which the open circle lies is
the way that the active proportion of proviral cells changes
with respect to the rate of CTL-mediated lysis, γ, with all other
parameters fixed. Suppose that over time, the rate of spontaneous
infected target cell activation τ increases. The net effect, as
expected, would be a general increase in the active proportion of
infected cells. It is then possible that the proportion of actively
infected cells reaches the threshold for pathogenesis, represented
by the open square in Fig. 11, and manifestation of the inflamma-
tory disease, HAM/TSP, occurs.

However, it is known that the vast majority of chronically
infected individuals do not develop HAM/TSP, and instead remain
asymptomatic throughout their lifetime. Supposing our hypothesis
on the threshold for pathogenesis is true, this suggests that either
the proposed threshold for the activated proportion of proviral
cells is much higher than that of most HTLV-I-infected individuals
or that perhaps τ does not change significantly over the course of
chronic infection. Nevertheless, it is not clear why the rate of
spontaneous viral expression τ would increase over time. Indeed,
this rate is thought to be characteristic to each individual and is
determined by two primary factors that remain relatively constant
over time: the HTLV-I genomic sequence, which is genetically
stable, and the dominance of infected T-cell clones, each defined
by a specific site of integration into the host DNA (Bangham et al.,
2009; Gillet et al., 2011; Meekings et al., 2008). Further studies are
needed to resolve these issues and test the validity of our
hypothesis.

Fig. 9. Failure of HAM/TSP treatment. Results from our mathematical model (1)
suggest a plausible reason as to why treatment for HTLV-I pathology is unsuccess-
ful. Although the administration of vaccines that improves the efficiency of anti-
HTLV-I CTLs reduces the magnitude of the proviral load, it may be ineffective at
lowering the activated proportion of proviral cells below the theoretical threshold
for pathogenesis.

Fig. 10. A prediction of model (1) is that immune compromise leading to
development of disease is possible. However, chronic infection by HTLV-I is not
associated with immune suppression, suggesting that such an explanation for
disease progression is unlikely.

Fig. 11. Our mathematical model (1) suggests a plausible mechanism for the
development of disease. An increase in viral protein expression over the course of
chronic HTLV-I infection may eventually push the active proportion of proviral cells
over the proposed threshold for pathogenesis.
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6. Biological conclusions

In this paper, we have developed a theoretical framework that
incorporates sufficient biological complexity to accurately describe
the fundamental within-host dynamics of HTLV-I infection and, at
the same time, is able to account for some of the idiosyncrasies
frequently observed in HTLV-I experimental and clinical data.
Specifically, we have investigated our mathematical model (1) in
the context of several important questions regarding the persis-
tence and pathogenesis of HTLV-I in order to gain some biologi-
cally meaningful insights into the nature of chronic HTLV-I
infection. One key feature of our model that differs from previous
models is the consideration of a dynamically changing within-host
environment involving the complex interplay between infected
target cells that may either be latent or activated, and persistent
virus-specific host immune responses. Our study has shed light on
the way in which HTLV-I interacts with host immunity to persist.
The results of our model are consistent with experimental obser-
vations and, in addition, raise further questions that may be
experimentally testable.

In particular, we set out to illuminate the following three key
questions in HTLV-I immunology:

Q1. Why is HTLV-I not silent?
▹ Viral expression is necessary for the establishment, propagation,

and persistence of HTLV-I infection.
Recently, Asquith et al. (2007) have given a definitive

resolution to the issue of HTLV-I latency by demonstrating
experimentally that HTLV-I is not a fully silent infection and
that on-going viral transcription is present. We asked the
question: Why is HTLV-I not silent since proviral activation
exposes infected target cells to immune-mediated pres-
sure?

We investigated this question in the context of our
mathematical model, and discovered that for a completely
latent virus, the benefits gained by activation aided in the
establishment of infection. Moreover, the rate of sponta-
neous expression of viral antigens was shown to be an
important determinant of the proviral load.

Q2. What determines the strength of the HTLV-I-specific CTL
response, and why is infection life-long?

▹ Efficient control of the HTLV-I proviral load depends on a high
rate of CTL-mediated lysis and not on the frequency of anti-HTLV-I
CTLs.

Our model has demonstrated that despite frequent viral
latency, the HTLV-I-specific CTL response is a factor that
determines the level of the proviral load at equilibrium. The
ability of the CTL response to effectively control the proviral
load may not be dependent upon the numbers of CTLs, but on
how fast CTLs are able to lyse the relatively small proportion
of virus-infected target cells that are activated. The results of
our model agree qualitatively with experimental data from
Nagai et al. (2001) and Asquith et al. (2005).

▹ Infection may be life-long because efficient immune responses
fail to eliminate the small proportion of proviral cells that are
activated.

An efficient HTLV-I-specific CTL response kills virus-
expressing actively infected cells at a rapid rate and lowers
the proviral load. However, due to the benefits to the virus
gained by exhibiting at least a low level of proviral expression,
a plausible reason why efficient CTLs cannot eradicate the
infection is because they are unable to completely eliminate
the activated proportion of proviral cells that are aggressively
propagating the infection. Furthermore, from our model, we
have shown the somewhat non-intuitive result that a faster
rate of spontaneous proviral activation and subsequent

expression of HTLV-I antigens, which exposes more infected
target cells to host immunity, make it more challenging for
CTLs to achieve complete viral clearance of the actively
infected target cell pool.

Q3. What characterises HTLV-I-linked pathology?
▹ The extent of proviral activation rather than the size of the

proviral load may distinguish clinical status and suggests a
potential route for disease manifestation.

Finding a quantifiable measure for the amount of detri-
ment caused by HTLV-I is important in assessing the severity
of infection and disease: For an asymptomatic carrier, what is
the risk of developing disease? For a HAM/TSP patient, how
far has the disease progressed?

A traditional measure of viral burden is the proviral load,
which is a direct representation of the magnitude of the
infection. However, the proviral load among both ACs and
HAM/TSP patients can display large overlap and its magni-
tude alone cannot determine clinical status (Asquith et al.,
2000; Mosley et al., 2005). We propose that the activated
proportion of proviral cells could be an alternative measure
of viral burden that distinguishes ACs from HAM/TSP
patients, independent of the size of the proviral load.
Namely, we hypothesise that a high level of infected target
cell activation could be associated with HAM/TSP, whereas a
low level of proviral activation may correspond to asympto-
matic carriage—there exists a threshold level of activation
separating the two states. Our results offer insights to two
unknown issues in HTLV-I pathogenesis. (i) Why do HAM/TSP
treatments fail to eradicate disease? and (ii) what causes the
progression of HTLV-I infection from the asymptomatic stage
to HAM/TSP?

For the former, we have demonstrated using our math-
ematical model that treatments boosting the efficiency of
the HTLV-I-specific CTL response may be inadequate at
reducing the activated proportion of proviral cells below
the proposed threshold level for disease, despite being
effective at lowering the proviral load. For the latter, we
suggest a plausible mechanism for disease manifestation:
The rate of spontaneous viral activation increases over
time, for example through activation induced by pro-
stimulatory signalling pathways (Höllsberg et al., 1999),
gradually raising the proportion of infected target cells that
are activated and eventually crossing the proposed thresh-
old for disease.
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Appendix A. Proofs

A.1. Biologically realistic region

Proof of Theorem 3.1. It can be seen from the model equations that
for any set of non-negative initial conditions, xðtÞ;uðtÞ; yðtÞ; zðtÞZ0 for
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all tZ0. It is clear that

dx
dt

rλ�μ1x;

and this implies that

lim sup
t-1

xðtÞr λ
μ1

:

Adding the first three equations yields

d
dt
ðxþuþyÞrλ�ðμ�rÞðxþuþyÞ;

where μ¼minfμ1;μ2;μ3g, which implies that lim supt-1ðxðtÞþuðtÞ
þyðtÞÞrλ=ðμ�rÞ. The assumption that roμ ensures that the quan-
tity on the right-hand side of the inequality is always positive. For the
last inequality, let ðxðtÞ;uðtÞ; yðtÞ; zðtÞÞ be a solution of model (1) with
xð0Þþuð0Þþyð0Þrλ=ðμ�rÞ. Then,
dz
dt

¼ νy�μ4zrν
λ

μ�r
�μ4z ⟹lim supt-1 zðtÞr λν

μ4ðμ�rÞ:

Therefore, we consider the closed, bounded region

Γ≔ ðx;u; y; zÞAR4
þ : xr λ

μ1
; xþuþyr λ

μ�r
; zr λν

μ4ðμ�rÞ

� �
:

It is a straight-forward exercise to verify that Γ is positively invariant
in R4 and hence model (1) is well-posed.

A.2. Proof of Theorem 3.2. Part 1: existence of equilibria

The first proposition shows that the basic reproduction number
for viral infection, given by

R0 ¼
τ

μ3ðτþμ2Þ
ðβxHþrÞ where xH ¼ λ

μ1
;

as in Eq. (2), determines the existence of equilibria in Γ .

Proposition A1 (Existence of equilibria).

(1) The infection-free equilibrium P0 ¼ ðxH ;0;0;0Þ, where xH ¼ λ=μ1,
always exists in Γ . Moreover, if 0oR0o1, then P0 is the only
equilibrium in Γ .

(2) If R041, then there exist exactly two equilibria, P0 on ∂Γ and a
unique chronic infection equilibrium Pn ¼ ðxn;un; yn; znÞ in Γ˚.

Proof. Equilibria occur when

0¼ λ�βxy�μ1x; ðA:1aÞ

0¼ βxyþry�ðτþμ2Þu; ðA:1bÞ

0¼ τu�γyz�μ3y; ðA:1cÞ

0¼ νy�μ4z: ðA:1dÞ
Observe that since x;u; y; z are restricted to be non-negative in the
biologically feasible region Γ, then from Eqs. (A.1c) and (A.1d),
u¼ 0⟺y¼ 0⟺z¼ 0 at equilibrium. There are only two possible
non-negative equilibria in our model (1): P0 representing the
infection-free state, and Pn representing chronic infection.

We first determine the existence of the infection-free equili-
brium P0 ¼ ðxH ;0;0;0Þ, where xH ¼ λ=μ1 is the level of target cells
in the absence of an infection and coincides precisely with the
normal CD4þ helper T-cell count in a healthy individual.

Next, we search for steady state solutions of the form
Pn ¼ ðxn;un; yn; znÞ, where xn;un; yn; zn40. We will refer to such
a steady state, if it exists, as a chronic infection equilibrium.
Eqs. (A.1a)–(A.1d) allow us to express xn, un, and yn in terms of

zn. Namely,

xn ¼ λν
βμ4znþνμ1

; un ¼ μ4

τν
ðγznþμ3Þzn; yn ¼ μ4

ν
zn; ðA:2Þ

where zn is a root of the following function:

FðzÞ ¼ τ
μ3ðτþμ2Þ

βλν
βμ4zþνμ1

þr
� �

� γ
μ3

z�1: ðA:3Þ

Clearly, F(z) is a monotonically decreasing function of z and
limz-1 FðzÞo0. Moreover, since

Fð0Þ ¼ ½R0�1�;

the existence of a unique positive root zn of FðzÞ ¼ 0 is equivalent to
the condition that R041, thus completing the proof. □

A.3. Proof of Theorem 3.2. Part 2: stability of P0

The Jacobian matrix for model (1) is

Jðx;u; y; zÞ ¼

�βy�μ1 0 �βx 0
βy �τ�μ2 βxþr 0
0 τ �γz�μ3 �γy
0 0 ν �μ4

2
66664

3
77775: ðA:4Þ

The local stability of P0 is given by the following.

Proposition A2 (Local stability of P0).

(i) When R0o1, the infection-free equilibrium P0 ¼ ðxH ;0;0;0Þ,
where xH ¼ λ=μ1, is always locally asymptotically stable in the
feasible region Γ.

(ii) When R041, P0 is unstable. Specifically, P0 is a saddle with
dim Ws

locðP0Þ ¼ 3 and dim Wu
locðP0Þ ¼ 1, where Ws

locðP0Þ,Wu
locðP0Þ

denote the local stable and unstable manifolds of P0, respectively.

Proof. Establishing the local stability of the infection-free equili-
brium P0 is equivalent to determining the signs of the real parts of
the eigenvalues of JðP0Þ, the Jacobian matrix at P0. The character-
istic polynomial is

χ0ðζÞ ¼ ðζþμ1Þðζþμ4Þ½ζ2þðτþμ2þμ3Þζ�μ3ðτþμ2Þ½R0�1��;

where R0 is the basic reproduction number for viral infection
defined in Eq. (2). The roots of χ0ðζÞ are precisely the eigenvalues
of the Jacobian matrix JðP0Þ. They are given by ζiAC such that
χ0ðζiÞ ¼ 0:

ζ1 ¼ �μ1; ζ2 ¼ �μ4;

and

ζ3;4 ¼ �1
2 ðτþμ2þμ3Þ71

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτþμ2þμ3Þ2þ4μ3ðτþμ2Þ½R0�1�

q
:

Clearly, both ζ1;ζ2o0. Moreover, if R0o1, then Reðζ3Þ;Reðζ4Þo0.
Hence P0 is either a stable node or a stable spiral. However, if
R041, it is readily seen that Reðζ3Þ40, so that P0 is unstable.
Specifically, P0 is a saddle whose local stable manifold Ws

locðP0Þ has
dimension 3 and local unstable manifold Wu

locðP0Þ has dimension 1.
If R0 ¼ 1, ζ3 ¼ 0 is a zero eigenvalue of JðP0Þ and no immediate
conclusions about the local stability of P0 may be inferred. The
preceding argument establishes the basic reproduction number for
viral infection R0 as a threshold parameter that characterises the
local stability of the infection-free equilibrium P0. □

In fact, a stronger statement can be made about the stability of
P0 when R0o1, namely that it is globally asymptotically stable in
the feasible region Γ.
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Proposition A3 (Global stability of P0). When R0o1, the infection-
free equilibrium P0 is globally asymptotically stable in the feasible
region Γ.

Proof. Assume that R0o1. Then by Proposition A1, the infection-
free steady state P0 is the only equilibrium point in Γ . Note that
xrxH for all xAΓ.

Consider

L¼ Lðx;u; y; zÞ ¼ x�xH�xH log
x
xH

� �
þuþτþμ2

τ
yþγðτþμ2Þ

2τν
z2:

The function L : R4
þ-R is positive definite, as

(i) LðxH ;0;0;0Þ ¼ 0, i.e. LðP0Þ ¼ 0; and
(ii) Lðx;u; y; zÞ40, for all ðx;u; y; zÞAR4

þ ; ðx;u; y; zÞa ðxH ;0;0;0Þ.

The Lyapunov derivative of L is

dL
dt

¼ 1�xH
x

� 	dx
dt

þdu
dt

þτþμ2

τ
dy
dt

þγðτþμ2Þ
τν

z
dz
dt

¼ 1�xH
x

� 	
ðλ�μ1xÞ�βxy 1�xH

x

� 	
þðβxyþry�ðτþμ2ÞuÞþ

τþμ2

τ
ðτu�γyz�μ3yÞ

þγðτþμ2Þ
τν

zðνy�μ4zÞ:

Replacing λ¼ μ1xH and expanding terms yield

dL
dt

¼ �μ1

x
ðx�xHÞ2þ

μ3

τ
ðτþμ2Þ½R0�1�y�γμ4

τν
ðτþμ2Þz2

r0; 8ðx;u; y; zÞAΓ since R0o1:

Hence, L is an appropriate Lyapunov function and moreover,
dL=dtðxH ;0;0;0Þ ¼ LðxH ;0;0;0Þ ¼ 0. Since the feasible region Γ is
compact and invariant with respect to the vector field of model
(1), it then follows from LaSalle's (1976) invariance principle that
every trajectory starting in Γ approaches a set M, where M is the
largest invariant subset of

I ¼ ðx;u; y; zÞAR4
þ :

dL
dt

ðx;u; y; zÞ ¼ 0
� �

;

which, in the present case, is precisely

fx� xHg \ fy� 0g \ fz� 0g:

To establish the global stability of P0 when R0o1, it remains to
show that the set M consists solely of the equilibrium point P0.
Observe that in the set I, the variable u can take on any arbitrary
value along the non-negative real line. Let ωðt0Þ ¼ ðxðt0Þ;uðt0Þ;
yðt0Þ; zðt0ÞÞ be any trajectory of model (1) starting in I, so that
xð0Þ ¼ xH , yð0Þ ¼ 0, and zð0Þ ¼ 0. Then, the behaviour of ωðt0Þ at
t0 ¼ 0 is governed by

dx
dt

¼ 0;
du
dt

¼ �ðτþμ2Þu;
dy
dt

¼ τu;
dz
dt

¼ 0:

Hence, xðt0Þ � xH , zðt0Þ � 0, and

uðt0Þ ¼ uð0Þe�ðτþμ2Þt0 :

The y-compartment varies according to dy=dt ¼ τuð0Þ at time
t0 ¼ 0. If uð0Þa0, then dy=dt40, implying that yðt0 0Þa0 for some
t0 0a0; that is, the trajectory will leave the set I. For the solution
ωðt0Þ to remain in I for all t0, we must have uð0Þ ¼ 0 and therefore
uðt0Þ � 0. Subsequently, solving the initial value problem dy=dt ¼ 0,
yð0Þ ¼ 0 yields yðt0Þ � 0. Taken all together, the above argument
means that the maximal invariant set in I is comprised only of the
single point P0 ¼ ðxH ;0;0;0Þ, i.e. M¼ fP0g. □

A.4. Proof of Theorem 3.2. Part 3: stability of Pn

The final part of the proof of Theorem 3.2 is to demonstrate the
global stability of the chronic infection equilibrium Pn whenever it
exists in the Γ. We therefore establish the following.

Proposition A4 (Global stability of Pn). When R041, the chronic-
infection equilibrium Pn is globally asymptotically stable in Γ˚.

Proof. Assume that R041. Then by Proposition A1, the chronic
infection equilibrium Pn exists in the feasible region Γ. To prove
the result, we construct an appropriate Lyapunov function V :

R4
þ-R that will allow us to conclude the global asymptotic

stability of Pn in Γ˚.
Suppose that ðxðtÞ;uðtÞ; yðtÞ; zðtÞÞ is a solution of model (1) and let

V ¼ x�xn�xn log
x
xn

� 	
þ u�un�un log

u
un

� 	
þτþμ2

τ
y�yn�yn log

y
yn

� �
þ γ
τν

ðτþμ2Þzn z�zn�zn log
z
zn

� 	
:

The function V ¼ Vðx;u; y; zÞ is positive definite with respect to
the chronic infection equilibrium point Pn ¼ ðxn;un; yn; znÞ. Taking
the Lyapunov derivative along the solution ðxðtÞ;uðtÞ; yðtÞ; zðtÞÞ yields
dV
dt

¼ 1�xn

x

� �
dx
dt

þ 1�un

u

� �
du
dt

þτþμ2

τ
1�yn

y

� �
dy
dt

þ γ
τν

ðτþμ2Þzn 1�zn

z

� �
dz
dt

¼ 1�xn

x

� �
ðλ�βxy�μ1xÞþ 1�un

u

� �
ðβxyþry�ðτþμ2ÞuÞ

þτþμ2

τ
1�yn

y

� �
ðτu�γyz�μ3yÞ

þ γ
τν

ðτþμ2Þzn 1�zn

z

� �
ðνy�μ4zÞ:

By making the appropriate substitutions using the equilibrium
equations (A.1a)–(A.1d), we find that

dV
dt

¼ 1�xn

x

� �
ðμ1x

n�μ1xÞþ 1�xn

x

� �
ðβxnyn�βxyÞ

þ 1�un

u

� �
βxyþry�ðβxnynþrynÞ u

un

� 	

þβxnynþryn

τun
1�yn

y

� �
τu�τun y

yn

� �

þτþμ2

τ
1�yn

y

� �
ðγyzn�γyzÞ

þ γ
τν

ðτþμ2Þzn 1�zn

z

� �
νy�νyn z

zn

� 	
¼ μ1x

n 2�xn

x
� x
xn

� �
þβxnyn 3�xn

x
� x
xn

un

u
y
yn

� u
un

yn

y

� �

þryn 2�un

u
y
yn

� u
un

yn

y

� �
þγ
τ
ðτþμ2Þyzn 2� z

zn
�zn

z

� �
r0:

The final line follows from the inequalities
ffiffiffiffiffiffiffiffiffiffi
a1a2

p r ða1þa2Þ=2 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1a2a33

p r ða1þa2þa3Þ=3, where a1; a2; a340; that is, the geo-
metric mean of n positive numbers can be no greater than their
arithmetic mean. Hence, the global stability of Pn has been estab-
lished when R041. □

A.5. Proof of Theorem 5.1

Consider the proviral load at equilibrium, vn ¼ ðunþynÞ=
ðxnþunþynÞ. From Eq. (A.2), we have

unþyn ¼ μ4

τν
ðγznþτþμ3Þzn and xn ¼ λν

βμ4znþνμ1
:
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To show the first part of the theorem, we compute

d
dzn

ðunþynÞ ¼ μ4

τν
ð2γznþτþμ3Þ40;

and

dxn

dzn
¼ � βλνμ4

ðβμ4znþνμ1Þ2
o0:

Then,

dvn

dzn
¼ d
dzn

unþyn

xnþunþyn

� �

¼
ðxnþunþynÞ d

dzn
ðunþynÞ�ðunþynÞ d

dzn
ðxnþunþynÞ

ðxnþunþynÞ2

¼ 1
ðxnþunþynÞ2

xn
d
dzn

ðunþynÞ�ðunþynÞdx
n

dzn

� �

¼ μ4

τνðxnþunþynÞ2
ð2γznþτþμ3Þxnþ

βλτν2ðunþynÞ
ðβμ4znþνμ1Þ2

" #

40:

Hence, the proviral load at equilibrium, vn, is an increasing
function of zn.

The second part of the theorem is proved by observing that

dvn

dγ
¼ dvn

dzn
dzn

dγ
:

It can be straight-forwardly shown that dzn=dγo0, whose derivation
follows directly from differentiating the equation FðznÞ ¼ 0, where F
(z) is defined in Eq. (A.3), implicitly with respect to the parameter γ.
Combined with the result from the first part of the theorem
demonstrating that dvn=dzn40, we therefore conclude that

dvn

dγ
o0;

that is, vn is a decreasing function of γ.

Appendix B. Additional figures

See Figs. B1–B3.

Fig. B1. Time series plots for each of the T-cell populations under investigation comparing exponential and logistic growth terms for infected target cell proliferation. (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.). For the latter case, the carrying capacity k has been
selected so that xþuþy is of the order k. Specifically, k¼800 cells/mm3. Because the rate r of infected target cell proliferation differentially influences each of the two
models, we therefore explored its impact on the various cell populations. We found that when the value of r was chosen in the physiologically relevant range as in Table 1,
the two models converged to equilibria that were close to each other. In Figs. B1 and B2, we plotted the time evolution graphs with a value of r that is two orders of
magnitude higher than in Table 1. We observe, as expected, that although the effect of a logistic growth term serves to control the magnitude of the infected cell populations
and hence the proviral load, there is no qualitative difference in dynamical behaviour. All other parameters have been chosen as in Table 1 and are the same between the two
models. (a) Model with exponential growth term (large r) and (b) model with logistic growth term (large r).

Fig. B2. Time series graphs for the proviral load and active proportion of infected cells comparing exponential and logistic growth terms for infected target cell proliferation.
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