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Abstract— This paper investigates the chemotaxis behavior of
the bacterium R. sphaeroides. We review the results of a recent
study comparing different possible mathematical models of this
bacterium’s chemotaxis decision mechanisms. It was found that
only one of the aforesaid models could explain the experimental
chemotactic response data. From a control theoretic perspective,
we show that, compared to the other models posed, this model
exhibits better and more robust chemotactic performance. This
decision mechanism parallels a feedback architecture that has
been used extensively to improve performance in engineered
systems. We suggest that this mechanism may play a role in
maintaining the chemotactic performance of this and potentially
other bacteria.

I. INTRODUCTION AND BACKGROUND

Mathematical modeling is important for the analysis of
complex pathways responsible for sensing, signalling and
response mechanisms in living organisms [18]. This ap-
proach can be used to understand the dynamic behavior and
robustness of biological systems, and how such properties
are dependent upon the pathway’s architecture [8].

One such pathway is bacterial chemotaxis, which con-
trols bacterial motion in response to environmental stimuli,
towards favorable concentrations of chemoeffectors. When
certain chemical ligands are sensed, the bacterium’s random
walk within its medium is biased so that it moves up (or
down) the ligand concentration gradient depending on the
ligand’s attractivity (or toxicity).

An important feature of bacterial chemotaxis is adapta-
tion. This is a mechanism that makes the bacterium re-
spond to changes in sensed ligands only temporarily, before
restoring the bacterium’s pre-stimulus random walk. The
advantage of this feature is that it allows the bacterium
to accurately sense a wide ligand concentration range with
adequate sensitivity.

The Escherichia coli chemotaxis signalling pathway is
a particular example that has been extensively studied. In
[21], it was shown that the model of this pathway proposed
in [1] adapts through an embedded negative feedback and
integral control mechanism. With reference to the E. coli
pathway illustrated in Fig. 1, chemical ligands bind to
methyl-accepting chemotaxis protein (MCP) receptors that
span the cell membrane and alter the activity of a chemotaxis
protein called CheA. When attractant ligands stimulate the
chemotaxis pathway by binding to MCP, there is a decrease
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in the auto-phosphorylation rate of CheA. Two chemotaxis
proteins, CheY and CheB, compete for the phosphoryl group
from phosphorylated CheA (CheA-P). CheY-P interacts with
the FliM motor protein in the motors of the E. coli flagella,
resulting in a change in the direction of rotation of the motor.
At the receptor, the protein CheR constantly methylates the
MCP receptors, whilst CheB-P acts as a negative feedback
signal that de-methylates the MCP receptors, thus reducing
their activity and restoring it to the pre-stimulus level [17],
[4].
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Fig. 1. The E. coli chemotaxis pathway.

Other species have chemotaxis pathways that are more
complex than that of E. coli [20], [7]. The chemotaxis
pathway of the bacterium Rhodobacter sphaeroides, shown
in Fig. 2, contains multiple homologues of the proteins found
in the E. coli pathway [7], [12], [13]. This pathway also con-
tains two receptor clusters, one located at the cell pole and
the other in the cytoplasm [19]. Ligands in the bacterium’s
environment regulate the activity of receptors in the two
clusters. Through in vitro phosphotransfer experiments [10],
[11], it is known that the CheA homologues located at the
two clusters can phosphotransfer to different CheY and CheB
homologues: at the cell pole CheA2-P phosphotransfers to
CheY3, CheY4, CheY6, CheB1 and CheB2, while at the cy-
toplasm CheA3A4-P phosphotransfers to CheY6 and CheB2.
The CheB homologues, CheB1 and CheB2, are responsible
for the adaptation mechanism in R. sphaeroides [12], [9] and
are found throughout the cytoplasm [19]. This potentially
means that the two proteins can de-methylate each of the
receptor clusters [19].

As a system featuring an adaptation mechanism similar
to that in E. coli but with multiple homologues of the E.
coli chemotaxis proteins, it is useful to examine the R.
sphaeroides chemotaxis pathway from a control engineering
perspective [15].

In [6], an integrated model of this chemotaxis pathway was
presented. It was assumed that as a dynamical system, this
pathway had several parallels to that of E. coli, including
the integral feedback controller responsible for adaptation.
Additionally, the forward path of the system was based on
the R. sphaeroides chemotaxis model developed in [14].
Under these assumptions, the study posed different possible
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feedback architectures that can arise from the dual sensory
modules in R. sphaeroides. The relative advantages of the
feedback structures were then compared from both control
theoretic and biological angles.

Unlike the E. coli pathway, the different possible con-
nectivities between the two feedback signals (CheB1-P and
CheB2-P) and the two receptor clusters they regulate make
this system a multi-input, multi-output (MIMO) feedback
system. The additional degrees of freedom thus create the
potential for improved feedback regulation. The additional
receptor cluster not found in E. coli may be the source of
disturbances, and one of the feedback architectures in [6] was
shown to be superior in reducing the system’s sensitivity to
this and other sources of uncertainty such as protein copy
number variations.

This particular connectivity has similarities to a feedback
architecture commonly found in engineered control systems
termed cascade control [16], which is usually employed
when an output feedback controlled process can be split
into two modules in cascade, with the primary module
maintaining a set-point for the secondary module, which
in turn controls the output of the overall process. In cases
where the secondary module is susceptible to uncertainties, a
cascade control design places an additional output feedback
loop around the secondary module in order to reduce the
sensitivity of the output to such disturbances. However,
along with the reduction in sensitivity to uncertainty in the
secondary module, in linear systems this additional loop
causes a re-distribution of sensitivity towards uncertainty in
the internal feedback path of the system.

In engineering applications, including this additional inter-
nal feedback also allows the control system designer more
flexibility in increasing the external feedback gain to achieve
higher bandwidth and faster system responses without losing
stability. Cascade control is employed as a design principle
in several engineering systems such as aircraft pitch control
and in industrial heat exchangers [3], [2].
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Fig. 2. The R. sphaeroides chemotaxis network, with the pathway adopted
from [14].

In this paper, we begin by giving an exposition of how
feedback can re-distribute sensitivity among the components
of linear systems, and then apply this idea to linear systems

having the cascade control architecture. We then review
the main result of [6]. In light of the discussion of linear
cascade control systems, we demonstrate that the (non-
linear) model suggested by [6] is structurally similar to
the cascade control architecture. Furthermore, the model
shares with this architecture several properties, including the
sensitivity re-distribution and disturbance rejection features
for which this control scheme is employed in engineering
applications, suggesting that this structure may be the result
of evolutionary advantages arising from increased robustness.

II. SENSITIVITY RE-DISTRIBUTION

The primary aim of using feedback in a control system is
to reduce the effect of uncertainties in the system and thus
maintain the desired output. Consider the block diagram in
Fig. 3 which models a plant G(s) with a controller H(s)
in negative feedback. The closed loop transfer function from
input u to output y is given by

ȳ(s) =
G(s)

1 +G(s)H(s)
ū(s) = P (s)ū(s) (1)

where ū(s) and ȳ(s) are the Laplace transforms of u(t) and
y(t) respectively. In the case where G(s) is perturbed by
uncertainties and un-modelled dynamics, the effect of an
incremental change in the plant G(s) on the transfer function
P (s) can be quantified by the sensitivity function SG(s):

SG(s) =

∂P (s)
P (s)

∂G(s)
G(s)

=
1

1 +G(s)H(s)

In the MIMO case, this sensitivity function takes the form
SG(s) = (I +G(s)H(s))−1, where I is the identity matrix.

The feedback controller H(s) can reduce the magnitude
of the sensitivity function of the negative feedback system
P (s) with respect to G(s) over a range of frequencies [5]. In
MIMO systems, the reduction in sensitivity can be quantified
via the maximum singular value of SG(s), σ̄(SG).

−

G(s)

H(s)

+
u(s) y(s)

+

++

dG(s)

dH(s)

Fig. 3. A typical closed loop system.

For linear systems such as the one illustrated in Fig. 3,
the sensitivity of P (s) with respect to H(s) is given by

SH(s) =

∂P (s)
P (s)

∂H(s)
H(s)

= −
G(s)H(s)

1 +G(s)H(s)

From this relation, it is clear that for (1) there holds the
sensitivity conservation constraint that, at any fixed s ∈ C,

SG(s)− SH(s) = 1 (2)

This relation shows that negative feedback re-distributes
sensitivity between the forward and feedback paths of the
system. Similarly, for a fixed s ∈ C, the transfer functions
from dG(s) to ȳ(s) and from dH(s) to ȳ(s) satisfy a
conservation equation identical to (2). The transfer function
−SH(s) (usually called the complementary sensitivity T (s)),
is the transfer function from dH to y, and (2) is usually
written as SG(s) + T (s) = 1. In this context, the aim is to
emphasize that SH(s) is the sensitivity of the output with
respect to the feedback H(s).

3015



III. CASCADE CONTROL

The regulation scheme commonly known as cascade con-
trol is often employed in the case where there is, within a
regulatory feedback loop, a sub-process that is subject to
uncertainty or disturbances that directly affect the overall
process output. Examples of this scheme include the control
of an industrial heat exchanger [16] and aircraft pitch control
[2]. With reference to Fig. 4, the method involves the use
of a (secondary) feedback H2(s) to regulate the embedded
process G2(s).

−−
G1(s) G2(s)

H2(s)

H1(s)

++r yu

F (s)

d

+ +

Fig. 4. Feedback system under cascade control.

Under cascade control, illustrated for the linear system in
Fig. 4, the sensitivity relation (2) can be rewritten as
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−
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Cascade control re-distributes sensitivity between G2, H2
and H1. Note that, as with the trade-off between the sen-
sitivity and complementary sensitivity, this relation leads to

|SG2
|+ |SH2

|+ |SH1
| ≥ 1 (3)

implying that, at any one fixed frequency, the quantities
|SG2

|, |SH2
|, |SH1

| cannot all be made arbitrarily small.
For example, if H2 is a static gain, then, at steady state,
strengthening this gain reduces SG2

and SH1
at the expense

of increasing SH2
. Note that SG2

is also the transfer function
from d to y in Fig. 4, and therefore the effects of disturbances
d can also be reduced using the feedback H2.

In addition to the improvement of performance in terms
of sensitivity reduction, cascade control enables the use of
higher gain feedbacks H1(s) whilst maintaining stability that
would otherwise be lost in the absence of the internal feed-
back H2(s). In addition, in the case where G2(s) is replaced
by a nonlinear system G2, a high strength static feedback
replacing H2(s) can be used to reduce gain variations in G2

through the linearizing effect of feedback [16], [3].

IV. A REVIEW OF PREVIOUS RESULTS

A. Modeling the R. sphaeroides chemotaxis pathway

In this section, we briefly review the four models for the
R. sphaeroides chemotaxis pathway presented in [6]. The
pathway can be modularized into sensing, signal transduction
and flagellar motor actuation subsystems, as shown in Fig.
5. Before detailing the distinguishing features of the four
models, we shall describe each of these subsystems:

Sensing: The same underlying mechanisms are assumed
for the polar and the cytoplasmic receptors shown in Fig.
2 (cytoplasmic cluster parameters are labelled with a tilde
superscript). Some additional assumptions from the E. coli
literature are also adopted [1]: receptors are either methylated
or not, and a subset of only the methylated receptors is in
an active state. Methylated receptors (active receptors) at the

polar and cytoplasmic clusters are denoted by [Rm], [R̃m]
([Ra], [R̃a]) respectively. The polar and cytoplasmic clus-

ters sense ligands of concentrations L and L̃ respectively.
Furthermore, the binding of ligands to a receptor inhibits
its activity, proteins CheB1-P and CheB2-P (with concentra-
tions [B1p ] and [B2p ] respectively) de-methylate only active

receptors, and inactive receptors (Ri, R̃i) are methylated
at a constant rate by CheR2 and CheR3 at the polar and
cytoplasmic clusters respectively.

The parameters fitted to experimental data (see Section IV-

B), are K1, K̃1, the feedback matrix K2 =

[

K21 K22

K̃21 K̃22

]

and K3, K̃3. The matrix K2 quantifies the strength of the
CheB1-P and CheB2-P feedbacks to the sensing clusters (Fig.
2), whilst the significance of the remaining parameters is
detailed in [6].

TransductionSensing Actuation

CheB1-P / CheB2-P
feedback

Ligand
(input)

Flagellar motor
(output)

K2

Fig. 5. Schematic of the R. sphaeroides chemotaxis pathway.

Transduction: Active polar and cytoplasmic receptors pro-
mote the auto-phosphorylation of the CheA2 and CheA3A4

chemotaxis proteins, respectively. Through the phosphotrans-
fer network (Fig. 2), phosphorylated CheA2 and CheA3A4

(with concentrations [A2p ] and [(A3A4)p]) then transfer
phosphate groups to the other chemotaxis proteins [6].

Actuation: It is assumed that there exists some interaction
between CheY6-P and the FliM rotor switch, which is
such that CheY6-P decreases the rotation frequency of the
flagellum [6].

B. Experimental results and model invalidation

In [6], four variants of the chemotaxis model above were
created, each having a different feedback interconnection
structure K2 between the proteins CheB1-P/CheB2-P and
the two receptor clusters. All models reproduced wild type
response data and behaved as expected for the response data
generated with gene deletions available at the time. The

unknown parameters K1, K̃1,K2,K3, K̃3 were fitted to wild
type data for each model. The four models had the following
structures:

I CheB1-P regulates the methylation state of the po-
lar receptor cluster and CheB2-P of the cytoplasmic

cluster only: K22 = K̃21 = 0.
II CheB1-P regulates the methylation state of both

the polar cluster and the cytoplasmic cluster while
CheB2-P de-methylates only the cytoplasmic clus-
ter receptors: K22 = 0.
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III CheB1-P and CheB2-P both regulate the methyla-
tion state of the polar receptor cluster and CheB2-P

of the cytoplasmic receptor cluster only: K̃21 = 0.
IV CheB1-P and CheB2-P both regulate the methyla-

tion state of both receptor clusters.

The values of these unknown parameters were obtained
in [6] for the different models by fitting them to data from
tethered cell assays (for method see [14]).

After the construction of these four models, experiments
were carried out to differentiate between them by finding
the optimal initial conditions of the cells in the assay that
maximize the difference between the outputs of the different
models. When simulations of the four models were compared
with experimental outputs, only Model III was able to
replicate the experimental data.

C. Numerical simulation results

Simulations that were performed in [6] on the data-fitted
Models I-IV showed how the different feedback config-
urations affect chemotactic performance in terms of the
sensitivity of the flagellar stopping frequency in response
to noise and to ligand inputs. These are summarized here.

1) Response to polar cluster noise: The bacterium’s en-
vironment is typically composed of regions of high and
low chemoattractant or chemorepellant concentrations. Ad-
ditionally, the bacterium might sense small, fast fluctuations
in the detected level of ligand due to molecular noise.
To test how sensitive the chemotaxis Models I-IV are to
such ligand fluctuations, each model was simulated with
the sensed ligand concentration L modeling a noisy signal,
and the resulting rotation frequencies were then recorded. It
was found that ligand level fluctuations sensed at the polar
cluster of receptors resulted in larger variance of the rotation
frequency in Models I, II and IV than in Model III.

2) Response to sinusoidal ligand variation: The sensitiv-
ity of the chemotaxis Models I-IV to ligand inputs was then
tested in two simulations performed on each model in which
the flagellar rotation frequency was recorded in response
to sinusoidal variations in the ligand signals. Ligand level
fluctuations sensed at the polar cluster of receptors resulted
in larger changes in the rotation frequency in Models II and
IV than in I and III. When the ligand concentration variations
were sensed at the cytoplasmic cluster the result was a greater
variation in the rotation frequency in Models I and III than
in the other two models.

V. ANALYSIS OF MODEL SENSITIVITY AND FEEDBACK

Sections IV-B and IV-C reviewed experimental and nu-
merical results from [6]. We next present further simulations
that analyze the models’ robustness properties under different
feedback structures. Following these results, we use linear
models with structures that represent the different connec-
tivities of Models I-IV to analyze these structures’ relative
sensitivities to such disturbances.

A. Model sensitivity analysis

As the CheA proteins directly control CheY6p (which
in turn controls the flagellum), their sensitivity to model
uncertainty is indicative of the sensitivity of the flagellar
rotation frequency. Fig. 6 shows the effects of varying the

strengths of the CheB2-P feedback gains K22 and K̃22 to

the two receptor clusters on the steady-state CheA3A4-P in
Model III, the model proposed in [6].

A consequence of increasing the feedback gain K22 to
the polar cluster is a decrease in the sensitivity of the
steady state to the variations in CheA3A4 copy numbers
(Fig. 6, top left) and an increase in sensitivity to variations
centered around the nominal feedback gain K22 (Fig. 6,
bottom left). With regards to increasing the feedback gain

K̃22 to the cytoplasmic cluster, we observe that the sensitivity
of the steady state level of CheA3A4-P to copy numbers

of CheA3A4 is not a monotonic function of K̃22 (Fig. 6,
top right). We also observe an increase in sensitivity to

variations centered around the nominal feedback gain K̃22 as

the nominal value of K̃22 is increased (Fig. 6, bottom right).
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Fig. 6. Sensitivity of the steady state level of CheA3A4-P to random
changes in model parameters, under varying nominal feedback strengths to
the polar cluster (left column) and to the cytoplasmic cluster (right column).
Left: top, sensitivity to randomly varying copy numbers of CheA3A4 under
different feedback strengths K22 , bottom, sensitivity to random variations
about nominal feedback strength K22 . Right: top, sensitivity to randomly

varying copy numbers of CheA3A4 under different feedback strengths K̃22 ,
bottom, sensitivity to random variations about nominal feedback strength

K̃22 . Sensitivity is in terms of the coefficient of variation, the ratio of the
standard deviation of the steady state to the nominal steady state.

The role of the internal feedback in reducing sensitivity
can also be observed by first regarding the pathway as the
MIMO feedback system illustrated in Fig. 7, where GA

maps the two phosphorylated CheB proteins to phospho-
rylated CheA proteins, whilst GB maps the latter to the
former. Linearizing the system, the sensitivity function

[

B1p

B2p

] [

A2p

(A3A4)p

]

GA

GB

Fig. 7. MIMO representation of the R. sphaeroides chemotaxis pathway.

of the CheA protein outputs to disturbances is S(s) =
(I+ ḠA(s)ḠB(s))

−1, where ḠA(s), ḠB(s) are the transfer
functions of the linearizations of GA, GB . Fig. 8 shows
the magnitude frequency response of the maximum singular
values of this sensitivity function, σ̄(S), under different

internal feedback strengths K̃22 and at the operating point
L = 50, again showing that the maximum sensitivity is
reduced under the strengthened internal feedback to the
cytoplasmic cluster.
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The biological implications of these sensitivity observa-
tions on the performance of the chemotaxis system will be
discussed in Section V-C.
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B. A linear chemotaxis model

Analytic insight into how the different feedback arrange-
ments affect the performance of the four chemotaxis models
can be obtained by comparing the behavior of linear systems
with structures that correspond to the different models. The
block diagram in Fig. 9 shows a system composed of two
modules representing the polar and cytoplasmic clusters. The
outputs of the two clusters exhibit exact adaptation through
integral control in response to step changes in the input
ligand concentration level, as in E. coli [21]. Depending on
the values of feedback gains κ̃21 and κ22 (which correspond

to K̃21 and K22 respectively in the chemotaxis models
described above), the system can represent one of the four
chemotaxis models:

Model I: κ̃21 = 0 and κ22 = 0
Model II: κ̃21 > 0 and κ22 = 0
Model III: κ̃21 = 0 and κ22 > 0
Model IV: κ̃21 > 0 and κ22 > 0

The gains a, b in Fig. 9 are such that b > 0, a > 0. For
the examples we shall consider we set a = 1 and b = 10.

Gains κ̃22 > 0, κ21 > 0 correspond, respectively, to K̃22 and
K21 in the chemotaxis model. The frequency domain transfer
function of the system in Fig. 9 from the ligand inputs L and

L̃ to the output y is then

ȳ(s) =
bq

s
G1G2

1 + ab

s2
qκ22G1G2

L+
G2

1 + ab

s2
qκ22G1G2

L̃ (4)

where G1 = s
s+aκ21

, G2 = s
s+bκ̃22

and q = 1 − κ̃21 .

κ̃21

κ̃22

κ22

κ21

a b
∫

∫

− − −

−

+

+ +

+

L̃L

y

Polar cluster Cytoplasmic cluster

++

Fig. 9. Block diagram representation of a linear system structurally
similar to the R. sphaeroides chemotaxis pathway. In this system, gain κ̃21
corresponds to K̃21 in the chemotaxis model, κ22 to K22 and κ21 to K21 .
Outputs of the two receptor clusters exhibit exact adaptation to step changes

in ligand concentration L, L̃. We assume b > 0, a > 0.

Defining the return ratio of (4) as Λ(s) := ab
s2
qκ22G1G2, the

sensitivity of y to the forward path of the system is Σ11(s) =
1

1+Λ(s) , whilst the sensitivity of y to the external feedback

(with gain κ22 ) is Σ12(s) = − Λ(s)
1+Λ(s) .

Similarly, we can derive the sensitivity of y to variations
in the forward path of the inner cytoplasmic cluster loop

of (4) as Σ21(s) = G2(s)
1+Λ(s) whilst the sensitivity of y to

the feedback path of the inner cytoplasmic cluster loop is

Σ22(s) = 1−G2(s)
1+Λ(s) . These sensitivity functions are shown

for a range of frequencies in Fig. 10.
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C. The modelled and linear chemotaxis systems, compared

The rejection of high frequency inputs at the cell pole,
described in Section IV-C.1, may be advantageous in that
the flagellar switching rate is then only varied when the
polar cluster senses a relatively significant ligand concen-
tration gradient that is large in spatial extent, and remains
relatively unchanged when the receptors are subject to rapid
fluctuations in sensed ligand due, for example, to molecular
noise at the receptor.

In [6], Bode plots were used to show that the frequency re-
sponse of the linear model (4) is able to qualitatively replicate
the difference in gain exhibited by the two sensing clusters
described in Section IV-C.2. Although the chemotaxis model
assumes that the cytoplasmic cluster input depends on the
sensed ligand, it is unknown what the cytoplasmic cluster
senses. In addition to the possibility that this input is a
function of the sensed ligand concentration, this cluster may
potentially also integrate information about the metabolic
state of the cell. In this case, this signalling may be important
to chemotactic performance and the relatively high gain of
Model III to inputs at the cytoplasmic cluster may suggest
that this configuration would favor internal signals over
external signals in terms of output. However, if chemotaxis
is sensitive to such signals, it would be important that
the cytoplasmic cluster be insensitive to variations in its
biological parameters, as sensitivity to such variations would
diminish the system’s ability to correctly respond to inputs.

In Model III, the CheB2-P feedback loop around the cy-
toplasmic cluster could offer this reduction in the sensitivity
of this cluster to such variations. The sensitivity function
magnitude plots shown in Fig. 10 illustrate the effect of
changing the values of the (internal) feedback gain κ̃22
in re-distributing the sensitivity of the system (4) between
the forward and feedback paths, as discussed in Section
II. Increasing κ̃22 reduces the sensitivity Σ21(s) of y on
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the forward path of the internal feedback loop given by
b
s

and increases the sensitivity Σ22(s) of y with respect to
variations in the internal feedback path. The feedback gain
κ̃22 corresponds to the gain of the CheB2-P feedback to
the cytoplasmic cluster in Model III. In Fig. 6, it is shown
that strengthening the CheB2-P feedback to the cytoplasmic
cluster reduces the sensitivity of the steady state level of
CheA3A4-P to changes in the copy numbers of CheA3A4 and

increases sensitivity in response to variations of K̃22 away

from the nominal value of K̃22 . Although the latter effect is
what may be expected from the sensitivity re-distribution
discussed in Section II for linear systems, in the former
case, the nonlinearity of the model leads to a non-monotonic

variation of sensitivity with nominal feedback strength K̃22 .
Nevertheless, even for this nonlinear model, we observe
that, empirically, a constraint similar to (3) holds, in that
sensitivity cannot be made small at one point of the feedback
path without the emergence of a corresponding increase in

sensitivity at another point. If strengthening K̃22 results in a
re-distribution of sensitivity away from the parameters that
strongly affect the output of the cytoplasmic cluster and
towards parameters that are less likely to vary, then this may
provide a mechanism by which the cluster retains a high gain
to its inputs, as observed in Section IV-C.2, whilst keeping
the sensitivity of its outputs to parametric variations small.

Analyzing the effects of the external feedback, we note
that at steady state, increasing the feedback strength κ22
decreases the sensitivity Σ11(s) of y to uncertainty in the for-
ward path and increases its sensitivity Σ12(s) to uncertainty
in the feedback path. This sensitivity re-distribution effect
can be observed in the chemotaxis models in Fig. 6. There,
it is shown that strengthening the CheB2-P feedback gain
K22 to the polar cluster reduces the sensitivity of the steady
state level of CheA3A4-P to changes in the copy numbers
of CheA3A4, whilst increasing the sensitivity of steady state
CheA3A4-P to changes in K22 around its nominal value as
this nominal value is increased.

VI. DISCUSSION

The linear system (4) in the case where κ̃21 = 0 and
κ22 > 0 has the cascade control architecture illustrated in
Fig. 4. The similarities in terms of structure and behavior
between this case of the linear model and Model III suggest
that cascade control may be the underlying mechanism be-
hind robust R. sphaeroides chemotaxis. The modularization
of the chemotaxis system into the polar and cytoplasmic
clusters can be seen as mirroring the modularization of the
cascade controlled system in Fig. 4 into the cascade of
G1 and the feedback of G2 with the controller H2. The
cascade control architecture enables the primary subsystem
G1 (regulated using the external feedback) to fix a set-point
for the secondary system G2 and for the feedback around
the secondary system to regulate the secondary output in
response to disturbances and variations in the secondary
process. Model III also features both an ‘internal’ feedback
loop nested within an ‘external’ one, manifested by the
CheB2-P feedback that de-methylates the cytoplasmic and
the polar clusters respectively. In this way, the ‘external’
CheB2-P feedback to the polar cluster regulates the output of
the polar cluster whilst the ‘internal’ CheB2-P feedback to
the cytoplasmic cluster regulates the output CheY6-P, which
in turn controls the flagellar motor.

Unlike E. coli, the R. sphaeroides chemotaxis pathway
with cascade control feedback would consist of two feedback
loops, one embedded within the other. Among the features
that this delivers is a re-distribution of sensitivity to param-
eter variations and noise, and as long as this sensitivity is
shifted to a more robust part of the feedback system, the
cascade control structure can lead to a flagellar rotation
frequency that is less susceptible to noise and uncertainy.
Given that many chemotactic systems have multiple homo-
logues of different important proteins [20] it would appear
that using more complex feedback architectures to improve
performance may be widespread in chemotaxis and in other
signalling pathways, making the results of this work poten-
tially useful for analyzing a wide set of biological systems.
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