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Abstract Research into mechanisms of haematogenous metastasis has largely become genetic
in focus, attempting to understand the molecular basis of ‘seed–soil’ relationships. Preceding
this biological mechanism is the physical process of dissemination of circulating tumour cells
(CTCs) in the circulation. Patterns of metastatic spread have been previously quantified using
the metastatic efficiency index, a measure quantifying metastatic incidence for a given
primary-target organ pair and the relative blood flow between them. We extend this concept
to take into account the reduction in CTCs which occurs in organ capillary beds connected by
a realistic vascular network topology. Application to a dataset of metastatic incidence reveals
that metastatic patterns depend strongly on assumptions about the existence and location of
micrometastatic disease which governs CTC dynamics on the network, something which has
heretofore not been considered – an oversight which precludes our ability to predict metastatic
patterns in individual patients.
� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Nearly 150 years after Ashworth’s discovery of the
circulating tumour cell (CTC) [1], the putative vector
of haematogenous metastatic disease, the mechanisms
driving this process remain poorly understood and
unstoppable [2]. For over a century the dominant
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paradigm has been the seminal, yet qualitative, seed–soil
hypothesis proposed by Paget in 1889 [3]. This idea was
challenged by the ‘mechanical hypothesis’ put forward
by Ewing in the 1920s [4], that postulated that meta-
static incidence is due to differential blood flow. These
two opposing views were merged in 1992, when a quan-
tification of the contribution of mechanical and seed–
soil effects was attempted by Weiss [5], who considered
the ‘metastatic efficiency index’ (MEI) of individual pri-
mary tumours and metastatic sites [6] (see Fig. 1A). The
MEI captures the compound inefficiency of all processes
acting between the cancer cells leaving the primary
tumour and forming clinically detectable metastases.
He calculated MEI as the ratio of metastatic involve-
ment to blood flow through an organ and three classes
of organ pairs emerged: low, where the soil–organ rela-
tionship is hostile; high, where it is friendly and medium,
where blood flow patterns to a large extent explain pat-
terns of metastatic spread.

The utility of Weiss’ classification method largely
ended there, and has since been put aside in favour of
genetic investigations [7], an exception being work in
prostate cancer by Pienta and Loberg [8] showing a lack
of correlation between blood flow and incidence, sug-
gesting strong seed–soil effects. While illuminating, the
gene-centric approach to understanding patterns of met-
astatic spread has yet to offer any actionable conclu-
sions, and its applicability is threatened by the
growing understanding that genetic heterogeneity, not
clonality, is the rule in cancer [9,10]. Our aim is to revisit
Ve

Breast

Kidney

Adrenal 
gland

Bone

Lung 

A Body (B)
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the pre-genetic model and show that a physical perspec-
tive of metastatic spread can lead to new and actionable
insights into this enigmatic disease process.

While primary tumour and lymph node metastases
are carefully described in the clinic, metastatic disease
is considered to be a binary change of state, a patient
being diagnosed either with or without metastasis, M0
or M1. Until recently, this was appropriate, as even per-
fect information about the existence and distribution of
metastatic disease would have done little to affect treat-
ment choice, the options being limited to the use of sys-
temic chemotherapies. Recent years, however, have
witnessed the advent of more effective and tolerable
localised therapies for metastatic involvement, in the
form of liver-directed therapy [11], bone-seeking radio-
nuclides [12] and stereotactic body radiation therapy
[13]. These recently adopted modalities have allowed
for targeted therapy to specific parts of the body with
minimal side-effects and high eradication potential. Fur-
ther, trials offering treatment with curative intent to
patients with limited, ‘oligometastatic’ disease have
shown promise [13], although it is not yet possible to
identify such patients in an objective manner [14]. The
time is therefore ripe for a quantitative framework that
can analyse and guide these and similar efforts.

In this paper we apply a recently published frame-
work for understanding haematogeneous metastates
[15,16] to an existing dataset of metastatic spread [17]
in an attempt to draw new conclusions and suggest
novel therapeutic options (see Fig. 2). Specifically we
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tastatic efficiency index (MEI) and (B) our extension of the framework.
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s (green) represent the fraction of cells which evade arrest (filtration) at
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s referred to the web version of this article.)



Fig. 2. Schematic of our modelling framework. Autopsy data are used in order to calculate metastatic incidence for different organ pairs [17], while
flow data [18] are used in order parametrise a filter-flow model of circulating tumour cell (CTC) flow, whose output is the relative flow of CTCs
between organ pairs. Both these quantities are then used in order to estimate the metastatic efficiency index for a number of organ pairs.
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seek to use Weiss’ MEI and the filter-flow model of CTC
dynamics (summarised in Fig. 1B) to understand how
micrometastatic disease influences calculations of meta-
static efficiency. This synthesis presents a way to utilise
‘personalised’ patient CTC measurements to assay for
the burden and distribution of metastatic disease
(Fig. 4). These measurements represent a novel class of
patient-specific data by which any pattern of metastasis
can be understood. This allows for a new way to dissect
out the heterogeneous groups from population level
data, and hence represents a non-genetic, translatable
method by which to alter staging and subsequently,
treatment strategies.

To do this, we consider blood flow between organs
[18], filtration in capillary beds (see Fig. 1) and distribu-
tion of metastatic involvement in a series of untreated
patients at autopsy [17]. For each organ–organ pair we
calculate the MEI by normalising incidence by putative
CTC flow between the two organs, taking into account
the reduction that occurs in capillary beds [19,20,15,16].
This post-capillary bed reduction in CTC numbers can
be altered by the presence of micrometastases, which
can amplify CTC numbers downstream of their location
through shedding. Thus, by adjusting filtration rates
throughout the network, we can represent different con-
figurations of metastatic disease and hence capture differ-
ent organ–organ metastatic efficiencies.

2. Materials and methods

2.1. Calculation of metastatic efficiency index (MEI)

The autopsy dataset used in the analysis covers 3827
patients presenting with primary tumours in 30 different
anatomical sites [17]. For each primary tumour the
number of metastases are reported according to ana-
tomical site (in total 9484 metastases). As we focus on
the effect of blood flow patterns, we consider only the
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organs for which blood flow has been measured. For
each organ–organ pair we calculate the metastatic
involvement as

Nij ¼
#Metastases in organ j given primary in i

#Primary tumours in organ i
: ð1Þ

We have that 0 6 N ij < 1 and this number corre-
sponds to the fraction of cases where a primary tumour
in organ i gave rise to a metastasis in organ j. The met-
astatic efficiency index (MEI) from organ i to j is then
defined by

Mij ¼ N ij=/ij; ð2Þ

where /ij is the relative flow of CTCs from organ i to j.
This quantity takes into account the relative blood flow
Ri that each target organ receives [18], and the reduc-
tion in CTCs that occurs en route between the two
organs.

For the sake of simplicity we consider the blood flow
to be stationary (i.e. not affected by postural changes)
and we only include the effects of capillary bed passage
on CTCs. Further we assume that cancer cells extrava-
sate into the systemic venous side of circulation, which
is known to be the dominant mechanism of dissemina-
tion, even for lung cancers [21]. It has been shown in
mouse model studies that approximately 1% of cancer
cells injected into the portal vein passes through the liver
in a viable state [19]. This is probably an overestimate of
the process in humans, since cancer cell lines often are
highly transformed. Clinical studies suggest that CTC
numbers are reduced by two orders of magnitude when
passing through capillary beds [20]. This rough estimate
is arrived at by taking the ratio of the CTC concentra-
tion in the pulmonary venous blood and in a peripheral
blood sample from the arm (taking into account the fact
that the arm receives on the order of 1% of cardiac out-
put). In line with these observations we assume that
there occurs a reduction of CTC number by a factor F
when the cells pass through the capillary bed of an
organ. As a baseline, we set the pass rate F ¼ 10�2 for
all organs. This is likely an oversimplification as each
organ could well have its own pass rate. However, as
there are no published data to this effect, we choose to
use a single parameter value, any change in which, as
it is applied across calculations, would not change the
qualitative results.

It is well known that metastases in the lung and liver
have the ability to shed cells into the bloodstream and
hence give rise to ‘second order’ metastases [22], and it
has been shown that even ‘dormant’ micrometastatic dis-
ease can shed CTCs [23]. If one were to measure the CTC
concentration downstream of an organ containing
metastases then, it would be higher than in the case of a
disease-free organ. For our purposes, this implies that
the presence of metastatic disease can be represented in
the model as a lower reduction of CTCs in the capillary
bed of the affected organ. This simplification is only valid
if we disregard the biological properties of the CTCs
(since CTCs originating from metastases might have dif-
ferent genotypes and phenotypes compared to cells from
the primary tumour), but is sufficient for our purposes.
The effect of micrometastases naturally depends on their
number and size, but as a crude estimate we assume that
the ratio of the mass of the primary tumour to the
micrometastases, and therefore shed CTCs, is 100:1 (a
primary tumour weighing on the order of 100 grams
and an undetectable metastatic lesion being smaller than
1 cm in diameter thus weighing �1 g). This assumption
then allows the prediction that the relative concentration
of CTCs downstream of the afflicted organ would be
10�2 þ 10�2 ¼ 2� F (CTCs from primary + CTCs from
micromets), a doubling of the pass rate, a change which
should be measurable. To simulate the presence of
micrometastases in the lung and liver we therefore change
the pass rates to F L ¼ 2� 10�2 and F H ¼ 2� 10�2

respectively.
To calculate the relative flow between two organs we

consider the shortest path transversed by the blood
between the two sites. As an example of our methodol-
ogy, we now present the calculations for the MEI for
breast to adrenal gland. The cancer cells leaving a breast
tumour enter the circulation on the venous side and are
transported via the heart to the lung capillary bed,
through which only a fraction F L pass as viable cells.
These cells then flow into the arterial side of the circula-
tion and are distributed to the different organs of the
body according to blood flow, of which the adrenal
gland receives 0.3% [18]. In the absence of micrometas-
tases, the relative flow of CTCs from breast to adrenal
gland is therefore given by /breast;adrenal ¼ F L � 0:3 ¼
0:3� 10�2, and in the presence of micrometastases in
the lung /breast;adrenal ¼ 0:3� 2� 10�2 ¼ 0:006.
2.2. Comparison to Weiss

In Weiss’ original publication the MEI was calculated
as the ratio between metastatic incidence and target
organ blood flow (in units ml/min). In order to make
our index more physically meaningful (Weiss’ index
has units min/ml to which it is impossible to attach a
physical interpretation) we instead use ‘percent of car-
diac output’ defined as organ blood flow divided by
the total cardiac output (6500 ml/min as reported in
[18]) giving us a dimensionless measure. Further it
should be noted that Weiss did not consider any loss
of CTCs en route, and therefore to make the two indices
comparable we scale Weiss’ index to compensate for the
loss of CTCs that occurs in the lung capillary bed. Also,
Weiss did not account for CTC loss in the liver,
although a number of gut malignancies (colorectal, pan-
creatic and stomach cancer) were included in his calcu-
lation of MEIs, which means that these MEIs were
systematically underestimated.



Fig. 3. The impact of filter and flow characteristics on estimation of
the metastatic efficiency index (MEI). We have compared Weiss’
original method (rescaled to be comparable, see Section 2) with our
filter-flow framework under the assumption of no micrometastases,
micrometastases in the lung, in the liver, and in both locations. The
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2.3. Patient group decomposition

The incidence, Nij, relative flow of CTCs, /ij and the
MEI, Mij are related according to Mij ¼ Nij=/ij, or
equivalently /ij ¼ N ij=Mij. To understand the impact
of flow in this relationship, we will assume a fixed
MEI while the flow /ij varies across patients. We con-
sider four patient groups: no micrometastases, microm-
etastases in the lung, micrometastases in the liver and
micrometastases in both. If we now let nk denote the
fraction of patients in each group, k, where
n1 þ n2 þ n3 þ n4 ¼ 1, then we can write

n1/
1
ij þ n2/

2
ij þ n3/

3
ij þ n4/

4
ij ¼ Mij=Nij; ð3Þ

where /1;2;3;4
ij is the relative flow of CTCs in the different

patient groups. The problem of finding the nk’s is under-
determined, and the solution is given by any point on a
surface defined by (3), such that nk > 0 for all patient
groups and n1 þ n2 þ n3 þ n4 ¼ 1. This implies that
aggregated incidence data can be explained by many dif-
ferent patient group compositions, each with its distinct
pattern of metastatic progression.
comparison is carried out for five organ pairs that cover the canonical
pathways of spread (gut! body, body! body, lung! body, body -
! liver and gut! lung). We see that because Weiss’ method only
considers the dynamics on the arterial side (and disregards the
filtration in the liver) it provides a smaller MEI in three of the cases
(pancreas! kidney, bladder! liver and colon! lung). From the
comparison it is also evident that assumptions about the presence or
absence of micrometastases heavily influences the results, in the case of
pancreas! kidney shifting the MEI two orders of magnitude.
3. Results

To illustrate the effect of micrometastatic disease on
MEIs, we have compared Weiss’ original method with
MEIs calculated using the filter-flow framework in four
different regimes: no micrometastases, micrometastases
present in the lung, in the liver or in both locations.
Fig. 3 shows the result of this comparison for five organ
pairs.

The differences seen across the organ pairs for a given
seeding scenario reflect the differential ability of cancer
cells from different organs to form metastases in these
target organs. In other words the MEI quantifies
‘seed–soil effects’, where the effects of flow and filtration
have been factored out. For example, the high MEI of
breast to adrenal indicates the predilection of carcino-
mas of the breast to preferentially spread to the adrenal
gland [24]. Weiss’ metric differs strikingly from ours, e.g.
in the case of colon to lung, since it does not consider
filtration, and therefore severely underestimates the effi-
ciency compared to our approach.

However, more importantly, our results highlight that
the metastatic efficiency depends on the current disease
state. For example, our estimate of the efficiency with
which cells originating from a primary pancreatic tumour
can form kidney metastases varies over two orders of mag-
nitude, depending on whether micrometastatic lesions are
present, and their location. The variations in MEI due to
seeding scenario highlight an opportunity to go a step fur-
ther in disease characterisation than presence or absence
of CTCs at staging – we need to include information
about where in the vascular network, and in what relative
quantities, these CTCs reside.
The preceding analysis assumes that the filtration rate
for each organ is identical for all patients in the data set.
This is likely a gross oversimplification, but no clinical
trial has yet determined the intrapatient heterogeneity
in this (currently absent) parameter set. Above, we used
incidence data to calculate MEIs, but we may also
reverse the process and calculate the prevalence of
micrometastatic disease given incidence data and
organ-pair MEIs (see Section 2 for details). We now
show how this can be used as a means to suggest possi-
ble patient group decompositions.

Consider the population incidence of metastases in
the adrenal gland arising from primaries in the large
intestine, which equals 7.5%. By fixing the MEI, the inci-
dence rate can be explained by a subdivision according
to 25% in the no metastasis group, 20% in the liver
metastases group, 9% in the lung metastases group
and 54% of the patients harbouring metastases in both
liver and lung. However the incidence can also be
explained by a subdivision of 5%, 25%, 9% and 69% into
each patient group respectively. This highlights the fact
that population-based measures of incidence hide a rich
heterogeneity of individual patient metastatic dynamics
[25] and cannot be used to predict individual patient
outcomes.
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4. Discussion

Metastasis is a complex and multifactorial process and
much recent progress has been made towards understand-
ing its relevant biological aspects. We posit however, that
the exclusion of the physical aspects of metastasis has slo-
wed our understanding of the process as a whole, and
therefore our ability to intervene. We have presented a
simple model of physical flow of CTCs within the human
vascular network and extended early attempts by Weiss
[21] to quantify the disparate contributions of biological
and physical processes to the metastatic process. Weiss’
early attempts at quantification represented a major step
forward in our thinking about metastasis that has largely,
since his death, been forgotten.

In this first extension of Weiss’ MEI, we have pur-
posefully excluded a significant amount of biological
heterogeneity and complexity such as: heterogeneity in
CTC size [26], half life [23,27], dormancy [28], clono-
genic potential or stemness [29,30], phenotypic status
[31] and other physical properties like deformability
[32]. While this heterogeneity is important, the first step
should always be to understand a model’s baseline
behaviour before adding further complexity; we there-
fore leave their inclusion for future work. Additionally,
recent work towards understanding patterns of spread
of breast cancer [33] has utilised dimensional measures
of metastatic risk. This sort of temporal risk prediction
could be made using our framework by adding dimen-
sionality to our index in the form of tumour-CTC shed-
ding rates and coupling it to appropriate growth laws
[34].

We have presented a number of novel predictions and
methods by which individual patient information can be
gleaned from currently measurable, but overlooked,
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Fig. 4. An example of clinical trial stratification based on circulating tumou
no clear guidelines for adjuvant therapy after surgery [38]. We propos
compartments, information about subclinical metastatic disease could be br
appropriate, could be made. A first approximation would be to collect thi
phenomena. To enable these insights and their transla-
tion to the clinic, systematic testing of individual patient
filter-flow parameters is required. While several research
groups have successfully interrogated this step of the
metastatic cascade in animals [35–37], it has yet to be
done in humans. To effect this, measurement of CTCs
from each of the individual vascular compartments
(see Fig. 4) before surgical manipulation of the primary,
at initial staging needs to be undertaken. Subsequent
correlation with outcomes would yield initial informa-
tion with which more complete models could be built,
and from which rational prospective trials could be
designed. Importantly, observations would have to be
made both between patients with identical histologies
(inter-patient) in addition to within given patients over
time (intra-patient). This level of understanding of an
individual patient’s disease state constitutes a new type
of personalised medicine, which seeks to assay not just
the collection of mutations that a patient’s cancer cells
have accumulated, but also their physical distribution
through time. This would allow for more accurate stag-
ing and the rational inclusion of organ directed therapy
in clinical trials, a concept which is gaining popularity
with recently approved methods existing for bone and
liver [12,11].

We present an example of how this methodology
could be implemented using technology that exists, but
is not yet in widespread use, in Fig. 4. Here, patients pre-
senting with stage II colorectal cancer are stratified after
resection of their primary tumour according to CTC
burden in different compartments of the circulatory sys-
tem. We have chosen stage II colon cancer as a first
approach as there are no clear guidelines [38] as to which
patients should receive adjuvant therapy, and further
because we have effective liver-directed therapies which
with 
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r cell (CTC) localisation. Stage II colon cancer remains enigmatic, with
e that stratifying by CTC presence or absence in specific vascular
ought to light, and recommendations for location specific treatment, if
s information prospectively in the setting of existing trials.
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could be used in the adjuvant setting. Specifically, we
suggest that the absence of CTCs in any compartment
would suggest a situation in which no adjuvant therapy
would be indicated, as the primary could not yet have
metastasized. The presence of CTCs in the portal venous
circulation only, would represent risk of metastasis only
to the liver, and therefore, in this limited situation, liver
directed therapy could serve as an effective adjuvant
therapy. In the case of CTCs being present in any (or
all) other compartments, our framework would predict
that the primary tumour had already seeded relevant
metastases which themselves were shedding CTCs, mak-
ing systemic therapy most appropriate. In this example,
our methodology offers a rational method of treatment
allocation – offering a way to spare patients from sys-
temic therapy and its risks. While we have chosen to
highlight colorectal cancer, we stress that this sort of
approach, and the information gleaned from it, could
be useful for any primary cancer.

5. Conclusion

We have presented a fresh look at old data on meta-
static patterns inspired by a physical science perspective
and shown that there is a deep gap in our understanding.
Specifically, we show that our lack of knowledge of the
dynamics of CTCs in foreign organ capillary beds pre-
vents us from making further progress towards predict-
ing patterns of spread. We suggest some simple steps to
fill in these gaps, and a simple trial design to take advan-
tage of currently obtainable, yet overlooked, patient
specific information: CTC distribution throughout the
patient’s vascular network.

By further elucidating the principles underlying hae-
matogenous metastasis, we hope to make inroads
toward therapeutic strategy changes that would other-
wise be impossible. Our results highlight the importance
of addressing not only genetic factors, but also physical
and anatomical aspects of the metastatic process, which
in this gene-centric era have been largely forgotten.
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