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a b s t r a c t

Turing's diffusion-driven instability for the standard two species reaction–diffusion system is only
achievable under well-known and rather restrictive conditions on both the diffusion rates and the
kinetic parameters, which necessitates the pairing of a self-activator with a self-inhibitor. In this study
we generalize the standard two-species model by considering the case where the reactants can bind to
an immobile substrate, for instance extra-cellular matrix, and investigate the influence of this dynamics
on Turing's diffusion-driven instability. Such systems have been previously studied on the grounds that
binding of the self-activator to a substrate may effectively reduce its diffusion rate and thus induce a
Turing instability for species with equal diffusion coefficients, as originally demonstrated by Lengyel and
Epstein (1992) under the assumption that the bound state dynamics occurs on a fast timescale. We,
however, analyse the full system without any separation of timescales and demonstrate that the full
system also allows a relaxation of the standard constraints on the reaction kinetics for the Turing
instability, increasing the type of interactions that could give rise to spatial patterning. In particular, we
show that two self-activators can undertake a diffusively driven instability in the presence of a binding
immobile substrate, highlighting that the interactions required of a putative biological Turing instability
need not be associated with a self-activator–self-inhibitor morphogen pair.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Alan Turing (1952) wrote his seminal paper on biological pattern
formation, in which he showed that a system of chemicals (which
he termed morphogens) undergoing reaction and diffusion can lead
to the counter-intuitive phenomenon of diffusion-driven spatial
heterogeneity. That is, a spatially uniform steady state, stable in the
absence of diffusion, could be driven unstable by diffusion, evolving
into a spatially heterogeneous state, a pattern. Furthermore, with
non-dimensionalisation of the system equations to a fixed size
domain, the diffusion coefficients acquire a domain-size depen-
dence and hence one can deduce that Turing's instability will
induce symmetry breaking from fluctuations as a domain adiaba-
tically grows beyond a critical size. Consequently, this instability can

drive the spontaneous formation of pattern, triggered simply by
domain growth rather than any exquisite long-range cellular com-
munication, and Turing proposed that this mechanism could induce
a pre-pattern for cell differentiation in early developmental biology.
However, this hypothesis laid largely ignored until the seminal
paper of Gierer and Meinhardt (1972) 20 years later, which analysed
the two chemical cases in detail. This demonstrated two ways in
which pattern could arise, one of which for instance is referred to as
“short-range-activation, long-range-inhibition”. Further, one can
readily demonstrate that the Turing instability in general for the
two-species system, in the absence of a binding substrate, necessi-
tates a short range morphogen which is a self-activator, i.e. it
upregulates its own production,1 interacting with a long range
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morphogen which is a self-inhibitor and thus analogously down-
regulates its own production (Murray, 2002).

Thus, implicit in the latter constraint is one of the key condi-
tions for diffusion-driven-instability (DDI) with two chemical
species, namely that their diffusion coefficients have to be differ-
ent. While in principle they can be arbitrarily close to each other,
this requires extensive parameter fine tuning for a Turing instabil-
ity to still exist (Pearson and Horsthemke, 1989; Baker et al., 2008)
and, in practice, interacting chemical molecules will typically have
very similar diffusion coefficients. This led to great difficulty in
identifying real Turing structures, but in 1991 they were even-
tually determined in a chemical system by Castets et al. (1990) and
Ouyang and Swinney (1991) due to a substrate, introduced as a
marker, binding to one of the chemicals and reducing its diffusion
coefficient sufficiently. Furthermore, such binding dynamics have
been implicated with diffusible gene-products such as fibroblast
growth factor (FGF) indicating that this mechanism for inducing
differential transport may potentially be active in biological
systems exhibiting long range self-organisation (Miura, 2007).

We note that binding with an immobile substrate is not the
only mechanism that has been highlighted as providing a means of
circumventing the constraint of equal diffusion coefficients in
Turing's mechanism. For finite amplitude perturbations, it is also
possible for spatial patterns to arise with equal diffusion coeffi-
cients (Vastano et al., 1987). However, this is outside the scope of
simple linear stability analysis and, more importantly, it is also
outside the scope of fluctuation induced instability from an
essentially homogeneous steady state and thus it cannot explain
a core feature of Turing's instability, namely symmetry breaking
from a near perfect spatial homogeneity, and is thus not consid-
ered further here. A second manner of evading the constraint of
equal diffusion coefficients concerns receptor dynamics. In parti-
cular, a focussed model of hair follicle patterning (Klika et al.,
2012) has also revealed that patterning can occur with equal
diffusion coefficients. Coupling receptor dynamics to Turing's
mechanism results in a system of coupled ordinary and partial
differential equations, as also studied by Marciniak-Czochra in the
context of hydra self-organisation (e.g. Marciniak-Czochra, 2003),
which presents a mathematical framework with rich behaviour.
Below, we do not consider the complexities associated with
genuine receptor dynamics (Klika et al., 2012; Marciniak-
Czochra, 2003), but instead focus on the influence of simple
reversible binding with an immobile substrate such as extra-
cellular matrix, representing a particularly simple class of coupled
ordinary and partial differential equations with biological motiva-
tion that generalise the standard Turing model.

While this standard Turing model has many applications to pattern
formation in biology (see, for example, the books by Meinhardt, 1982;
Meinhardt et al., 2003; Murray, 2002) and is highly suggestive due to
numerous cases of qualitative agreement with observation (e.g.
Nakamasu et al., 2009; Yamaguchi et al., 2007), there is still a lot of
scepticism in the biological community because the identification of
Turing morphogens remains elusive. Nonetheless, there are a number
of recent studies that have begun tomove towards identifying possible
biological components (Sick et al., 2006; Garfinkel et al., 2004;
Solnica-Krezel, 2003; Chen and Schier, 2002; Hamadai, 2012; Muller
et al., 2012) and even suggesting that the self-activator–self-inhibitor
pair may actually be cells themselves (Yamaguchi et al., 2007;
Nakamasu et al., 2009).

In this paper we first briefly revisit the original ideas of the
CIMA chemical reaction used to experimentally investigate Tur-
ing's instability and, in particular, the theoretical study by Lengyel
and Epstein, (1991, 1992), which was motivated by the immobile
substrate in the CIMA experiments of Castets et al. (1990) and
Ouyang and Swinney (1991). Lengyel and Epstein considered the
equations for a Turing pair, in which one of the chemicals (the self-

activator) reversibly binds to an immobile substrate and demon-
strated this can be reduced using a quasi-steady approximation to
a two species system with an altered effective diffusion coefficient
ratio that facilities the induction of a DDI even if the two
morphogens have an equal diffusion coefficient in the absence of
reversibly binding to the immobile substrate. Miura presented an
analogous approximation, though with piecewise continuous
levels of extra-cellular matrix (ECM), for the interpretation of his
experimental results (Miura, 2007), whilst Pearson (Pearson, 1992)
extended Lengyel and Epstein's analysis to conditions outside the
regime of the quasi-steady state approximation. All the theoretical
aspects of these studies were focussed on the constraints for the
morphogen diffusion coefficients associated with a DDI, though
Pearson additionally assessed the relevance of such models for
continuously fed reactors in observations of CIMA Turing
instabilities.

However, despite the prevalence of the quasi-steady state
approximation in these previous studies, there is no a priori
reason to expect this approximation to be universal. For example,
fluorescence recovery after photobleaching (FRAP) highlights that
VEGF-ECM binding and unbinding occurs on the order of magni-
tude of 1000 s (Köhn-Luque et al., 2013). In contrast fast develop-
mental events can occur on the timescale of only a few hours as
illustrated by Zebrafish gene expression and fate maps for Nodal, a
common putative morphogen, which demonstrate that Nodal
specifies position-dependent cell fates in Zebrafish before gastru-
lation, i.e. under 5.25 h from fertilisation at standard conditions
(Schier, 2003; Kimmel et al., 1995). Hence the timescale of fast
developmental patterning, which must be significantly longer
than the kinetic timescales, still need not be multiple orders
higher than the timescale of ECM interaction between a diffusible
signal and the extra-cellular matrix. In turn, this means that
regions of parameter space where the binding-unbinding reaction
rates are the same order as other kinetic interactions should not be
excluded from studies. Furthermore, there is also no a priori
reason to expect that any putative pair of Turing morphogens
which interact with the ECM are restricted such that only one of
the pair interacts with the ECM.

Hence, we revisit the full system for a Turing pair in the presence
of reversible morphogen binding to an immobile substrate, without
any quasi-steady approximations, and also briefly consider the
system where both diffusing morphogens reversibly bind to the
immobile substrate. This modelling framework will reduce to the
standard model in the limit of negligible interactions with the
immobile substrate so, in particular, our objective is to assess
whether the introduction of a mobile substrate allows a relaxation
of the conditions for a Turing instability. However, our main focus is
fundamentally different from the previous work that clearly demon-
strated that the 2-species requirement of equal diffusion coefficients
needs no longer apply in the presence of reversible binding. In
particular, there has been no study of whether it is still necessary to
enforce other characteristics of the 2-species DDI, for instance the
need to pair a self-activator with a self-inhibitor. Thus, rather than
considering diffusive aspects of the diffusion-driven instability, we
explore how the presence of a DDI constrains the kinetics of
interacting morphogens given the presence of reversible binding to
an immobile substrate. Furthermore, the diffusible gene-products
Nodal and Lefty are the subject of intensive investigation concerning
whether they fulfil the criteria of a Turing morphogen pair (e.g.
Solnica-Krezel, 2003; Chen and Schier, 2002; Hamadai, 2012; Muller
et al., 2012). Thus, more generally we are investigating whether one
should refine or generalise the interactions that Nodal and Lefty, or
indeed any prospective Turing pair, undertake in order to verify, at
the molecular level, that the conditions for Turing's mechanism are
satisfied given at least one of the morphogens undergoes reversible
binding with an immobile substrate.
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2. Diffusion-driven instability and morphogen binding to an
immobile substrate

The classical Turing instability or diffusion-driven instability
(DDI) occurs within a system of two reaction–diffusion equations
that describe the time evolution for concentrations of two chemi-
cals that diffuse and chemically interact. In order to distinguish the
instability caused by diffusion from other types of instabilities, we
consider the following linear system of first order ordinary
differential equations:

ut ¼ f uuþ f vv;
vt ¼ guuþgvv; ðRÞ
where subscript t denotes a time derivative and f u; f v; gu; gv are
constants. These equations capture the dynamics of perturbed
concentrations u and v of two reacting, well-mixed, chemicals at
least sufficiently close to the homogeneous steady state, which is
simply ð0;0Þ as we are considering perturbed concentrations. In
particular, for a DDI, we require that the homogeneous steady
state ð0;0Þ is locally asymptotically stable, so that in the absence of
diffusion there is no instability. Thus

tr J2 ¼ f uþgvo0 and det J2 ¼ f ugv�guf v40; ð1Þ
where

J2≔
f u f v
gu gv

 !
; ð2Þ

which is evaluated at the homogeneous steady state when non-
linear kinetics are considered. Note that the assumption det J240
guarantees regularity of the matrix J2 and consequently unique-
ness of the (trivial) equilibrium of the system (R). Therefore we can
indeed speak about stability or instability of the system, meaning
stability or instability of its trivial equilibrium. This is a standard
convention that we use throughout the whole text.

Let Δx denote the Laplacian with respect to xAΩ and consider
the following system of reaction–diffusion equations:

ut ¼DuΔxuþ f uuþ f vv;
vt ¼DvΔxvþguuþgvv in Ω
∂u
∂n

¼ ∂v
∂n

¼ 0 at ∂Ω; ðRDÞ

where Ω is generally a domain in Rn, whereas in the example in
Section 5 we restrict ourselves to the real line. If the system (RD),
that was generalised from (R) by adding diffusion terms, is
unstable, we say that the system (RD) exhibits a Turing bifurcation
or DDI. The set of parameter values that permit a Turing instability,
so that for a suitable choice of domain the system exhibits a DDI, is
often referred to as the Turing parameter space, or simply the
Turing space. One can also readily show that, evaluated at the
homogeneous steady state, one must have one of the following
sign structures for J2 (Murray, 2002):

J2≔
f u f v
gu gv

 !

� þ þ
� �

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

cross

;
� �
þ þ

 !
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

cross

;
þ �
þ �

 !
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

pure

;
� þ
� þ

 !
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

pure

: ð3Þ

The first two possible sign structures are commonly referred to as
cross kinetics and the latter two as pure kinetics (Dillon et al., 1994),
and we adopt this notation (though there are others, for instance
cross kinetics are often referred to as a substrate depletion model
(Gierer and Meinhardt, 1972). More importantly, denoting u
(respectively v) as a self-activator if f u40 (gv40) at the homo-
geneous steady state since it upregulates its own production during
the initiation of an instability, and a self-inhibitor if f uo0 (gvo0),

as it downregulates its own production during the initiation of an
instability, we see that the Turing instability necessitates the pairing
of a self-activator with a self-inhibitor.

In this paper we consider a generalization of the system (RD)
where we let one of the chemicals bind to an immobile substrate,
for example extra-cellular matrix, which yields equations with the
structure studied by Lengyel and Epstein (1991, 1992) and Pearson
(1992). To write down these equations, we first need to distinguish
the two states of the binding chemical, namely the concentration
of the unbound state, u, and the concentration of the bound state,
w. The second chemical is not allowed to bind and has concentra-
tion denoted by v.

With first order kinetics for the binding reactions, the corre-
sponding system of reaction–diffusion equations reads

ut ¼DuΔxuþðf u�huÞuþ f vv�hww;

vt ¼DvΔxvþguuþgvv;

wt ¼ huuþhww in Ω

∂u
∂n

¼ ∂v
∂n

¼ 0 at ∂Ω; ðRDBÞ

where hu40, hwo0.
We restrict ourselves to linear reaction kinetics, allowing the

use of simple algebraic tools for stability analysis. However, the
system (RDB) can also be derived by linearisation about a positive-
definite homogeneous steady-state for a system with kinetics
given by non-linear smooth functions f ðu; v;wÞ, gðu; vÞ and the
linear first-order reaction rate function

hðu;wÞ ¼ huuþhww; hu40; hwo0

or a generalisation thereof with the same linearisation. For this
reason we keep the notation fu, gu etc. that is typically used when
studying a linearisation of a reaction–diffusion system with non-
linear reactions. Further, below we refer to self-activation as positive
auto-regulation, whereby the morphogen induces its own produc-
tion on interacting with cells in the surrounding tissue so that, for
example, the self-activation of u implies f u40 with an analogous
definition of self-inhibition, in terms of negative autoregulation.

It should be noted that linear analysis need not capture the
non-linear system's behaviour and this can be particularly
observed in higher spatial dimensions. For instance, Ermentrout
(1991) demonstrated that the selection of stripes or spots in
two-dimensional patterning depends on the nonlinear terms and
cannot be discerned from the linearised model. It also follows that
linear systems, as opposed to physical systems, allow unbounded
growth of solutions (Page et al., 2003). However, numerical
simulations suggest that from linear stability analysis one can
generally deduce essential properties of the system, in particular
the existence of Turing instability (Murray, 2002). Further details
on the relationship between the linear and nonlinear dynamics are
widely documented (Schnakenberg, 1979; Flach et al., 2007a,b), for
instance in the case of one spatial dimension, as here, the structure
of the pattern in the nonlinear regime is generally very similar to
the prediction from the linear analysis as illustrated in many
examples (Murray, 2002).

3. Lengyel and Epstein's reduction

As mentioned above, a system of the form (RDB) was first
introduced by Lengyel and Epstein (1992) and we briefly consider
the simplifying asymptotic approximation they invoke for fast
binding dynamics to reduce the original system (RDB) to a system
of two equations. This, in turn, differs from the system (RD) only
by a scaling of the parameters. Nevertheless, this reduced system
allows one to relax some of the standard restrictions of a
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diffusively driven instability, in particular the lack of an instability
given equal diffusion coefficients.

In detail, with u; v denoting the concentration of the self-
activator and self-inhibitor respectively, so that f u40 and gvo0,
and with jhwj � hu sufficiently large, a regular perturbation expan-
sion reduces system (RDB) to

ð1þKÞut ¼DuΔxuþ f uuþ f vv;
vt ¼DvΔxvþguuþgvv in Ω
∂u
∂n

¼ ∂v
∂n

¼ 0 at ∂Ω; ðRDBrÞ

Here, K≔�hu=hw40 and w¼�hu/hw [u þ (1/hw)ut þ O(1/hw2)]. At
leading order, huuþhww¼ 0 and hence this is referred to as a
quasi-steady state approximation. The above system differs from
the standard reaction–diffusion system without binding due to the
factor 1þK in the equation for u. In fact, we can regard the change
between the standard system (RD) and the system (RDBr) only as
rescaling of the parameters by a positive constant 1þK . Hence,
this modification cannot change the sign of the parameters and
consequently alter the classification of the reactants into self-
activator and self-inhibitor, but it does effectively reduce the
diffusion rate of the species that is allowed to bind, which here
is the self-activator u.

Indeed, the standard necessary conditions for the diffusively
driven instability corresponding to (RD), i.e. the condition for
asymptotic stability of the system (R):

f uþgvo0 ð4Þ

f ugv�guf v40 ð5Þ
and the necessary conditions for instability of the spatial system
(RD):

DugvþDvf u42
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DuDvðf ugv� f vguÞ

q
40 ð6Þ

now become

f u
1þK

þgvo0; ð4nÞ

f u
1þK

gv�gu
f v

1þK
¼ 1
1þK

ðf ugv�guf vÞ40; ð5nÞ

1
1þK

ðDugvþDvf uÞ4
1

1þK
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DuDvðf ugv� f vguÞ

q
40: ð6nÞ

The scaling f u-f u=ð1þKÞ; f v-f v=ð1þKÞ;Du-Du=ð1þKÞ does not
change the interval for admissible modes k,

k2A
A�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2�B

p
2DuDv

;
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2�B

p
2DuDv

 !
;

where A¼Dvf uþDugv and B¼ 4DuDv det J2, and hence the suffi-
cient conditions are left unaffected.

Notice that the conditions (5) and (6) are identical with the
conditions (5n) and (6n). In other words, it is precisely the
condition involving the trace of the Jacobian that can possibly be
relaxed in the case with binding. Equations (4n) and (6n) imply
that fu and gv indeed need to have opposite signs as in the
standard case, but, as opposed to the set of conditions (4)–(6),
the new conditions (4n)–(6n) are not in contradiction with the
identity Du¼Dv. Thus, a diffusely driven instability can occur in the
system (RDB) even if the chemicals diffuse at the same rates. We
refer to Appendix C for more details.

4. Analysis of the full three-dimensional model

This section is devoted to the analysis of the full system

ut ¼DuΔxuþðf u�huÞuþ f vv�hww;

vt ¼DvΔxvþguuþgvv;
wt ¼ huuþhww in Ω
∂u
∂n

¼ ∂v
∂n

¼ 0 at ∂Ω; ðRDBÞ

that has been introduced in Section 3. In this section, however, we
do not specify a priori the type of the reactions, that is u and v can
stand for two self-activators, two self-inhibitors or a self-activator
and a self-inhibitor, while it remains unspecified which one of
them is permitted to bind to the substrate. Hence, the correspond-
ing matrix of reaction coefficients is going to have one of the
following sign structures:

þ þ
þ 0

þ 0 �

0
B@

1
CA;

þ þ
� 0

þ 0 �

0
B@

1
CA;

� þ
þ 0

þ 0 �

0
B@

1
CA;

� þ
� 0

þ 0 �

0
B@

1
CA;

where the blank positions can be occupied by a positive, negative
or zero coefficient.

Again, we shall assume asymptotic stability of the system

ut ¼ ðf u�huÞuþ f vv�hww;

vt ¼ guuþgvv;
wt ¼ huuþhww: ðRBÞ
as required for a diffusively driven instability.

4.1. The method for linear stability analysis

Let us denote by p≔ðDu;Dv; f u; f v; gu; gv;hu;hwÞ the vector of
parameters. Using the standard approach to linear stability analy-
sis we formulate the eigenvalue problem corresponding to (RDB),

λu¼ �k2Duuþðf u�huÞuþ f vv�hww;

λv¼ �k2Dvvþguuþgvv;
λw¼ huuþhww: ð7Þ
The solvability condition for (7), typically called the dispersion
relation, is of the form

λ3þAðκ; pÞλ2þBðκ; pÞλþCðκ; pÞ ¼ 0; ðDRÞ
with κ≔k2 and

Aðκ; pÞ≔κðDuþDvÞ�tr J3; ð8Þ

Bðκ;pÞ≔κ2DuDvþκð�Dvf u�DugvþDvhu�Duhw�DvhwÞ
� f vguþ f ugv�gvhuþ f uhwþgvhw; ð9Þ

Cðκ; pÞ≔detðκD3� J3Þ; ð10Þ
where D3 is a diagonal matrix containing the diffusion coefficients
and J3 the Jacobian matrix of the system (RB),

D3≔
Du 0 0
0 Dv 0
0 0 0

0
B@

1
CA; J3≔

f u�hu f v �hw

gu gv 0
hu 0 hw

0
B@

1
CA: ð11Þ

The explicit expression for Cðκ; pÞ reads
Cðκ; pÞ ¼ hwð�κ2DuDvþκðDvf uþDugvÞ�det J2Þ; ð12Þ
where J2 is the two-dimensional Jacobian matrix, see Eq. (2).

A standard result is that the Hopf bifurcation does not occur
for a diffusively driven instability of the standard two species
model system (RD), from its homogeneous steady state (Murray,
2002). Furthermore, in the weakly restricted context of self-
organisation during metazoan development, oscillations for
putative Turing morphogen pairs are typically not observed (for
example, see Pearson and Horsthemke, 1989) and thus Hopf
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bifurcations with frequencies greater than fluctuation growth
rates can be excluded from consideration. Moreover, we show in
Appendix A that Hopf bifurcations cannot occur with equal
diffusion coefficients for the three component model, but more
generally a Hopf bifurcation has the potential to induce pattern-
ing in a non-linear model such that fluctuation growth occurs
and is stabilised by non-linearities before an oscillation prevails.
While this is an interesting direction, the prospect of assessing
such dynamics in general is beyond the scope of the current
study and we restrict ourselves to real eigenvalues below.

At a Turing bifurcation point we therefore have λ¼ 0 which
happens if and only if Cðκ; pÞ ¼ 0. Moreover, the solutions κ of this
equation do not depend on the parameters hu, hw that quantify the
rate of binding and unbinding, as Cðκ; pÞ is of the form
Cðκ; pÞ ¼ hw ~C ðκ; ~pÞ with ~p ¼ ff u; f v; gu; gvg. This is true for an arbi-
trary number of chemicals, regardless of how many of them bind
to the substrate, at least given first order binding and unbinding
kinetics. The proof of this statement is a simple application of
linear algebra: for a system with n differential equations we have
Cðκ; pÞ ¼ detðκDn� JnÞ and the matrix κDn� Jn is of a special form
for which all the unbinding parameters can be factored out of the
expression for the determinant, while all the binding parameters
cancel each other.

Moreover, if D≔Du ¼Dv, then Cðκ; pÞ reads
Cðκ; pÞ ¼ hwð�κ2D2þκD tr J2�det J2Þ: ð13Þ
The dispersion relation, Eq. (DR), is cubic in λ and thus always has
at least one real root. As motivated above, we can focus on real
roots and thus the emergence of a stationary pattern that is caused
by a real eigenvalue crossing the imaginary axis.

According to Vieta's formulae Cðκ; pÞ ¼ �λ1λ2λ3, where λ1, λ2
and λ3 are the three, in general complex, roots of (DR). Thus, the
fact that a real eigenvalue crosses the imaginary axis precisely
when Cðκ;pÞ ¼ 0 gives us a simple tool to detect non-oscillatory
(in time) diffusively driven bifurcations. The existence of two
distinct positive roots κ1 and κ2 of the equation Cðκ; pÞ ¼ 0
ensures existence of another κn for which the dispersion rela-
tion (DR) has a positive real solution. This follows from the
following:

1. For k¼0 parameters are taken to be such that the system (RB)
is locally asymptotically stable and all the eigenvalues must
have negative real part. In generality, there is a range of
parameters that satisfy this constraint, as illustrated in the
examples below.

2. The left hand-side of (DR) is a cubic polynomial with real
coefficients, with a unit coefficient for the highest power. Thus,
once the coefficient of the lowest power, i.e. Cðκ; pÞ, is negative
continuity ensures that there is a least one positive real root,
and thus instability for the associated square wavenumber κ.

3. The negativity of hw implies local asymptotic stability of the
system for k-þ1. For a proof of this statement see Klika et al.
(2012). Hence we have Cð1; pÞ40.

4. Cðκ; pÞ is a quadratic polynomial in κ. Hence, for any set of
parameters p the curve ðκ;Cðκ; pÞÞ is a quadratic curve in the
plane that intersects the line Cðκ; pÞ ¼ 0 at most twice. We have
the existence of precisely two solutions κ1oκ2 given positivity
of the discriminant for the value of κ associated with Cðκ; pÞ. We
additionally require that these roots are positive since
κ≔k2Z0. Once these conditions are satisfied, asymptotic sta-
bility for k-þ1 (see point (3)) implies negativity of Cðκ; pÞ for
κAðκ1; κ2Þ and thus instability, via the reasoning of point 2.

Furthermore, Eq. (12) implies that the set of parameters
fDu;Dv; ~pg is a solution of the equation Cðκ; pÞ ¼ hw

~C ðκ; ~pÞ ¼ 0 if
and only if ~C ðκ; ~pÞ ¼ 0. Thus, the stability properties of the system

(17) are independent of the parameters hu, hw and only contingent
on the diffusion constants Du, Dv and the parameters of the
chemical reaction fu, fv, gu, gv.

To summarize, for any set of parameters p and a suitable
choice of the domain size the homogeneous steady state of the
system (RDB) is unstable provided the equation Cðκ; pÞ ¼ 0 has
two distinct positive real solutions κ1 and κ2. As demonstrated in
Appendix B, two self-inhibitors cannot undergo a non-oscillatory
diffusively driven instability. In contrast, there is no a priori
restriction on the prospect of a self-activator pair inducing a
Turing instability and hence, informed by the need for two
positive roots of Cðκ; pÞ ¼ 0, we find and explore possibilities
for pairs of self-activators to induce Turing patterning in the
sections below.

5. Examples and sensitivity analysis

Using the method from Section 4.1 one can rather easily find
examples of (linear) reaction kinetics that lead to DDI for the full
3-species model (RDB) even when Du¼Dv. We single out one
example of a systemwith two self-activators (f u40; gv40), one of
which binds to a substrate, such that DDI occurs for the same
diffusivities (Du¼Dv)

f u ¼ 3=2; f v ¼ 1; gu ¼ �41=128� �0:32;
gv ¼ 5=16� 0:31; hu ¼ 9=4; hw ¼ �1=64� �0:016: ð14Þ
With kinetic parameter values given by (14) and Du ¼Dv ¼ 10�2,
Fig. 1 shows a plot of dispersion relation (DR) in the ðκ;Re λÞ�plane
with a close up of the instability domain. This highlights that a pair
of self-activators can induce patterning in the presence of an
immobile substrate in distinct contrast to the need for self-
activator–self-inhibitor pairs for the two species Turing instability,
as explicitly illustrated in Fig. 2a for random initial conditions and
homogeneous Neumann boundary conditions.

There is no standard self-activator Turing pair kinetics in the
literature with which to compare results; the only example
reported is theoretical and considered by Madzvamuse et al.
(2010) in the context of domain growth, whereby a self-activator
Turing pair was observed to induce patterning in the presence of
growth rather than an immobile substrate. These kinetics are
given by

ut ¼DuΔxuþδðu�1Þþðv�1Þþ2δðv�1Þ3�hww;

vt ¼DvΔxv�aðu�1Þþbðv�1Þþðv�1Þ2�ðv�1Þ3;
wt ¼ huuþhww in Ω
∂u
∂n

¼ ∂v
∂n

¼ 0 at ∂Ω; ð15Þ

with a linearisation corresponding to δ¼ f u, a¼ �gu, b¼ gv. With
parameters again taken from (14), Du ¼Dv ¼ 10�2, homogeneous
Neumann boundary conditions and random initial conditions,
pattern once more emerges, as illustrated in Fig. 2b.

Noting that a parameter fine-tuning is required in
Madzvamuse et al. (2010), as detailed further in the discussion,
we consider whether parameter fine-tuning is required to
achieve a DDI in the self-activator–self-activator mechanism
introduced in this paper, keeping the diffusion coefficients equal
as we anticipate many cases where the morphogen pair have very
similar diffusion rates. For this purpose we plot the Turing
parameter space for selected pairs of reaction kinetics, perform
a simple sensitivity analysis and also plot derivatives of λ with
respect to a chosen parameter.

Fig. 3 shows two-dimensional slices of the Turing parameter
space in the planes ðf u; gvÞ, ðf u;huÞ, ðf u;hwÞ and ðhu;hwÞ, respec-
tively, that contain the point given by (14) for the linear system
(RDB). Furthermore, for each of the parameters we find the
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one-dimensional slice of the Turing space containing the point
(14) is given by the ranges,

f uA ½1:46;1:9�; f vA ½0:94;1:08�; guA ½�0:32; �0:26�;

gvA ½�0:2;0:35�; huA ½1:9;2:34�; hwA ½�0:022;0�; ð16Þ

and remark that the relative size of each of the intervals measured
with respect to its centre varies approximately between 13%
and 750%.

Finally, in Fig. 4 we successively plot the derivative of the real
eigenvalue λ with respect to fu, fv, fw, gu, gv and hu holding the
other parameters fixed in a neighbourhood of the example (14).
While the derivatives are relatively small, one must recall that λ
around this point is small too, λ� 4� 10�4 from Fig. 1. Hence
relative changes in growth rates can be sensitive to parameters.
However the derivatives are signed demonstrating that, ceteris
paribus, one can impose order one relative changes in a para-
meter, at least in one direction, without leaving the Turing
parameter space, illustrating that parameter fine tuning is not
required to find an example of DDI in such a setting even if the
growth rates are sensitive. Of course the observation that
identical diffusivities or a self-activator–self-activator type
kinetics can induce patterning further emphasises that the Turing
space is not subject to excessive constraints in the presence of an
immobile substrate.

In summary, we conclude that for the system (RDB), the
diffusively driven instability arises in a more robust manner
than in (15) and does not require fine tuning of certain
parameters.

6. Both species allowed to bind

The reduction proposed by Lengyel and Epstein relaxes the DDI
conditions in favour of a diffusively driven instability only when
the activator binds to a substrate. Conversely, if only the inhibitor
binds, the DDI conditions are even stricter; regardless, there is no a
priori reason why both morphogens do not interact with the ECM.
Moreover, experimental studies suggest that differential binding
might be a general feature of reaction–diffusion based patterning
(Muller et al., 2012; Hamada, 2012). Thus, we briefly numerically
investigate the more complex general case of both morphogens
interacting with the ECM to assess whether the special cases
considered to this point are robust to the possibility that the
second morphogen also binds.

Let us therefore adjust the notation accordingly - now let v

stand for the concentration of the unbounded second chemical
and z for the concentration of its bound version. Then, once more
assuming first order kinetics for the binding and unbinding, the
time evolution of the concentrations is governed by the system

ut ¼DuΔxuþðf u�huÞuþ f vv�hww;

vt ¼DvΔxvþguuþðgv�svÞv�szz;

wt ¼ huuþhww;

zt ¼ svvþszz; ð17Þ
with sv404sz .

6.1. Asymptotic approximation

Next we show that in the most natural setting, where both
morphogens are binding to a substrate, the behaviour of binding
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Fig. 2. Numerical solution u of (a) the linear system (RDB) and (b) the nonlinear system (15) with a random initial condition of order at most 10�3 with self-activator–self-
activator type kinetic parameters given in (14), Du ¼Dv ¼ 10�2 and homogeneous Neumann boundary conditions.

Fig. 1. Real parts of the eigenvalues of (RDB) with self-activator–self-activator type kinetic parameters given in (14) and Du ¼Dv ¼ 10�2 plotted against κ. This figure, and all
other presented figures, have been generated using Wolfram Mathematica (Wolfram Research, Inc., 2010).
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Fig. 3. A slice of the Turing space in the (a) ðf u ; gvÞ�plane, (b) ðf u; huÞ�plane, (c) ðf u ;hwÞ�plane, (d) ðhu; hwÞ�plane in the neighbourhood of the example (14) with
Du ¼Dv ¼ 10�2 for the linear system (RDB).

Fig. 4. Plot of (a) dλ=df u against fu, (b) dλ=df v against fv, (c) dλ=df w against fw, (d) dλ=dgu against gu, (e) dλ=dgv against gv and (f) dλ=dhu against hu, in the neighbourhood of the
example (14). A curve is shown only when λAR and λ40.
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morphogens can be again described by a standard two-species
reaction–diffusion model with a single scaling parameter σ that is
positive but not necessarily greater than one (which is the case in
the Lengyel and Epstein, 1992 paper).

By repeating the approach of Section 3 we can reduce the
system (17) to a two-dimensional system

ð1þKuÞut ¼DuΔxuþ f uuþ f vv;

ð1þKvÞvt ¼DvΔxvþguuþgvv; ð18Þ

where Ku ¼ �hu=hw and Kv ¼ �sv=sz . If we further rescale time by
the factor of ð1þKvÞ and recycle the notation for time and
parameters, we obtain

σut ¼DuΔxuþ f uuþ f vv;

vt ¼DvΔxvþguuþgvv; ð19Þ

with σ ¼ ð1þKuÞ=ð1þKvÞ. Note that σ is positive, but not necessa-
rily larger than one.

Obviously, the system (19) also allows pattern formation even if
the diffusion coefficients are identical. This is apparent from the
mathematical point of view, given that the systems (RDBr) and
(19) differ only by the factor ð1þKÞ or σ, respectively. Hence, under
certain conditions on the model parameters, a Turing instability
can occur in a systemwith identical diffusion coefficients and both
the self-activator and the self-inhibitor binding to a substrate.
More precisely, the rescaled diffusion constants Du=σ and Dv from
Eq. (19) need to satisfy the standard conditions on DDI (see, for
example, Murray, 2002) and therefore there is a constraint on the
relation of the rates of diffusion, binding and unbinding. Roughly
speaking, if the self-inhibitor diffuses too slowly, one can slow
down the self-activator accordingly by letting it bind at a very fast
rate and unbind slowly. However, the reduced system (19) would
not permit DDI with a different type of chemical reaction, for
example with two self-activators. This, again, follows from posi-
tivity of the factor σ and the standard conditions for DDI, namely
the condition f u=σþgvo0 that is necessary for the stability of the
system without diffusion.

6.2. Analysis of the full system

As discussed in Section 4.1, we omit Hopf bifurcations from our
analysis and concentrate on a situation when the linear system
does not exhibit temporal oscillations.

Since the Routh–Hurwitz conditions for asymptotic stability of
the system (17) without diffusion terms are rather complicated
and lengthy, we only present the analogue to the equation
Cðκ; pÞ ¼ 0 that was introduced in Section 4.1. Once more a Turing
instability occurs whenever there are two distinct positive roots of
the lowest power in the dispersion relation, Cðκ; pÞ, for parameter
values which also enforce stability in the absence of diffusion. We
find this coefficient is explicitly given by

Cðκ; pÞ ¼ hwszð�κ2DuDvþκðDvf uþDugvÞ�det J2Þ: ð20Þ

Again, for D≔Du ¼Dv we obtain

Cðκ; pÞ ¼ hwszð�κ2D2þκD tr J2�det J2Þ: ð21Þ

Notice the similarity of Eqs. (13) and (21) and the fact that even in
the case when both species bind to a substrate, the conditions for
instability are independent of the binding and unbinding rates.
Furthermore, the presence of two positive roots for κ of the
quadratic equation Cðκ; pÞ ¼ 0 facilitates finding regions of para-
meter space where a Turing instability occurs, which is non-empty
for sv ¼ sz ¼ 0 by the results of previous sections and thus, by
continuity, the Turing space is non-empty for non-zero sv; sz .

7. Discussion

As previously reported by Lengyel and Epstein together with
Pearson (Lengyel and Epstein, 1991, 1992; Pearson, 1992), the
presence of an immobile substrate, such as an extracellular matrix,
can fundamentally alter the parameter space constraints required
for diffusively driven instability. However, these reports explored
circumventing the standard requirement that a Turing morphogen
pair must have different diffusion coefficients, which in practice
entails a large ratio of diffusivities to avoid parameter fine tuning.
While we observe such effects too, we have instead focussed on
the impact of binding to an immobile substrate for the constraints
associated with the kinetics of morphogens capable of presenting
a diffusively driven instability.

In particular, while two self-inhibitors cannot undergo a
diffusively driven non-oscillatory instability, two self-activators
can generate a pattern in the presence of binding with an
immobile substrate; in other words the Turing instability can
occur when both fu and gv are positive. Examples of such systems
with two self-activators have been presented in Section 5 together
with a numerical study that illustrates the instability behaviour.
We also observed that the conditions for a non-oscillatory DDI in
the full three-species model when Du¼Dv are independent of the
magnitude of Du. More precisely, the existence of κ40 and κn such
that Cðκ;pÞ ¼ 0 and Cðκn;pÞo0 is independent of the value of Du as
κðDu; pÞ ¼ 1=Du ~κðpÞ. The same holds for the remaining conditions
for DDI. Thus, once an example of reaction kinetics leading to DDI
is found for a given Du, the DDI conditions are met for any value of
Du. Hence, the Turing parameter space of a system that allows DDI
for the same diffusion constants necessarily contains a semi-
infinite line Du¼Dv. More generally, this reflects our observations
that the parameter space where a diffusively driven non-
oscillatory instability can occur does not require any particular
fine-tuning, as illustrated in Fig. 4 where one can see that the
eigenvalues of the dispersion relation vary in a fixed direction with
changes in parameters.

Whilst we have previously shown that two self-activators
can undergo a Turing instability on a slowly growing domain
(Madzvamuse et al., 2010), this is subject to parameter fine tuning.
In particular an asymptotically slow growth timescale, relative to
all other timescales in the model, is assumed in the analysis of
Madzvamuse et al. (2010) and more generally a growth timescale
multiple orders of magnitude smaller than other timescales in the
model is required for the emergence of patterning (Crampin et al.,
1999). However, self-activating pairs will not induce a diffusively
driven instability for zero growth for the standard model, but the
Turing conditions are only linearly and quadratically perturbed by
the small growth parameter (Madzvamuse et al., 2010). Hence, in
the context of a self-activator pair undergoing diffusively driven
instability on a growing domain but with no binding to an
immobile substrate, the kinetics have to be fine-tuned to ensure
that the introduction of the additional, small growth, parameters
into the Turing conditions is sufficient to bring the system into the
Turing space. For instance, in the example presented in
Madzvamuse et al. (2010) one had f u ¼ 10�3, gv¼1 emphasising
that the self-activation properties for one of the morphogens has
to be fine-tuned to be only weakly self-activating. In contrast, in
the present paper we show that the presence of an immobile
substrate can induce DDI with two self-activators and, because we
are not constrained to asymptotic limits within parameter space,
we can demonstrate that such DDIs do not require parameter fine
tuning.

The possible implication of this work concerns the increased
prospect of finding Turing's mechanism in biological systems and
the fact that patterning can occur via this mechanism with fewer
constraints on the kinetics given the presence of binding to an
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immobile substrate such as the extracellular matrix. Due to the
enormous literature on morphogen reaction–diffusion patterning,
we focus on a specific candidate for a Turing morphogen pair,
Nodal and Lefty, which have been extensively studied (Chen and
Schier, 2002; Solnica-Krezel, 2003; Hamadai, 2012; Muller et al.,
2012) and are considered to interact via cross kinetics (whereby
Nodal upregulates both itself and Lefty with the latter, in turn,
downregulating Nodal, though the comments below would gen-
eralise to pure kinetic morphogen pairs). In particular, it is
commonly reported in the biological literature that Nodal and
Lefty are required to fulfil the following constraints if they are to
exhibit a Turing pattern (e.g. Chen and Schier, 2002; Solnica-
Krezel, 2003 who refer to Meinhardt and Gierer, 2000): (i) the
activator, Nodal, is a self-activator, (ii) the activator activates the
inhibitor, Lefty, (iii) the inhibitor blocks the auto-activation of the
activator, (iv) the inhibitor acts at long range to restrict the
effective pattern formation. However, such constraints arise from
the properties of the two-component reaction–diffusion equations
representing the interactions of Nodal and Lefty (e.g. Gierer and
Meinhardt, 1972; Murray, 2002) and thus are subject to the
standard constraints of the Turing instability. This additionally
necessitates that the inhibitor molecule, here Lefty, must be self-
inhibitory according to the standard model, equation (RD), as
illustrated by Eq. (3).

Thus the above list of constraints, (i)–(iv), for a Turing instabil-
ity is incomplete. Strictly, there would be a need to confirm that
any putative inhibitor such as Lefty must, independently of activator
activity, downregulate its own production sufficiently near the
homogeneous steady state to ensure that one is dealing with a
diffusively driven instability, at least for the standard model. This
requirement is generally overlooked in discussions of what is
required to demonstrate that Nodal and Lefty undergo a diffusively
driven instability (e.g. Chen and Schier, 2002; Solnica-Krezel,
2003; Hamadai, 2012) and it could also be anticipated to be very
demanding to empirically demonstrate in a highly coupled system
of interacting morphogens. However, the results of this paper
show that the need for self-inhibition in the standard model in fact
need not be necessary given the presence of binding to an
immobile substrate such as extracellular matrix. In turn, by
relaxing the interaction constraints required for a diffusively
driven instability without the need for parameter fine-tuning,
these results offer the prospect of reducing the difficulties and the
verifications required for an unambiguous demonstration that a
diffusively driven instability occurs at the molecular level in
biological tissue. In particular, an enhanced binding of Nodal to
matrix is speculated from recent studies of Nodal and Lefty
transport (Muller et al., 2012). Thus in this context, and contingent
on the same speculation of Mueller et al, our results show that the
self-inhibition of Lefty need not be a requirement for an unambig-
uous demonstration at the molecular level that Nodal and Lefty
undergo a Turing instability, in contrast to the predictions of the
standard model.

Appendix A. A Hopf bifurcation cannot occur for equal
diffusion coefficients

Let us consider one real λR and a complex conjugate pair
λC ¼ μþ iν (νa0) as roots of the dispersion relation. A Hopf
bifurcation can occur if RðλCÞ ¼ μ can become positive while
λRo0.

1. By comparing the dispersion relation with the polynomial
ðλ�λRÞðλ�λCÞðλ�λC Þ ¼ 0 where we have employed the knowl-
edge of roots of the dispersion relation, we can show that (from

comparison of coefficients of the quadratic terms)

λR ¼ �2μ�k2ðDuþDvÞþtr J3: ðA:1Þ
Therefore, if a Hopf bifurcation occurs, μ40, the real root of the
dispersion relation is negative as trJ3o0 due to the require-
ment of stability without diffusion.

2. As both λC and λC are roots of the dispersion relation, we have

Pðμ;ν; k2Þ≔dispReljλ ¼ λC �dispReljλ ¼ λC
¼ 0 ðA:2Þ

which is a quadratic polynomial in μ but containing the unknown
imaginary part νa0 as well. Again, by comparing the dispersion
relation with the polynomial ðλ�λRÞðλ�λCÞðλ�λC Þ ¼ 0 we can
also obtain ν¼ νðμÞ and substitute it into the polynomial P
retrieving again a cubic polynomial for the unknown μ. Note that
μAR and that Hopf instability occurs when μ changes sign as k2

changes. Thus Hopf instability requires existence of kn40 such
that the cubic polynomial Pðμ;νðμÞ; kn2Þ ¼ 0 has a root for μ¼ 0,
i.e. the absolute term of P has to vanish for k¼ kn. With equal
diffusion coefficients, one can show that this absolute term is a
polynomial in k2 with all coefficients being positive and therefore,
due to Descartes' rule of signs, there is no kn40 such that
the absolute term would vanish. Thus the Hopf bifurcation
cannot occur.

The results of Appendix A were obtained using the computing
software Wolfram Mathematica (Wolfram Research, Inc., 2010), see
the Supplementary Material for further details.

Appendix B. Two self-inhibitors cannot undergo a non-
oscillatory diffusively driven instability

Adopting the notation of (4), we have for two self-inhibitors
that f u; gvo0 and hence

tr J2 ¼ f uþgvo0; tr J3 ¼ f uþgvþhw�huo0; Dvf uþDugvo0;

ðB:1Þ
noting that hu404hw. Now consider roots of Cðκ; pÞ ¼ 0 i.e.
solutions in terms of κ for

Cðκ; pÞ≔jhwj½κ2DuDv�κðDvf uþDugvÞþðf ugv� f vguÞ� ¼ 0:

Given Dvf uþDugvo0 and neglecting the possibility of mathema-
tical fine tuning parameters to obtain double roots, which is not
relevant in practice, we have two possibilities: (i) Cðκ; pÞ ¼ 0 has
one positive real root for κ or (ii) Cðκ; pÞ ¼ 0 has no positive real
roots for κ.

Case (i): in conjunction with point (2) of (4.1) above, namely
that stability is guaranteed at large κ and therefore Cð1; pÞ40, it
follows that Cð0; pÞo0. Hence the dispersion relation, Eq. (DR),

λ3þAðκ; pÞλ2þBðκ; pÞλþCðκ; pÞ ¼ 0;

has at least one positive real root for λ at κ ¼ 0, excluding the
possibility of a diffusively driven instability.

Case (ii): The absence of positive real roots, combined with
Cð1; pÞ40, implies that Cðκ;pÞ40 for κZ0. Thus

ðf ugv� f vguÞ4�κ2DuDvþκðDvf uþDugvÞ
for κZ0. We also have, noting the above inequality together with
κZ0; f uo0; gvo0;hu40;hwo0, the following:

Aðκ; pÞ≔κðDuþDvÞ�tr J340; ðB:2Þ

Bðκ; pÞ≔κ2DuDvþκð�Dvf u�DugvþDvhu�Duhw�DvhwÞ
� f vguþ f ugv�gvhuþ f uhwþgvhw; ðB:3Þ

4κðDvhuþjhwjðDuþDvÞÞ�jhwjðf uþgvÞ�hugv40: ðB:4Þ
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Hence we have Aðκ;pÞ, Bðκ; pÞ, Cðκ; pÞ40 for κZ0; thus the disper-
sion relation has no positive real roots by Descartes rule of signs, again
excluding a non-oscillatory diffusively driven instability.

Appendix C. Inferring the conditions of a DDI from the
asymptotically reduced systems in Section 3

There are many possible limits that give rise to the reduced
system (RDBr). There is (i) the asymptotics used by Lengyel and
Epstein, with jhwj � hu asymptotically large, or instead, (ii) taking
jhwj only as asymptotically large, which can be deduced by writing
the solution for w implicitly as an integral equation and using
integral asymptotics (i.e. Laplace's method based on Watson's
lemma).

However, the requirements for a DDI are not independent of
the choice of this limit. For instance, in case (i) detailed symbolic
algebraic calculations show that the Routh–Hurwitz conditions
corresponding to the full system (RDB) reduce to the constraints
(4n)–(6n) which emerge from an analysis of the reduced system.
In contrast, for case (ii) the Routh–Hurwitz conditions correspond-
ing to the full system (RDB) can be written in the form

�det J2 hw40 ðC:1Þ

tr J2 hw�gvhuþdet J240 ðC:2Þ

�hwþhu�tr J240 ðC:3Þ

�tr J2 h
2
wþðf uþ2gvÞhuhw�gvh

2
u

þðg2vþ f vguÞhu�ðtr J2Þ2hw�det J2 tr J240 ðC:4Þ
which clearly requires trðJ2Þo0 (for large hw only the bold terms
play a role). However, this condition does not emerge from the
conditions for a DDI in the reduced system (unless considering
only jhwj-1Þ. Further symbolic algebraic calculations also show
conditions (4n)–(6n) hold which, in combination with tr ðJ2Þo0,
reduce to the naive Turing model conditions, Eqs. (4)–(6). In
contrast, in case (i), with |hw|~hu asymptotically large, a DDI is
associated with different constraints from the naive Turing model
and thus one can escape the constraint that the activator must
diffuse more slowly, for example in case (i) but not case (ii).

Given the information about the reduction is only implicit in
parameter values, one must be cautious about inferring the
conditions for a DDI in the full model by inferring conditions from
reduced models. Nonetheless, such subtle difficulties do not
emerge in the study presented as we do not rely on asymptotic
regimes within parameter space; furthermore one cannot deduce
the possibility of patterning without self-inhibition from either
reduction (i) or (ii) above, necessitating the consideration of the
full system in our study without asymptotic approximations.

Appendix D. Supplementary data

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2014.11.024.
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