
An integrated approach to quantitative modelling in angiogenesis
research

Supplementary Material

Anthony J Connor*1,7, Radosław P Nowak1,2, Erica Lorenzon3, Markus Thomas4, Frank
Herting3, Stefan Hoert3, Tom Quaizer5, Eliezer Shochat6, Joe Pitt-Francis1, Jonathan

Cooper1, Philip K Maini7, and Helen M Byrne1,7

1Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK.
2(Current address) Botnar Research Centre, NIHR Oxford Biomedical Research Unit,

Nuffield Department of Orthopaedics, Oxford, OX3 7LD, UK.
3Roche Pharmaceutical Research and Early Development, Oncology DTA, Roche Innovation

Center, DE-82377 Penzberg, Germany.
4Roche Pharmaceutical Research and Early Development, Discovery Ophthalmology, Roche

Innovation Center, 4070 Basel, Switzerland.
5Roche Pharmaceutical Research and Early Development, pRED Informatics, Roche

Innovation Center, DE-82377 Penzberg, Germany.
6Roche Pharmaceutical Research and Early Development, Roche Innovation Center, 4070

Basel, Switzerland.
7Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford,

Oxford, OX2 6GG, UK.

Contents

1 Semi-automated vessel segmentation in cornea micropocket images 2

2 Mathematical model of corneal angiogenesis 5

3 Parameter value estimation 14

4 Mathematical model implementation 21

5 Parameter sensitivity analysis 21

6 Numerical convergence 23

*Author for correspondence: anthony.connor@keble.ox.ac.uk.

1



1 Semi-automated vessel segmentation in cornea micropocket im-
ages

In our study we analysed images from 9 experiments in which pellets containing 300 ng of VEGF-A165
were implanted into the corneas of mice, and 10 experiments in which 15 ng of bFGF was used. The
process of vascular network extraction is subdivided into a series of semi-automated procedures
which we partition into pre-processing, enhancement, post-processing and segmentation steps, and
describe below (see also Figure S1). For simplicity, throughout our analysis we neglect the effect of
the curvature of the eye.

i) Pre-processing
To obtain a scale for the images we assume that each mouse has a spherical eye of radius 1.53
mm, as suggested by Rogers et al. [S1] and confirmed by measurements made at Hoffmann-La
Roche, Penzberg. We fit a circle to a selection of ten points placed manually around the
circumference of the exposed portion of the eye in each image and measure the circumference
of that circle in terms of pixels. This allows us to estimate the scale (number of pixels per
mm) for each image.

The image is manually cropped to a rectangular region which identifies the central portion
of the cornea. In this region the vasculature is most in focus and therefore most amenable to
segmentation. The cropped image is then rotated (usually by a few degrees) in order to align
the limbal vessel(s) with the horizontal axis of the image. At this point the closest distance
between the pellet and the limbal vessels is measured. In this way, we obtain an estimate for
the distance that the pellet is placed away from the limbal vessels.

ii) Enhancement
The vasculature in each image is enhanced using an adaptation of the Gaussian matched
filter approach first introduced by Chaudhuri et al. [S2]. The matched filter approach to
vessel enhancement is a template-matching algorithm, the success of which relies on the
assumption that vessels have a predictable intensity profile. An acceptable assumption is that
the cross-sectional intensity profile of a vessel is approximately Gaussian. We confirmed this
for our set of cornea images. The filters are extended to two dimensions by assuming that
vessels usually have small curvatures and thus can be approximated by small piecewise linear
segments. Thus, each matched filter kernel may be expressed as

𝑘(𝑥, 𝑦) = −𝑒𝑥𝑝 − 𝑥2

2𝜎2  ∀ |𝑦| ≤ 𝐿
2

, (S1)

where 𝐿 is the length over which the vessel is assumed to have a fixed orientation. Since vessels
may appear in any orientation, the filter is rotated through all possible angles (0 ≤ 𝜃 ≤ 𝜋) to
produce a bank of filters, 𝑘𝑖, of fixed size.

To limit the size of the matched filters, the Gaussian curves are truncated at ±𝑇 pixels.
Furthermore, the kernel is modified by subtracting the mean value of 𝑘(𝑥, 𝑦) so that when the
kernel is applied to a pixel belonging to a background of constant intensity, with zero mean
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Figure S1: Work flow for vessel extraction from cornea micropocket assay images. See main text for
details.

additive noise, the response will be zero. Thus, we have

𝑘′
𝑖(𝑥, 𝑦) = 𝑘𝑖(𝑥, 𝑦) − 1

𝑎

𝑥,𝑦

𝑘𝑖(𝑥, 𝑦), (S2)

where 𝑎 is the number of elements in the discrete implementation of the filter.
The vessel enhancement algorithm proceeds by convolving each matched filter kernel, 𝑘𝑖,

with the image to produce an array of matched filter responses, 𝑀𝑖. The final matched filter
response, 𝑀 , is obtained by retaining the maximal matched filter response over all orientations
for each pixel, i.e. 𝑀(𝑥, 𝑦) = max

𝑖
𝑀𝑖(𝑥, 𝑦).

We extend the matched filter approach presented above, considering an extended bank of
Gaussian matched filters of varying 𝜎. By including filters of smaller width we increase the
matched filter response to smaller vessels and thus increase the likelihood that these vessels
will be identified in a subsequent segmentation step.

To parameterise our matched filter method we largely follow Al-Rawi et al. [S3], who
performed a search of the parameter space (𝜎, 𝐿, 𝑇 ) in an attempt to optimise the Gaussian
matched filter method for retinal images. 𝐿 is fixed at 11 pixels and 𝜎 is varied between 0.5
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and 2 in steps of 0.1. As 𝜎 is varied, 𝑇 is also varied, such that 𝑇 = 4⌈𝜎⌉, consistent with [S3].
The angular resolution of the bank of filters is fixed at 15𝑜.

iii) Post-processing
We refine our region of interest (ROI) to the area in which the vascular growth is localised by
drawing around it manually. This eliminates the potential for spurious signals to appear in
the matched filter response due to background noise in the region between the neovasculature
and the pellet. We also eliminate saturated regions from each image by thresholding a
Hue-Saturation-Value (HSV) representation of the image according to each pixel’s associated
V-value.

After refining the ROI, the pixel values in the enhanced image are renormalised such that
pixels which are most likely to correspond to a vessel are given a value of 255 and pixels which
are least likely to correspond to a vessel are given a value of zero. Figure S1 (image 5) shows
an example of a finalised enhanced image resulting from this process.

iv) Segmentation
To segment the vasculature from the background image we apply a threshold to the enhanced
image. An automated thresholding procedure, known as local entropy thresholding, provides
an initial segmentation of the vascular network [S4]1. The initial threshold level is tuned by
eye in order to improve the accuracy of the network segmentation, where possible. An example
final binary segmentation of the vasculature from an image is shown in Figure S1 (image 6).

After thresholding, we apply a thinning procedure, via MATLAB’s bwmorph function,
to reveal the back-bone, or skeleton, of the vascular network. This skeleton provides an
approximate but reasonably comprehensive indication of the locations of the centre-lines of the
vessels in our images. An example vessel network skeleton is illustrated in Figure S1 (image 7).

In the model developed in this paper the vascular density is averaged in the plane perpendicular
to the direction in which the vascular front is moving on average (from the limbus to the pellet).
Thus, to compare model simulations with the experimental data, we perform a similar averaging
here; using our skeletonised networks, we count the number of identified vessels along each plane
perpendicular to the direction in which vascular growth occurs on average, i.e. we count vessels
along the x-direction in our images (see Figure 2e in the main manuscript). We use these vessel
counts to estimate the average vascular density, measured in metres of vessel per metre cubed, at
all locations between the pellet and limbus. In our calculation of vascular density, we assume that
the corneal stroma has a thickness of approximately 100 μm as suggested in [S5, S6]. These data
are used to produce a plot, or a vascular density profile, which describes how the vascular density
varies on average across each cornea image, moving from the limbal vessels towards the pellet. This
process is fully automated.

For each set of experiments the vascular density profiles were concatenated and averaged so that
we might evaluate the average neovascular response of the corneal vasculature to each angiogenic
factor at their respective doses. The resulting averaged spatially-resolved and dynamic data are used

1We use an implementation for the local entropy thresholding algorithm as provided by Chanwimaluang and Fan at
http://www.vcipl.okstate.edu/localentropy.htm. Our Gaussian matched filter implementation has also been adapted
from that of Chanwimaluang and Fan, hosted at the same address.
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to parameterise our model and compare the angiogenic responses elicited by VEGF-A165 and bFGF
pellets.

MATLAB scripts are available which allow for efficient reproduction of the image processing
results, presented in the main manuscript. These scripts may be found at [S7] with accompanying
experimental images at [S8].

2 Mathematical model of corneal angiogenesis

An overview of our mathematical model was presented in the main manuscript. In this section we
elaborate upon the equations underlying our mathematical model. We consider dependent variables
which represent averages in the plane perpendicular to the average direction of sprout tip motion,
thus restricting attention to one spatial dimension. The independent variables in our model are time,
𝑡, and space, 𝑥, where the 𝑥-axis lies parallel to the average direction of tip cell motion, with limbus
located at 𝑥 = 0 and the pellet at 𝑥 = 𝐿. We develop equations for the average density of sprout tips,
𝑛(𝑥, 𝑡), the average length density of immature vessels, 𝜌(𝑥, 𝑡), the average length density of mature
vessels, 𝑚(𝑥, 𝑡), the average concentration of VEGF-A165, 𝑣(𝑥, 𝑡), and the average concentration
of bFGF, 𝑓(𝑥, 𝑡). We also model the mean concentration of VEGF-A165 and bFGF in the pellets,
denoted [𝑉𝑇 ](𝑡) and [𝐹𝑇 ](𝑡), respectively. See Table S1 for a summary of the dependent variables.
We begin by developing equations in which explicit crosstalk between VEGF-A165 and bFGF is not
taken into account. We then adapt those equations to account for crosstalk between the two factors.

2.1 Mature vessel density equation, 𝑚(𝑥, 𝑡)

Vessel maturation and dematuration are complex processes involving many chemical species and
multiple cell types. Such details have been incorporated into recent models by Zheng et al. [S9].
However, we take a simplified approach to modelling vessel maturity which is appropriate for the
coarse-grained data which our experimental images provide. We assume VEGF-A165 binding to ECs
induces vessel dematuration at a rate proportional to the fraction of bound VEGFR-2 receptors,
further assuming Michaelis-Menten reaction kinetics. Similarly, bFGF binding to FGFR-1 induces
vessel dematuration. Meanwhile, since maturation is expected to take place on a longer time
scale than dematuration, and little maturation is expected to take place in bFGF and VEGF-A165
experiments [S10], to simplify our model we neglect vessel maturation. Based on evidence presented
in [S11], mature vessels are viewed as immobile and stable, and only dematuration is assumed to
contribute to their evolution. Combining these assumptions, the equation governing the mature
vessel density, 𝑚, is given by:

𝜕𝑚
𝜕𝑡

= − ⎛⎜
⎝

𝜆𝑣
1𝑣

𝑣 + 𝑣 1
2

+
𝜆𝑓

1𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

𝑚

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
dematuration

(S3)

𝜆𝑣
1 and 𝜆𝑓

1 are the maximal rates of vessel dematuration due to VEGF-A165 and bFGF, respectively.
𝑣 1

2
is the concentration of VEGF-A165 at which half of the VEGFR-2 receptors are bound, and 𝑓𝑓

1
2

is the concentration of bFGF at which half of the FGFR-1 receptors are bound.
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Variable Description Units
𝑛 Number of sprout tips per unit volume, averaged in the plane perpendicular to

direction of tip migration.
tips m−3

𝜌 Length of immature vessels per unit volume, averaged in the plane
perpendicular to direction of tip migration.

m of vessel m−3

𝑚 Length of mature vessels per unit volume, averaged in the plane perpendicular
to direction of tip migration.

m of vessel m−3

𝑣 Mean molar concentration of VEGF-A165 across cross-sectional area of cornea. M
𝑓 Mean molar concentration of bFGF across cross-sectional area of cornea. M

[𝑉𝑇 ] Mean concentration of VEGF-A165 inside pellet. M
[𝐹𝑇 ] Mean concentration of bFGF inside pellet. M

Table S1: Table of dependent variables.

2.2 Sprout tip density equation, 𝑛(𝑥, 𝑡)

Both VEGF-A165 and bFGF binding in immature vessels stimulates the production of sprout tips.
The rate at which new tips form from existing immature vessels in response to VEGF-A165 is assumed
proportional to the local fraction of bound VEGFR-2. Similarly, the rate at which new tips form
in response to bFGF is proportional to the local fraction of bound FGFR-1. Following [S12, S13],
sprout tips move via chemotaxis (in response to gradients in both VEGF-A165 and bFGF) and also
undergo random motion. Tips are annihilated when they anastomose with vessels or other tips.
Additionally, tips die in low concentrations of VEGF-A165 and bFGF. In summary, the governing
equation for tip density, 𝑛(𝑥, 𝑡), is given by:

𝜕𝑛
𝜕𝑡

= 𝜕
𝜕𝑥

⎛⎜⎜
⎝

𝜇 𝜕𝑛
𝜕𝑥⏟

𝗋𝖺𝗇𝖽𝗈𝗆 𝗆𝗈𝗍𝗂𝗈𝗇

−𝜒𝑓 𝑛 𝜕𝑓
𝜕𝑥

− 𝜒𝑣 𝑛 𝜕𝑣
𝜕𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝖼𝗁𝖾𝗆𝗈𝗍𝖺𝗑𝗂𝗌

⎞⎟⎟
⎠

+ 𝛼𝑣
0  𝑣

𝑣 + 𝑣 1
2

 𝜌 + 𝛼𝑓
0

⎛⎜
⎝

𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

𝜌

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝗌𝗉𝗋𝗈𝗎𝗍𝗂𝗇𝗀 𝖿𝗋𝗈𝗆 𝗏𝖾𝗌𝗌𝖾𝗅𝗌

− 𝛽1 (𝜌 + 𝑚) 𝑛⏟⏟⏟⏟⏟
𝗍𝗂𝗉−𝗍𝗈−𝗏𝖾𝗌𝗌𝖾𝗅
anastomosis

− 2 𝛽2 𝑛2⏟
𝗍𝗂𝗉−𝗍𝗈−𝗍𝗂𝗉

anastomosis

− 𝛾 𝑛 
𝑣 1

2

𝑣 + 𝑣 1
2

 ⎛⎜
⎝

𝑓𝑓
1
2

𝑓 + 𝑓𝑓
1
2

⎞⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝖽𝖾𝖺𝗍𝗁

, (S4)

where 𝜇, 𝜒𝑓 and 𝜒𝑣 are the random motility and chemotactic coefficients, respectively. 𝛼𝑣
0 and 𝛼𝑓

0
are the maximal rates of VEGF-A165- and bFGF-induced production of tips per length of immature
vessel, respectively. 𝛽1 is the rate of tip-to-vessel anastomosis per unit vessel length density per unit
tip density per unit volume, 𝛽2 is the rate of tip-to-tip anastomosis per unit tip density squared per
unit volume and 𝛾 is the maximal rate of EC death in low VEGF-A165 and bFGF conditions. All
parameters are assumed non-negative and constant.

2.3 Immature vessel density equation, 𝜌(𝑥, 𝑡)

We again follow [S12, S13], wherein the production of immature vessels is modelled using the
snail-trail approach. As mentioned in the main manuscript and Section 2.2, above, we assume that
the ECs associated with immature vessels rely on angiogenic factors for survival. Therefore, in the
absence of VEGF-A165 and bFGF, immature vessels regress. By contrast, mature vessels do not
rely on external sources of angiogenic factors for their viability and, as a result, do not undergo
regression when VEGF-A165 and/or bFGF is withdrawn [S14]. In summary, the immature vessel
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length density, 𝜌(𝑥, 𝑡), obeys the following PDE:

𝜕𝜌
𝜕𝑡

= 𝜅 𝜇 𝜕𝑛
𝜕𝑥

− 𝜒𝑓 𝑛 𝜕𝑓
𝜕𝑥

− 𝜒𝑣 𝑛 𝜕𝑣
𝜕𝑥


⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

snail−trail

− 𝛾 𝜌 
𝑣 1

2

𝑣 + 𝑣 1
2

 ⎛⎜
⎝

𝑓𝑓
1
2

𝑓 + 𝑓𝑓
1
2

⎞⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

regression

+ ⎛⎜
⎝

𝜆𝑣
1𝑣

𝑣 + 𝑣 1
2

+
𝜆𝑓

1𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

𝑚
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

dematuration

, (S5)

where we have also included terms for vessel dematuration to ensure appropriate conservation of
the total vessel length density in our equations. The constant 𝜅 quantifies the length of vessel left
behind as a sprout tip migrates towards the pellet. Setting 𝜅 > 1 allows us to account for some
production of vessel length in the plane perpendicular to the 𝑥-axis.

2.4 VEGF-A165 concentration equation, 𝑣(𝑥, 𝑡)

The VEGF-A165 distribution in our system is assumed to depend upon diffusion, natural decay,
uptake by ECs and drainage through the vasculature. Combining these assumptions, we propose the
following equation for the evolution of the VEGF-A165 distribution in our model domain:

𝜕𝑣
𝜕𝑡

= 𝐷𝑣
𝜕2𝑣
𝜕𝑥2⏟

𝖽𝗂𝖿𝖿𝗎𝗌𝗂𝗈𝗇

− 𝜆𝑣 𝑣⏟
𝗇𝖺𝗍𝗎𝗋𝖺𝗅
decay

− 2 𝜋 �̄� 𝑃𝑣 (𝜌 + 𝑚) 𝑣⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝖽𝗋𝖺𝗂𝗇𝖺𝗀𝖾 𝗍𝗁𝗋𝗈𝗎𝗀𝗁 𝗏𝖾𝗌𝗌𝖾𝗅𝗌

− 𝐾𝑣
𝐸𝐶 (𝜌 + 𝑚)  𝑣

𝑣 + 𝑣 1
2


⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝗎𝗉𝗍𝖺𝗄𝖾 𝗏𝗂𝖺 𝖾𝗇𝖽𝗈𝗍𝗁𝖾𝗅𝗂𝖺𝗅 𝖼𝖾𝗅𝗅𝗌

. (S6)

In (S6), 𝐷𝑣 is the assumed constant diffusion coefficient for VEGF-A165 in the corneal stroma and
𝜆𝑣 is the rate constant for natural decay. For simplicity, we assume that the permeability of vessels
to VEGF-A165, 𝑃𝑣, is constant and all vessels have the same radius, �̄�. Additionally, we assume
that the maximal rate at which ECs in vessels uptake VEGF-A165 is 𝐾𝑣

𝐸𝐶 .
The third term in (S6) represents the rate of loss of VEGF-A165 per unit volume due to the

outward flux of VEGF-A165 through vessel walls. We approximate vessels as cylinders and therefore
assume that the surface area for VEGF-A165 exchange per unit volume is given by 2 𝜋 �̄� (𝜌 + 𝑚).
The flux of VEGF-A165 crossing a vessel wall, measured in moles per unit time per unit area of
vessel wall, is assumed proportional to the difference in molar concentration of VEGF-A165 on either
side of the wall. We also assume that the concentration of VEGF-A165 inside a vessel is negligible.
The uptake of VEGF-A165 by ECs is described by the fourth term on the RHS of (S6), where we
have neglected the contribution of tip cells to the uptake of VEGF-A165. While VEGF-A165 binds to
a number of receptors on the surface of cells, for simplicity we account only for VEGF-A165 binding
to VEGFR-2 molecules. The absence of a source term on the RHS of (S6) reflects our assumption
that VEGF-A165 is only released into the cornea from the pellet. Thus, the influx of VEGF-A165
into the cornea is incorporated via a boundary condition at 𝑥 = 𝐿, which we discuss below.
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2.5 bFGF concentration equation, 𝑓(𝑥, 𝑡)

We model the bFGF distribution in a similar way to the VEGF-A165 distribution. Similar to
VEGF-A165, bFGF binds to a number of receptors on the surface of cells and to various elements
of the corneal stroma. However, for simplicity we incorporate only bFGF/FGFR-1 binding in our
model since bFGF regulates EC behaviour principally by binding to FGFR-1 receptors. We also
account for diffusion, natural decay and drainage through the vasculature. Thus, we model the
evolution of bFGF concentration in our model using the equation:

𝜕𝑓(𝑥, 𝑡)
𝜕𝑡

= 𝐷𝑓
𝜕2𝑓
𝜕𝑥2⏟

diffusion

− 𝜆𝑓 𝑓⏟
natural decay

− 2 𝜋 �̄� 𝑃𝑓 (𝜌 + 𝑚) 𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟
drainage into vascular system

− 𝐾𝑓
𝐸𝐶 (𝜌 + 𝑚) ⎛⎜

⎝

𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

uptake via FGFR-1

.(S7)

Here, 𝑓𝑓
1
2

is as defined above and 𝐾𝑓
𝐸𝐶 represents the maximal rate of reduction in bFGF concentration

due to cellular uptake via FGFR-1. Other parameters in (S7) parallel those defined for VEGF-A165
transport in (S6).

2.6 VEGF-A165/bFGF crosstalk

bFGF is thought to induce angiogenesis upstream of VEGF-A, and partly via the VEGF-A/VEGFR-2
pathway [S15]. More specifically, exposure to bFGF upregulates the expression of VEGFR-2 [S16]
and stimulates ECs to produce VEGF-A [S17]. In our model we incorporate these mechanisms of
crosstalk.

Since we do not model VEGFR-2 density explicitly, increases in VEGFR-2 density are reflected in
the transient modulation of a number of parameter values. We assume that exposure to bFGF leads
to increased uptake of VEGF-A165 by ECs, increased VEGF-A165-induced sprouting and increased
dematuration in the presence of VEGF-A165; i.e. increases in 𝐾𝑣

𝐸𝐶 , 𝛼𝑣
0 and 𝜆𝑣

1, respectively. Given
that significant changes in expression happen on relatively short time-scales (< 4 hours) [S18], to
simplify our model, we assume that the upregulation of VEGFR-2 expression (and thus modulation
of parameter values) and the production of VEGF-A165 are instantaneous. In particular, we suppose
that VEGFR-2 expression is upregulated according to:

Λ(𝑓) = Λ0
⎛⎜
⎝

1 + 𝑠𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

, (S8)

where 𝑠 determines the maximal fold-increase in VEGFR-2 expression levels and Λ0 is the level of
VEGFR-2 expression in the absence of bFGF. In particular, here, we assume that the number of
VEGFR-2 molecules per EC increases linearly with the fraction of bound FGFR-1 receptors. In the
presence of bFGF, then, 𝐾𝑣

𝐸𝐶 , 𝛼𝑣
0 and 𝜆𝑣

1, are modified w.r.t. their definitions above, (S3)-(S6), as
follows:

𝐾𝑣
𝐸𝐶 ⟼ 𝐾𝑣

𝐸𝐶
Λ(𝑓)
Λ0

, (S9)

𝛼𝑣
0 ⟼ 𝛼𝑣

0
Λ(𝑓)
Λ0

, (S10)

𝜆𝑣
1 ⟼ 𝜆𝑣

1
Λ(𝑓)
Λ0

. (S11)
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To account for bFGF-induced VEGF-A165 production by ECs, we include an additional source term
in the VEGF-A165 equation, in which ECs release VEGF-A165 at a rate proportional to the bound
fraction of FGFR-1 molecules.

Having now accounted for VEGF-A165/bFGF crosstalk, our model equations become:

𝜕𝑚
𝜕𝑡

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎣

↑ VEGFR−2 → ↑ VEGF−A165−
induced dematuration

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⎛⎜
⎝

1 + 𝑠𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

 𝜆𝑣
1𝑣

𝑣 + 𝑣 1
2

 + ⎛⎜
⎝

𝜆𝑓
1𝑓

𝑓 + 𝑓𝑓
1
2

⎞⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝑚, (S12)

𝜕𝑛
𝜕𝑡

= 𝜕
𝜕𝑥

𝜇 𝜕𝑛
𝜕𝑥

− 𝜒𝑓 𝑛 𝜕𝑓
𝜕𝑥

− 𝜒𝑣 𝑛 𝜕𝑣
𝜕𝑥



+𝛼𝑣
0

↑ VEGFR−2 → ↑ VEGF−A165−
induced sprouting
⏞⏞⏞⏞⏞⏞⏞
⎛⎜
⎝

1 + 𝑠𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

 𝑣
𝑣 + 𝑣 1

2

 𝜌 + 𝛼𝑓
0

⎛⎜
⎝

𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

𝜌 (S13)

−𝛽1 𝑛 (𝜌 + 𝑚) − 2 𝛽2 𝑛2 − 𝛾 𝑛 
𝑣 1

2

𝑣 + 𝑣 1
2

 ⎛⎜
⎝

𝑓𝑓
1
2

𝑓 + 𝑓𝑓
1
2

⎞⎟
⎠

,

𝜕𝜌
𝜕𝑡

= 𝜅 𝜇 𝜕𝑛
𝜕𝑥

− 𝜒𝑓 𝑛 𝜕𝑓
𝜕𝑥

− 𝜒𝑣 𝑛 𝜕𝑣
𝜕𝑥

 − 𝛾 𝜌 
𝑣 1

2

𝑣 + 𝑣 1
2

 ⎛⎜
⎝

𝑓𝑓
1
2

𝑓 + 𝑓𝑓
1
2

⎞⎟
⎠

(S14)

+ ⎡
⎢
⎣

⎛⎜
⎝

1 + 𝑠𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

 𝜆𝑣
1𝑣

𝑣 + 𝑣 1
2

 + ⎛⎜
⎝

𝜆𝑓
1𝑓

𝑓 + 𝑓𝑓
1
2

⎞⎟
⎠

⎤
⎥
⎦

𝑚,

𝜕𝑓
𝜕𝑡

= 𝐷𝑓
𝜕2𝑓
𝜕𝑥2 − 𝜆𝑓 𝑣 − 2 𝜋 �̄� 𝑃𝑓 (𝜌 + 𝑚) 𝑓 − 𝐾𝑓

𝐸𝐶 (𝜌 + 𝑚) ⎛⎜
⎝

𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

, (S15)

𝜕𝑣
𝜕𝑡

= 𝐷𝑣
𝜕2𝑣
𝜕𝑥2 − 𝜆𝑣 𝑣 − 2 𝜋 �̄� 𝑃𝑣 (𝜌 + 𝑚) 𝑣 (S16)

− 𝐾𝐸𝐶

↑ VEGFR−2 → ↑ binding
of VEGF−A165

⏞⏞⏞⏞⏞⏞⏞
⎛⎜
⎝

1 + 𝑠𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

 𝑣
𝑣 + 𝑣 1

2

 (𝜌 + 𝑚) + 𝜙 (𝜌 + 𝑚) ⎛⎜
⎝

𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟

bFGF stimulates ECs to
produce VEGF−A165

,
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Terms highlighted in red are those associated with VEGF-A165/bFGF crosstalk. 𝜙 is the maximum
rate of increase in VEGF-A165 concentration due to EC exposure to bFGF.

2.7 Initial and boundary conditions

In order to close our model, comprising Equations S12-S16, it remains to prescribe appropriate
boundary and initial conditions. The model is formulated on a one-dimensional Cartesian domain,
0 ≤ 𝑥 ≤ 𝐿, with VEGF-A165- and bFGF-containing pellets located at 𝑥 = 𝐿 and limbal vessels (that
border the cornea) at 𝑥 = 0. Initially, the interior of the model domain is assumed to be devoid of
vessels and of VEGF-A165 and bFGF. The initial distribution of vessels is described via a normal
distribution of mature vessels, centred on 𝑥 = 0, so that initially, inside the model domain, we have:

𝑚(𝑥, 0) = 𝑚𝐿𝑒𝑥𝑝 − 𝑥2

2𝜎2  , 𝑛(𝑥, 0) = 0, 𝜌(𝑥, 0) = 0, 𝑣(𝑥, 0) = 0, 𝑓(𝑥, 0) = 0,

where 𝑚𝐿 is the maximal vessel density at the limbus initially and 𝜎 describes the initial spread of
vascular density.

We assume that sprout tips are unable to penetrate the pellet or the limbus and, hence, impose
no flux boundary conditions at 𝑥 = 0 and 𝑥 = 𝐿. Meanwhile, VEGF-A165 is removed from the
model domain at 𝑥 = 0 via the limbal vasculature, the flux being proportional to the difference in
concentrations of VEGF-A165 inside the cornea, 𝑣(0, 𝑡), and in the blood. The influx of VEGF-A165
from the pellet at 𝑥 = 𝐿 is assumed proportional to the difference in concentrations of VEGF-A165
inside the cornea, 𝑣(𝐿, 𝑡), and inside the pellet. Similar assumptions are made regarding the behaviour
of bFGF on the model boundaries. Thus, we have:

𝜇 𝜕𝑛
𝜕𝑥

− 𝜒𝑣 𝑛 𝜕𝑣
𝜕𝑥

− 𝜒𝑓 𝑛 𝜕𝑓
𝜕𝑥

= 0, −𝐷𝑓
𝑑𝑓
𝑑𝑥

= −𝑃𝑓 𝑓,

−𝐷𝑣
𝑑𝑣
𝑑𝑥

= −𝑃𝑣 𝑣,

⎫
⎬⎭

𝑥 = 0, (S17)

𝜇 𝜕𝑛
𝜕𝑥

− 𝜒𝑣 𝑛 𝜕𝑣
𝜕𝑥

− 𝜒𝑓 𝑛 𝜕𝑓
𝜕𝑥

= 0, −𝐷𝑓
𝑑𝑓
𝑑𝑥

= −𝑘𝑓
𝑝 [𝐹𝑓 ] − 𝑓 ,

−𝐷𝑣
𝑑𝑣
𝑑𝑥

= −𝑘𝑣
𝑝 [𝑉𝑓 ] − 𝑣 ,

⎫
⎬⎭

𝑥 = 𝐿, (S18)

Here, 𝑘𝑣
𝑝 and 𝑘𝑓

𝑝 are effective permeability constants, quantifying the rate of transfer of VEGF-A165
and bFGF, respectively, across the cornea-pellet boundary. The PDEs (S12) and (S14) contain no
spatial derivatives in 𝑚 and 𝜌, respectively, and require no boundary conditions. The submodel
which controls the evolution of the concentration of unbound angiogenic factors inside the pellet(s),
𝑉𝑓 (𝑡) and 𝐹𝑓 (𝑡), is detailed in the following section.

2.8 Controlled release of angiogenic factors submodel

In the following, we describe the controlled release submodel within the context of VEGF-A165.
The controlled release model used for bFGF follows trivially. We assume that the concentration of
VEGF-A165 in the pellet is spatially uniform and that VEGF-A165 binds reversibly to components
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of the pellet so that

𝑉𝑓 + [𝐵]
𝑘off
⇋
𝑘on

[𝑉𝑏] , (S19)

where 𝑉𝑓 and [𝑉𝑏] are the concentrations of free and bound VEGF-A165 in the pellet, respectively,
and [𝐵] is the concentration of free binding sites in the pellet. [𝑉𝑇 ], the combined concentration
of bound and unbound VEGF-A165 is given by 𝑉𝑓 + [𝑉𝑏]. While bound VEGF-A165 is assumed
not to decay, unbound VEGF-A165 in the pellet decays at a constant rate of 𝜆𝑣

𝑝. This accounts for
the fact that binding to constituents of a pellet, such as sucralfate, may have a stabilising effect on
VEGF-A165 or bFGF. Unbound VEGF-A165 also diffuses across the cornea-pellet boundary. The
molar flux passing through this boundary is given by 𝑘𝑣

𝑝 𝑉𝑓 − 𝑣(𝐿, 𝑡), as in (S18). We further
assume that the concentration of VEGF-A165 at all points immediately outside the pellet are equal
so that the total number of moles of VEGF-A165 lost from the pellet through the boundary per unit
time is given by 𝜎𝑝 𝑘𝑣

𝑝 𝑉𝑓 (𝑡) − 𝑣(𝐿, 𝑡), where 𝜎𝑝 is the surface area of the pellet. Combining
these assumptions, we suppose that the dynamics of VEGF-A165 inside the pellet obeys the following
equations:

𝑑[𝐵]
𝑑𝑡 = −𝑘on 𝑉𝑓 [𝐵] + 𝑘off [𝑉𝑏] , (S20)
𝑑[𝑉𝑏]

𝑑𝑡 = 𝑘on 𝑉𝑓 [𝐵] − 𝑘off [𝑉𝑏] , (S21)
𝑑[𝑉𝑓]

𝑑𝑡 = −𝑘on 𝑉𝑓 [𝐵] + 𝑘off [𝑉𝑏] − 𝜆𝑣
𝑝[𝑉𝑓 ] − 𝜎𝑝𝑘𝑣

𝑝
Ω𝑝

[𝑉𝑓 ] − 𝑣(𝐿, 𝑡) , (S22)
𝑑[𝑉𝑇 ]

𝑑𝑡 = −𝜆𝑣
𝑝[𝑉𝑓 ] − 𝜎𝑝𝑘𝑣

𝑝
Ω𝑝

[𝑉𝑓 ] − 𝑣(𝐿, 𝑡) , (S23)

where we denote the volume of the pellet by Ω𝑝. The total concentration of binding sites, [𝐵0],
remains constant so that [𝐵0] = [𝐵] + [𝑉𝑏]. Following [S19], we assume that reactions (S19) occur
on time-scales that are much faster than those associated with decay and release of VEGF-A165
from the pellet so that

𝑘on 𝑉𝑓 [𝐵] ≈ 𝑘off [𝑉𝑏] . (S24)

Combining this assumption with the definition [𝑉𝑇 ] = 𝑉𝑓 + [𝑉𝑏] and further assuming that
[𝑉𝑏] ≪ [𝐵], i.e. [𝐵] ≈ [𝐵0], for all time, we find that

[𝑉𝑇 ] = [𝑉𝑓 ] 1 + 𝑘on
𝑘off

[𝐵0]
⏟⏟⏟⏟⏟⏟⏟

𝜃𝑣

. (S25)

Here, we have defined the binding constant, 𝜃𝑣 = 1 + 𝑘on
𝑘off

[𝐵0], as in [S19].
Using (S25) to eliminate [𝑉𝑓 ] from (S23), we arrive at the following equation for [𝑉𝑇 ]:

𝑑[𝑉𝑇 ]
𝑑𝑡

= −𝜆𝑣
𝑝

[𝑉𝑇 ]
𝜃𝑣

−
𝜎𝑝𝑘𝑣

𝑝
Ω𝑝

[𝑉𝑇 ]
𝜃𝑣

− 𝑣(𝐿, 𝑡) . (S26)

Furthermore, the boundary conditions for VEGF-A165 in (S18) may now be rephrased in terms of
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[𝑉𝑇 ]:

−𝐷𝑣
𝜕𝑣
𝜕𝑥

(𝐿, 𝑡) = −𝑘𝑣
𝑝 [𝑉𝑇 ]

𝜃𝑣
− 𝑣(𝐿, 𝑡) . (S27)

The resulting model allows us to investigate the effects of altering the release dynamics of
VEGF-A165 from a pellet using physically motivated parameters. Additionally, we can prescribe the
amount of VEGF-A165 released into the cornea over the duration of a simulation. We denote the
initial concentration of VEGF-A165 in the pellet by [𝑉𝑇 ]𝑖𝑛𝑖𝑡 so that

[𝑉𝑇 ] (0) = [𝑉𝑇 ]𝑖𝑛𝑖𝑡 . (S28)

2.9 Nondimensionalisation

We recast the model, (S12)-(S16), in terms of dimensionless variables. Adopting asterisk notation to
denote dimensionless variables, we rescale distance with the approximate pellet-limbus distance, �̂�,
and time with 𝜏 = �̂�2

𝐷𝑣
, so that

𝑥∗ = 𝑥
�̂�

and 𝑡∗ = 𝑡
𝜏

. (S29)

We rescale the dependent variables as

𝑛∗ = 𝑛
𝑛0

, 𝜌∗ = 𝜌
𝜌0

, 𝑚∗ = 𝑚
𝜌0

, 𝑣∗ = 𝑣
𝑉0

, [𝑉𝑇 ]∗ = [𝑉𝑇 ]
𝑉0

, 𝑓∗ = 𝑓
𝐹0

and [𝐹𝑇 ]∗ = [𝐹𝑇 ]
𝐹0

.(S30)

and introduce the following dimensionless parameters:

𝐷∗
𝑣 = 1, 𝐿∗ = 𝐿

�̂�
, 𝑚∗

𝐿 = 𝑚𝐿
𝜌0

 , [𝑉𝑇 ]∗𝑖𝑛𝑖𝑡 = [𝑉𝑇 ]𝑖𝑛𝑖𝑡
𝑉0

 , [𝐹𝑇 ]∗𝑖𝑛𝑖𝑡 = [𝐹𝑇 ]𝑖𝑛𝑖𝑡
𝐹0

 , 𝜎∗ =  𝜎
�̂�

 ,

𝐷∗
𝑓 = 

𝐷𝑓
𝐷𝑣

 , 𝑃 ∗
𝑣 = 𝑃𝑣𝜏

�̂�
 , 𝑃 ∗

𝑓 = 
𝑃𝑓𝜏
�̂�

 , 𝜇∗ =  𝜇
𝐷𝑣

 , 𝜒∗
𝑣 = 𝜒𝑣𝑉0

𝐷𝑣
 , 𝜒∗

𝑓 = 
𝜒𝑓𝐹0
𝐷𝑣

 ,

𝑘𝑣∗
𝑝 = 

𝜏𝑘𝑣
𝑝

�̂�
 , 𝑘𝑓∗

𝑝 = 𝜏𝑘𝑓
𝑝

�̂�
 , 𝜎𝑝 = 

𝜎𝑝

�̂�2
 , Ω∗

𝑝 = 
Ω𝑝

�̂�3
 , 𝜆𝑣∗

𝑝 = 𝜆𝑣
𝑝𝜏 , 𝜃∗

𝑣 = 𝜃𝑣,

𝜆𝑓∗
𝑝 = 𝜆𝑓

𝑝𝜏 , 𝜃∗
𝑓 = 𝜃𝑓 , 𝜆𝑣∗

1 = (𝜆𝑣
1𝜏) , 𝜆𝑓∗

1 = 𝜆𝑓
1𝜏 , 𝛼𝑣∗

0 = 
𝛼𝑣

0𝜏𝜌0
𝑛0

 , 𝛼𝑓∗
0 = 

𝛼𝑓
0𝜏𝜌0
𝑛0

 ,

𝛽∗
1 = (𝛽1𝜌0𝜏) , 𝛽∗

2 = (𝛽2𝑛0𝜏) , 𝛾∗ = (𝛾𝜏) , 𝜅∗ = 𝜅 𝑛0 �̂�
𝜌0

 , 𝑣∗
1
2

= 
𝑣 1

2

𝑉0
 ,

𝑓𝐹𝐺𝐹𝑅∗
1
2

= ⎛⎜
⎝

𝑓𝑓
1
2

𝐹0

⎞⎟
⎠

, �̄�∗ = �̄�𝜌0𝐿 , 𝜆∗
𝑣 = (𝜆𝑣𝜏) , 𝜆∗

𝑓 = 𝜆𝑓𝜏 ,

𝐾𝑣∗
𝐸𝐶 = 

𝐾𝑣
𝐸𝐶𝜏𝜌0
𝑉0

 , 𝐾𝑓∗
𝐸𝐶 = 

𝐾𝑓
𝐸𝐶𝜏𝜌0
𝐹0

 , 𝜙∗ = 𝜙𝜏𝜌0
𝑉0

 and 𝑠∗ = 𝑠.

Substituting with (S29) and (S30) in (S12)-(S16), and exploiting the dimensionless parameters
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defined above, we obtain the following system of dimensionless equations (asterisks are omitted for
clarity of presentation):

𝜕𝑚
𝜕𝑡

= − ⎡
⎢
⎣

⎛⎜
⎝

1 + 𝑠𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

 𝜆𝑣
1𝑣

𝑣 + 𝑣 1
2

 + ⎛⎜
⎝

𝜆𝑓
1𝑓

𝑓 + 𝑓𝑓
1
2

⎞⎟
⎠

⎤
⎥
⎦

𝑚, (S31)

𝜕𝑛
𝜕𝑡

= 𝜕
𝜕𝑥

𝜇 𝜕𝑛
𝜕𝑥

− 𝜒𝑓 𝑛 𝜕𝑓
𝜕𝑥

− 𝜒𝑣 𝑛 𝜕𝑣
𝜕𝑥



+𝛼𝑣
0

⎛⎜
⎝

1 + 𝑠𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

 𝑣
𝑣 + 𝑣 1

2

 𝜌 + 𝛼𝑓
0

⎛⎜
⎝

𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

𝜌 (S32)

−𝛽1 𝑛 (𝜌 + 𝑚) − 2 𝛽2 𝑛2 − 𝛾 𝑛 
𝑣 1

2

𝑣 + 𝑣 1
2

 ⎛⎜
⎝

𝑓𝑓
1
2

𝑓 + 𝑓𝑓
1
2

⎞⎟
⎠

,

𝜕𝜌
𝜕𝑡

= 𝜅 𝜇 𝜕𝑛
𝜕𝑥

− 𝜒𝑓 𝑛 𝜕𝑓
𝜕𝑥

− 𝜒𝑣 𝑛 𝜕𝑣
𝜕𝑥

 − 𝛾 𝜌 
𝑣 1

2

𝑣 + 𝑣 1
2

 ⎛⎜
⎝

𝑓𝑓
1
2

𝑓 + 𝑓𝑓
1
2

⎞⎟
⎠

(S33)

+ ⎡
⎢
⎣

⎛⎜
⎝

1 + 𝑠𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

 𝜆𝑣
1𝑣

𝑣 + 𝑣 1
2

 + ⎛⎜
⎝

𝜆𝑓
1𝑓

𝑓 + 𝑓𝑓
1
2

⎞⎟
⎠

⎤
⎥
⎦

𝑚,

𝜕𝑓
𝜕𝑡

= 𝐷𝑓
𝜕2𝑓
𝜕𝑥2 − 𝜆𝑓 𝑣 − 2 𝜋 �̄� 𝑃𝑓 (𝜌 + 𝑚) 𝑓 − 𝐾𝑓

𝐸𝐶 (𝜌 + 𝑚) ⎛⎜
⎝

𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

, (S34)

𝜕𝑣
𝜕𝑡

= 𝐷𝑣
𝜕2𝑣
𝜕𝑥2 − 𝜆𝑣 𝑣 − 2 𝜋 �̄� 𝑃𝑣 (𝜌 + 𝑚) 𝑣 (S35)

− 𝐾𝑣
𝐸𝐶

⎛⎜
⎝

1 + 𝑠𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

 𝑣
𝑣 + 𝑣 1

2

 (𝜌 + 𝑚) + 𝜙 (𝜌 + 𝑚) ⎛⎜
⎝

𝑓
𝑓 + 𝑓𝑓

1
2

⎞⎟
⎠

,

𝑑[𝐹𝑇 ]
𝑑𝑡

= −𝜆𝑓
𝑝

𝜃𝑓
[𝑉𝑇 ] −

𝜎𝑝𝑘𝑓
𝑝

Ω𝑝
[𝐹𝑇 ]

𝜃𝑓
− 𝑓(𝐿, 𝑡) , (S36)

𝑑[𝑉𝑇 ]
𝑑𝑡

= −
𝜆𝑣

𝑝
𝜃𝑣

[𝑉𝑇 ] −
𝜎𝑝𝑘𝑣

𝑝
Ω𝑝

[𝑉𝑇 ]
𝜃𝑣

− 𝑣(𝐿, 𝑡) . (S37)
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Once more, these equations are subject to the boundary conditions

𝜇 𝜕𝑛
𝜕𝑥

− 𝜒𝑣 𝑛 𝜕𝑣
𝜕𝑥

− 𝜒𝑓 𝑛 𝜕𝑓
𝜕𝑥

= 0, −𝐷𝑓
𝑑𝑓
𝑑𝑥

= −𝑃𝑓 𝑓,

−𝐷𝑣
𝑑𝑣
𝑑𝑥

= −𝑃𝑣 𝑣,

⎫
⎬⎭

𝑥 = 0, (S38)

𝜇 𝜕𝑛
𝜕𝑥

− 𝜒𝑣 𝑛 𝜕𝑣
𝜕𝑥

− 𝜒𝑓 𝑛 𝜕𝑓
𝜕𝑥

= 0, −𝐷𝑓
𝑑𝑓
𝑑𝑥

= −𝑘𝑓
𝑝 [𝐹𝑇 ]

𝜃𝑓
− 𝑓 ,

−𝐷𝑣
𝑑𝑣
𝑑𝑥

= −𝑘𝑣
𝑝 [𝑉𝑇 ]

𝜃𝑣
− 𝑣 ,

⎫
⎬⎭

𝑥 = 𝐿, (S39)

and to the initial conditions

𝑚(𝑥, 0) = 𝑚𝐿𝑒𝑥𝑝 − 𝑥2

2𝜎2  , 𝑛(𝑥, 0) = 0, 𝜌(𝑥, 0) = 0, 𝑣(𝑥, 0) = 0, 𝑓(𝑥, 0) = 0,

[𝐹𝑇 ](0) = [𝐹𝑇 ]𝑖𝑛𝑖𝑡, [𝑉𝑇 ](0) = [𝑉𝑇 ]𝑖𝑛𝑖𝑡. (S40)

3 Parameter value estimation

In this section we discuss our choice of default parameter values, beginning with the scalings for time,
distance and the dependent variables. Following this, we discuss the values of model parameters.
For model parameterisation we focussed on two in vivo scenarios, as noted in the main text:

S2. VEGF-A165 experiments: [𝑉𝑇 ]𝑖𝑛𝑖𝑡 at its default value, [𝐹𝑇 ]𝑖𝑛𝑖𝑡 = 0;
S3. bFGF experiments: [𝑉𝑇 ]𝑖𝑛𝑖𝑡 = 0, [𝐹𝑇 ]𝑖𝑛𝑖𝑡 at its default value.

Setting [𝐹𝑇 ]𝑖𝑛𝑖𝑡 = 0 (S2) allows us to fix parameters associated with VEGF-A165-induced angiogenesis.
With the VEGF-A165 submodel parameters fixed we then consider the second case: [𝑉𝑇 ]𝑖𝑛𝑖𝑡 = 0
(S3).

Due to issues regarding parameter identifiability and the resulting ill-posed nature of the
parameter fitting problem we do not attempt formally to fit the model parameters to the data.
Instead, we base our parameter estimates on published data wherever possible; where appropriate
experimental data are not available, we use physical arguments and previous modelling efforts to
derive approximate values. Where neither of these options are viable, parameter values are manually
tuned such that model simulation results are in good quantitative agreement with the data extracted
from experimental images (Figure 5 in the main manuscript). By employing such a manual tuning
approach we show that our models are able to capture quantitatively the available experimental data
when model parameters are chosen within an acceptable physical range. Fitting our models to the
data by solving the optimisation problem would, at best, not yield parameter values which are more
useful than those which we have arrived at through manual tuning, and, at worst, be misleading.

Table S2 summarises the values of the scaling factors for the independent and dependent variables
used to nondimensionalise our model, while Tables S3-S5 summarise the default model parameter
values and detail sources, where available.
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Scaling parameters

Since pellets are placed at a distance of approximately 1 mm from the limbal vessels, this represents
a natural choice for our length scale, �̂�. The time taken for VEGF-A165 to diffuse a root mean
squared distance of �̂� in one dimension is given by �̂�2

2𝐷𝑣
. However, following Byrne and Chaplain

[S13] , to simplify our nondimensionalisation we use a time-scale of 𝜏 = �̂�2

𝐷𝑣
. Vessel density is scaled

with the initial density of mature vessels at the limbus, 𝑚𝐿 (see Equation S40). The value for 𝑚𝐿 is
estimated by assuming that the limbal vessel density represents a single vessel running perpendicular
to the 𝑥-axis. If Δ𝑧 is the thickness of the cornea, Δ𝑦 is the length along the limbus in which we are
interested and 𝜙 is the tortuosity of the limbal vasculature then we can equate the total length of
limbal vessels using

𝜙 Δ𝑦 = Δ𝑦Δ𝑧

∞


−∞

𝑚𝐿𝑒𝑥𝑝 −𝑥2

2𝜎2  𝑑𝑥. (S41)

Solving and rearranging this equation, we find 𝑚𝐿 = 𝜙√
2 𝜋 𝜎 Δ𝑧

. Assuming a value of 20 μm for 𝜎, the
initial width of the vessel density distribution, and by approximating 𝜙 = 1.1 and the thickness of the
cornea, Δ𝑧 = 100 μm [S5, S6], we calculate 𝑚𝐿 ≈ 2 × 108 m of vessel m−3. Our estimate here is also
in good agreement with the data extracted from experimental images (Section 1). Initial numerical
simulations suggested a convenient scaling factor for VEGF-A165, 𝑉0, to be of the same order of
magnitude as 𝑣 1

2
, the concentration of VEGF-A165 at which EC activation is half-maximal, which

corresponds to the EC50 for VEGFR-2 activation by VEGF-A165. Akeson et al. [S20] estimate
𝑣 1

2
= 650 pM, which is within the range of dissociation constants for VEGF-A165 binding to VEGFR-2

receptors on human colonic ECs reported in Wang et al. [S21]: 600−700 𝑝𝑀 . We use the value for 𝑣 1
2

estimated by Akeson et al. [S20]. For our scaling factor, we fix 𝑉0 = 5 𝑣 1
2

= 3.25 × 10−9 𝑀 , since this
ensures that the maximum scaled value of VEGF-A165 inside the cornea in default simulations is 𝒪(1).
The scaling factors for the sprout tip density, 𝑛0 = 1 × 1012 tips m−3, and bFGF, 𝐹0 = 1 × 10−9 M
are chosen such that the scaled tip density and bFGF concentration are 𝒪(1) in default simulations.

VEGF-A165 submodel parameterisation

Equation (S31), governing the mature vessel length density, contains one additional parameter
associated with VEGF-A165-induced angiogenesis, 𝜆𝑣

1 (the default value of 𝑣 1
2

was discussed above).
𝜆𝑣

1 is difficult to estimate because the term describing dematuration captures many complex bio-
chemical interactions and cellular processes in a simple way. Thus, we estimate a value for 𝜆𝑣

1 by
taking inspiration from a complex biochemical model. Zheng et al. [S9] consider a model of vessel
maturation and dematuration which included VEGF-A, Ang-1, Ang-2, ECs, pericytes, PDGF-B and
a number of corresponding cell-surface receptors. In their model, the activation rate of quiescent
ECs in high Ang-2 conditions is given by 1.25 × 102 per μM bound Ang-2 per hour. Drawing on
evidence from the literature [S22, S23, S24], Zheng et al. use 10−3 μM as the reference concentration
of Angiopoetins and 10−3 μM as the reference concentration of Tie-2 receptors. Thus, for our model
of maturation to be consistent with that of Zheng et al., we expect our maximal rate of dematuration,
𝜆𝑣

1 to take on a value of ∼ 0.1 ℎ−1. For our simulations, we choose a default value of 𝜆𝑣
1 =0.156 h−1.

The parameter 𝜇 is the random motility coefficient for tip cells. A number of experiments have
been performed which allow us to estimate the random motility of individual ECs. For example, by
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Scaling
parameter

Description Value [units]

�̂� Length scale. Approximate distance between limbal vessels and pellet. 0.001 [m]
𝜏 Time scale. Time for VEGF-A165 to diffuse from the pellet to limbal

vessels.
5.13 [h]

𝑉0 Reference value for VEGF-A165 concentration. 3.25 × 10−9 [M]
𝐹0 Reference value for bFGF concentration. 1 × 10−9 [M]
𝑛0 Reference value for sprout tip density. 1 × 1012 [tips m−3]
𝜌0 Reference value for (mature and immature) vessel length density. 2 × 108

[m of vessels m−3]

Table S2: Scaling parameters for the model, (S31)-(S40)

fitting mathematical models to experiments involving epidermal wound healing in vivo, Sherratt
and Murray [S25] estimate 𝜇 = 2.46 × 10−11 − 3.6 × 10−9 m2h−1, while Stokes et al. [S26] estimate
𝜇 = 2.56 ± 0.97 × 10−9 m2h−1 for individual ECs in vitro. Meanwhile, Kouvroukoglou et al. [S27]
study individual EC migration on different surfaces and find 𝜇 = 3.5 × 10−10 − 1.15 × 10−9 m2h−1.
However, as noted, these studies consider individual ECs and we expect tip cells to be less motile
than isolated ECs due to cell-cell interactions with trailing ECs [S28]. In their models of corneal
angiogenesis, Byrne and Chaplain [S13] approximate 𝜇 = 10−3𝐷𝑣 ≈ 10−11 − 10−10 m2h−1, as does
Addison-Smith [S29]. In their composite hybrid model of vascular tumour growth, Owen et al. [S30]
use 𝜇 = 6 × 10−11 m2h−1. We also find that a value of 𝜇 = 6 × 10−11 m2h−1 provides a good fit
to our experimental data. The parameter 𝜒𝑣, the chemotaxis coefficient for tip cells, quantifies
the strength of the motile response of tip cells to gradients of VEGF-A165. Stokes et al. [S31] use
an under-agarose assay to estimate 𝜒𝑣 = 936 ± 270 m2h−1M−1 for individual ECs in gradients of
acidic FGF, where concentrations of acidic FGF were around 10−10 M. Again, we expect tip cells to
be less motile than isolated ECs. Both Ballding and McElwain and Byrne and Chaplain, guided
by the experiments of Stokes et al., estimate 𝜒𝑣 = 𝐷𝑣

𝑉0
to provide results in qualitative agreement

with experimental data [S32]. Whereas Addison-Smith uses a smaller value 𝜒𝑣 = 0.125 × 𝐷𝑣
𝑉0


to provide results in qualitative agreement with an alternative set of experiments [S33]. We use
𝜒𝑣 = 1.837 m2h−1M−1 to produce results that are consistent with our experimental data. Given our
scalings, this value is similar in magnitude to that used by Addison-Smith.

The parameters 𝛼𝑣
0, 𝜅, 𝛽1, 𝛽2 and 𝛾 determine the rates of production and destruction of tip

cells (and immature vessels) in the presence of VEGF-A165. We estimate 𝛼𝑣
0 by assuming that the

maximal rate of tip production is limited by the doubling time of ECs. The typical doubling time of
a proliferating cell is about 20 hours, corresponding to a doubling rate of 𝑘𝑑𝑜𝑢𝑏𝑙𝑒 = 0.035 h−1. We
also assume that only one in every two ECs may become a tip cell due to Delta-Notch mediated
lateral inhibition [S34]. We estimate the maximal rate of tip production per unit vessel length
density by further assuming that an EC covers an area of 260 μm2 [S19, S35] of a vessel wall, and
that vessels are on average 10 μm in diameter (see discussion on page 18). Then, assuming that
vessels can be approximated by cylinders, we estimate 𝜈 = 1.2 × 105 ECs per metre of vessel. Then we
estimate 𝛼𝑣

0 = 0.5 × 0.035 × 1.2 × 105 = 2100 tips per hour per metre of vessel. In practice, numerical
simulations reveal that slightly larger values of 𝛼𝑣

0 give results which are in better agreement with
our experimental data. Thus, we choose 𝛼𝑣

0 = 2600 tips per hour per metre of vessel. Given that tip
formation and vascular growth may occur in the absence of EC proliferation [S36], this value is still
reasonable.
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An order of magnitude estimate for 𝛾, the maximal rate of vessel regression, can be obtained
from results reported in Cao et al. [S10]. They observed complete regression of VEGF-A-
induced neovasculature in cornea assay experiments within 7 days after the source of VEGF-
A was removed. Consistent with their observations, we fix 𝛾 = 2.27 × 10−3 h−1 since this
also provides a good fit to our experimental data. Values for 𝛽1 and 𝛽2, the rates of tip-to-
vessel and tip-to-tip anastomosis, respectively, are difficult to estimate. We fix 𝛽1 = 0.156 ×
10−9 anastomosis events h−1 (m of vessel m−3)−1 (cells m−3)−1 m−3 and 𝛽2 = 1 × 10−15 anastomosis
events h−1 (cells m−3)−2 m−3. Note that 𝛽∗

1
𝛽∗

2
≈ 30, reflecting the fact that we expect tip-to-tip anas-

tomosis events to be rarer than tip-to-vessel anastomosis events. 𝜅 quantifies the length of immature
vessel produced in the plane perpendicular to the 𝑥-direction when a sprout tip moves in the 𝑥
direction. Motion along the 𝑥-axis corresponds to 𝜅 = 1, while larger values of 𝜅 indicate increasing
amounts of lateral movement. We assume that 𝜅 = 3.15 metre of vessel cell−1 m−1.

The parameter 𝐷𝑣 is the diffusion coefficient for VEGF-A165 in the cornea. By monitoring
the intensity of fluorescently labelled VEGF-A165, Chen et al. [S37] estimate the diffusivity of
VEGF-A165 in Matrigel to be 2.52 × 10−7 m2h−1. Meanwhile, MacGabhann[S38] and Ambrosi et al.
[S39] propose estimates of 𝐷𝑣 ≈ 10−7 m2h−1, having used the Einstein-Stokes formula. Here, we use
a value of 𝐷𝑣 similar to that given by Chen et al. as default: 𝐷𝑣 = 1.95 × 10−7 m2h−1. Chen et al.
and Serini et al. [S40] estimate 𝜆𝑣, the natural decay constant for VEGF-A165, to be 𝜆𝑣 = 0.8316 h−1

and 𝜆𝑣 = 0.65 h−1, respectively, in Matrigel. As a default value, we fix 𝜆𝑣 = 0.8 h−1.
𝐾𝑣

𝐸𝐶 is the maximum rate of reduction in molar VEGF-A165 concentration per unit vessel
length density due to VEGFR-2 binding. Wang et al. [S21] estimate the average number of
VEGFR-2 receptors per cell to be approximately 230000, so that, at any time, at most 230000 / 𝑁𝐴 =
3.82×10−19 moles of VEGF-𝐴165 can bind to VEGFR-2 receptors on an EC (where 𝑁𝐴 is Avogadro’s
number). MacGabhann and Popel [S41] estimate the instantaneous internalisation rate of VEGF-A in
human umbilical vein endothelial cells (HUVECs) as 1.548 h−1 using data from [S42], and as 1.008 h−1

using data from [S21]. Thus, if VEGFR-2 receptor numbers remain constant on the surface of a cell
then we expect ECs to uptake 3.82×10−19×1.008 ≈ 4×10−19−3.82×10−19×1.548 ≈ 6×10−19 moles
of VEGF-A165 maximally per hour. In practice, only a fraction of the VEGFR-2 receptors are ever
present on the surface of the cell since others are being internalised and/or being recycled. However,
since we are not modelling receptor kinetics directly we estimate the uptake rate of endothelial cells
as 4×10−22 moles h−1 cell−1 litre−1 m3. Then, using our estimate of 1.2×105 ECs per metre of vessel,
as before, 𝐾𝑣

𝐸𝐶 =1.2 × 105 × 4 × 10−22 = 4.8 × 10−17 moles h−1 (m of vessel)−1 litre−1 m3

Fu and Shen [S43] calculate the permeability of vessels to 𝛼-lactalbumin and albumin when
exposed to 1 nM VEGF-A165. 𝛼-lactalbumin and albumin are molecules with Stokes radii of 20.1 and
35.0 Angstroms, respectively, similar to that of VEGF-A165 (30.2 Angstroms). They find the peak
permeability of vessel walls to be 6.12 × 10−4 m h−1 for 𝛼-lactalbumin and 1.332 × 10−4 m h−1 for
albumin in 1 nM VEGF-A165 and 1.98 × 10−4 m h−1 for 𝛼-lactalbumin and 2.448 × 10−5 m h−1 for
albumin when VEGF-A165 is not applied. In their paper, Stefanini et al. [S44] review experimental
papers pertaining to the permeability of vasculature to VEGF-A. They conclude that vascular
permeability in the presence of VEGF-A is likely to lie between 1.44 × 10−6 m h−1 and 1.44 ×
10−3 m h−1 and estimate 𝑃𝑣 to be 1.44 × 10−6 m h−1 in normal tissues, where levels of VEGF-A are
low. We use a default value of 𝑃𝑣 = 3 × 10−4 m h−1 in our simulations. In the absence of VEGF-A,
Tsai et al. [S45] find the average diameters of in vivo and histological microvessels in the murine
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brain to be 3.97 μm and 4.11 μm, respectively. We expect diameters to be larger than this in the
presence of VEGF-A165. On the other hand, Peebo et al. [S46] measure the limbal vessel diameter
in rats and find them to vary between 9 − 12 μm on day 1 and 25 − 30 μm at their peak diameter in
an inflammatory corneal angiogenesis experiment. Thus, we fix �̄� = 5 μm for the radius of vessels.

In the absence of suitable experimental data, we assume 𝜃𝑣 = 54.4 , 𝑘𝑣
𝑝 = 2.94 × 10−7 m h−1 and

𝜆𝑣
𝑝 = 0.8 h−1 since these values yield results in good agreement with our experimental data. In

particular, we assume that the decay rate of free VEGF-A165 in the pellet is the same as that in
the cornea. The surface area, 𝜎𝑝, and the volume, Ω𝑝, of the cylindrical pellets can be calculated
since their height is 0.06 mm and their radius 0.3 mm. Our default simulations involve pellets
containing 300 ng of VEGF-A165, which has a molecular weight of approximately 45 kDa. Given the
volume of the pellet, we estimate the initial molar concentration of VEGF-A165 in the pellet to be
3.93 × 10−4 M.

Finally, for VEGF-A165 experiments an estimate for the pellet-limbus distance, 𝐿 = 1.04 mm,
was obtained from the image processing steps outlined in Section 1.

bFGF-induced angiogenesis parameterisation

Parameters associated with both VEGF-A165- and bFGF- induced angiogenesis (Table S3) and
shown to provide a good fit to data arising from VEGF-A165 experiments (see Figure 5a in the
main manuscript) were considered fixed when estimating parameters associated with bFGF-induced
angiogenesis.

Other parameters associated with bFGF-induced angiogenesis which may be estimated from
published data were mainly associated with bFGF transport, degradation and uptake. Bikfalvi
et al. [S47] estimate 𝑓𝑓

1
2

= 42.2 ± 3.8 pM. They also estimate the number of FGFR binding sites
per human omental microvascular EC to be 70000 ± 6000 sites per cell. Meanwhile, Moscatelli
[S48] estimate 6000 − 17000 FGFR receptors per bovine capillary EC. Moscatelli [S48] also finds
the dissociation constant of FGFR to be ∼ 20 pM. The internalisation rate of the bFGF/FGFR
complex is 4.68 h−1 [S49, S50]. We use the estimates given by Bikfalvi et al. [S47] to parameterise
our model; we take 𝑓𝑓

1
2

=4.22 pM and assume 70000 FGFR-1 binding sites per EC. Maximally,
therefore, 1.16 × 10−19 moles of bFGF can bind to FGFR receptors on ECs at any one time. Thus,
assuming that the number of receptors on the surface of a cell remains constant, a cell can uptake
maximally 5.4 × 10−19 moles of bFGF per hour via FGFR-1 molecules. Using our estimate of
1.2 × 105 ECs per metre of vessel, as in Section 3, we estimate initially 𝐾𝑓

𝐸𝐶 = 1.2 × 105 × 5.4 ×
10−22 = 6.48 × 10−17 moles h−1 (m of vessel)−1 litre−1 m3. However, in default simulations we use a
value of 2.16 × 10−17 moles h−1 (m of vessel)−1 litre−1 m3 for 𝐾𝑓

𝐸𝐶 since this provides a better fit to
experimental data whilst still being consistent with values found in the literature.

Tong and Yuan [S19] follow Boyer and Hsu [S51], estimating the diffusion coefficient of bFGF as
𝐷𝑓 = 1.92 × 10−7 m2h−1, while Filion and Popel [S50] estimate the diffusion coefficient for bFGF
to be 7.92 × 10−7 m2h−1 at 37𝑜𝐶 using the Einstein-Stokes formula. For our simulations we follow
Tong and Yuan [S19] and fix 𝐷𝑓 = 1.92 × 10−7 m2h−1. Westall et al. [S52] investigate the activity
of FGF at different pH levels, finding the half-life of FGF, 𝜆𝑓 , to vary between a few hours and a day
(or so) and Sperinde and Nugent [S53] provide an estimate for the half-life of bFGF inside the cell of
18 − 24 hours. We fix 𝜆𝑓 = 0.04 h−1, corresponding to a half-life of approximately 18 hours. Fu and
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Shen [S43] estimate the permeability of vessels to 𝛼-lactalbumin to be (1.98 ± 0.216) × 10−4 m h−1.
Since 𝛼-lactalbumin has a similar Stokes’ radius (20.1 Angstroms) to bFGF (14.5 Angstroms [S54]),
we fix 𝑃𝑓 = 1 × 10−4 m h−1 for the permeability of vessels to bFGF.

Default simulations mimic experiments involving cylindrical pellets of radius 0.3 mm and thickness
0.06 mm which contain 15 ng bFGF (18 kDa). Thus, we estimate the initial molar concentration of
bFGF in the pellet to be [𝐹𝑇 ]𝑖𝑛𝑖𝑡 = 4.92 × 10−5 M. In the absence of suitable experimental data, we
assume 𝜃𝑓 = 50 , 𝑘𝑓

𝑝 = 3.95 × 10−7 m h−1 and 𝜆𝑓
𝑝 = 𝜆𝑓 = 0.04 h−1 since these values yield results in

good agreement with our experimental data (Figure 5b in the main manuscript).
Parameters which remain to be estimated are 𝜆𝑓

1 , 𝜒𝑓 , 𝛼𝑓
0 , 𝑠 and 𝜙. Pepper and Mandriota [S18]

report a fold-increase in total protein levels of VEGFR-2 when ECs are exposed to bFGF (5.3 ×
10−4 M ⋙ 𝑓𝑓

1
2
) of between 2 and 3.5. Thus, here, we set 𝑠 = 1, assuming a maximal fold-increase of 2.

In the absence of appropriate experimental data, we set 𝜙, the maximal rate of increase in VEGF-A165
concentration per unit vessel length density, to 1.2×10−17 moles h−1 (m of vessel)−1 litre−1 m3, which
is the same order of magnitude as 𝐾𝑣

𝐸𝐶 , the maximum rate of VEGF-A165 removal due to its binding
with VEGFR-2 on ECs.

Estimates for 𝜆𝑓
1 , 𝜒𝑓 and 𝛼𝑓

0 were first obtained by assuming no VEGF-A165/bFGF crosstalk, that
is 𝑠 = 𝜙 = 0. In this case, bFGF-induced angiogenesis is decoupled from the VEGF-A165 submodel,
and 𝜆𝑓

1 = 0.0343 h−1, 𝜒𝑓 = 3.264 m2 h−1 M−1, and 𝛼𝑓
0 = 715 tips h−1 per m of vessel were found to

provide a good fit to experimental data. When default vaules of 𝑠 and 𝜙 are used 𝜆𝑓
1 , 𝜒𝑓 and 𝛼𝑓

0
must be modulated to ensure that model results remain commensurate with the experimental data
(Figure 5b in the main manuscript). In particular, in our model, in the absence of a VEGF-A165
pellet, VEGF-A165 is still produced by ECs, primarily around the vascular wavefront which is
exposed to significant levels of bFGF. Initially, this leads to increased dematuration. To ensure
that model results remain commensurate with the experimental data this additional dematuration
due to VEGF-A165 must be balanced by a reduction in the rate of dematuration due to bFGF.
Thus, the value of 𝜆𝑓

1 is lower than estimated for the case where 𝑠 = 𝜙 = 0. Similarly, VEGF-A165
production at the front causes increased sprouting, which must be compensated for with a reduction
in the sprouting rate due to bFGF, 𝛼𝑓

0 . The VEGF-A165 produced by ECs around the vascular front
diffuses, decays and is taken up by the vasculature, producing a small negative VEGF-A165 gradient
moving from the front to the pellet (and from the front to the limbus). Thus, sprout tip closest to
the leading edge experience a chemotactic force directed away from the pellet, reducing the speed of
migration of the vascular front. To compensate for this 𝜒𝑓 is increased w.r.t. the estimated value
when 𝑠 = 𝜙 = 0. The default values for 𝜆𝑓

1 , 𝜒𝑓 and 𝛼𝑓
0 when default values for 𝑠 and 𝜙 are used are

presented in Table S5.
For bFGF experiments an estimate for the pellet-limbus distance, 𝐿 = 1.12 mm, was obtained

from the image processing steps outlined in Section 1. A value of 𝐿 = 1.12 mm is also assumed for
experiments in which VEGF-A165 and bFGF are administered in combination.

3.1 Parameterising alternate model variants

To determine the impact of VEGF-A165/bFGF crosstalk on the angiogenic response of the corneal
vasculature we performed in silico knock-out experiments, in which different crosstalk terms were
eliminated. The four model variants we consider are summarised in Table 1 in the main manuscript.
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Parameter Description Default value and
units

Non-
dimensional

value

Sources

𝜎 Initial width of limbal
vessel density distribution.

20 × 10−6 [m] 0.02 -

𝑚𝐿 Maximum density of
mature vessel length
density at the limbus

initially.

2 × 108

[m of vessel m−3]
1 -

𝜇 Random motility coefficient
for sprout tips.

6 × 10−11

[m2 h−1]
3.08 × 10−4 [S13, S25, S26, S27, S29,

S30].
𝛽1 Rate of tip-to-vessel

anastomosis per unit vessel
length density per unit tip
density per unit volume.

0.156 × 10−9

[anastomosis
events h−1 m−3

(m of vessels m−3)−1

(cells m−3)−1]

0.16 -

𝛽2 Rate of tip-to-tip
anastomosis per unit tip
density squared per unit

volume.

1.03 × 10−15

[anastomosis
events h−1 m−3

(cells m−3)−2]

0.0053 -

𝛾 Maximal rate of regression
of ECs (vessels).

2.27 × 10−3 [h−1] 1.17 × 10−2 [S10]

𝜅 Parameter quantifying the
length of vessel left behind

in a unit volume after a
sprout tip moves out of

that unit volume.

3.15 [m of vessel
cells−1 m−1]

15.76 -

𝑠 Maximal fold increase in
VEGFR-2 receptors

induced by bFGF binding
to FGFR-1.

1 1 [S18]

𝜙 Maximal rate of increase in
VEGF-A165 concentration
due to bFGF binding to

FGFR-1 per unit EC
density.

1.2 × 10−17

[moles of VEGF165
h−1 (m of vessel)−1

litre−1 m3]

3.79 -

�̄� Average radius of vessels in
cornea.

5 × 10−6 [m] 1 [S45, S46]

Ω𝑝 Volume of pellet. 1.7 × 10−11 [m3] 1.7 × 10−2 Hoffmann-La Roche,
Penzberg.

𝜎𝑝 Surface area of pellet. 6.79 × 10−7 [m2] 0.679 Hoffmann-La Roche,
Penzberg.

Table S3: List of parameters which span both submodels of VEGF-A165- and bFGF-induced
angiogenesis, (S31)-(S40).

Simulations in which bFGF-induced VEGF-A165 production is neglected correspond to parameter-
isations where 𝜙 = 0. For those in which bFGF-induced VEGFR-2 upregulation is neglected we
fix 𝑠 = 0. Each variant is parameterised so that it is quantitatively consistent with the data from
bFGF-induced angiogenesis experiments (Figure 5b in the main manuscript). Modifying 𝜆𝑓

1 , 𝛼𝑓
0 and

𝜒𝑓 was sufficient to provide good fits to the experimental data (all other parameter values were held
fixed at the values given in Tables S3-S5). For each variant, the fold changes in these parameter
values (w.r.t. those stated in Table S5) are shown in Table S6.
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Parameter Description Default value
and units

Non-
dimensional

value

Sources

𝜆𝑣
1 Maximal rate of vessel

dematuration.
0.156 [h−1] 0.8 [S9]

𝜒𝑣 Chemotaxis coefficient for
sprout tips to VEGF-A165.

1.837
[m2 h−1 M−1]

0.0306 [S12, S13, S29, S31].

𝛼𝑣
0 Maximum rate of

VEGF-A-induced tip
production per length of

vessel.

2600
[tips h−1

(m of vessel)−1]

2.668 -

𝐷𝑣 Diffusion constant for
VEGF-A165 in cornea.

1.95 × 10−7

[m2h−1]
1 [S37, S38, S39].

𝜆𝑣 Natural decay constant of
VEGF-A165.

0.8 [h−1] 4.105 [S37, S40].

𝐾𝑣
𝐸𝐶 Maximum rate of reduction

in molar 𝑉 𝐸𝐺𝐹 − 𝐴165
concentration per unit EC
density due to VEGFR-2

binding.

4.8 × 10−17

[moles of VEGF165
h−1 (m of vessel)−1

litre−1 m3]

15.16 [S21, S41, S42].

𝑣 1
2

Concentration of
VEGF-A165 at which

VEGFR-2 receptors are half
occupied.

6.5 × 10−10 [M] 0.02 [S20, S21]

𝑃𝑣 Permeability of corneal
vasculature to VEGF.

3 × 10−4 [m h−1] 1.54 [S43, S44].

𝜃𝑣 Binding constant. 54.4 54.4 -
𝑘𝑣

𝑝 Effective permeability of the
cornea-pellet boundary.

2.94 × 10−7

[m h−1]
1.51 × 10−3 -

𝜆𝑣
𝑝 Natural decay constant of

VEGF-A165 in the pellet.
0.8 [h−1] 4.105 Assume 𝜆𝑝 = 𝜆𝑣.

[𝑉𝑇 ]𝑖𝑛𝑖𝑡 Initial concentration of
VEGF-A165 in pellet.

3.93 × 10−4 [M] 1.2092 × 105 Hoffmann-La Roche,
Penzberg.

Table S4: List of parameters associated with VEGF-A165-induced angiogenesis submodel only.

4 Mathematical model implementation

Equations (S31)-(S40) were solved using the method of lines. The equations were first discretised in
space using central (finite) difference approximations. This reduces the model to a system of ODEs
in time which we solved using MATLAB’s inbuilt routine ode15s, a variable time-step, variable-order
solver for stiff problems [S55]. We set the maximum order of the solver to one to ensure numerical
stability. MATLAB code for reproducing the results from model simulations is available at [S7].

5 Parameter sensitivity analysis

We may use our computational model to investigate how the system responds to changes in a single
parameter. To aid this analysis it is convenient to define several metrics which characterise the
vascular density profiles. These summary statistics are the maximum amplitude of the vascular
density profile (disregarding the limbal vasculature); the location of the vascular front, defined as
the location at which the vascular density becomes half-maximal (again disregarding the limbal
vasculature); and the area under the vessel density curve, which is representative of the total length
of vessels in the cornea (see Figure S2).

Figure S3 summarises the results of our local parameter sensitivity analysis. We vary one
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Parameter Description Default value
and units

Non-
dimensional

value

Sources

𝜆𝑓
1 Maximal rate of

FGF-induced dematuration.
0.0187 [h−1] 0.096 [S9].

𝜒𝑓 Chemotactic sensitivity of
sprout tips to bFGF.

3.72
[m2 h−1 M−1]

0.0191 As in Table S4.

𝛼𝑓
0 Maximal rate of

FGF-induced tip production
per unit vessel length.

179
[tips h−1 per
m of vessel]

0.1833 -

𝐷𝑓 Diffusion constant for bFGF
in cornea.

1.92 × 10−7

[m2h−1]
0.9853 [S19, S50, S51]

𝜆𝑓 Natural decay constant of
bFGF.

0.04 [h−1] 0.205 [S52, S53]

𝐾𝑓
𝐸𝐶 Maximum rate of reduction

in molar 𝑏𝐹𝐺𝐹
concentration per unit EC

density due to FGFR
binding.

2.16 × 10−17

[moles of bFGF
h−1 (m of vessel)−1

litre−1 m3]

22.168 [S47, S49, S50].

𝑓𝑓
1
2

Concentration of bFGF at
which occupation of FGFR
receptors is half-maximal.

4.22 × 10−11 [𝑀] 0.0422 [S47].

𝑃𝑓 Permeability of corneal
vasculature to bFGF.

1 × 10−4 [m h−1] 0.513 [S43].

𝜃𝑓 Binding constant. 50 50 -
𝑘𝑓

𝑝 Effective permeability of the
cornea-pellet boundary to

bFGF.

3.95 × 10−7

[m h−1]
2.028e-03 -

𝜆𝑓
𝑝 Natural decay constant of

bFGF in the pellet.
0.04 [h−1] 0.205 Assume 𝜆𝑓

𝑝 = 𝜆𝑓.

[𝐹𝑇 ]𝑖𝑛𝑖𝑡 Initial concentration of
bFGF in pellet.

4.92 × 10−5 [M] 4.92 × 104 Hoffmann-La Roche,
Penzberg.

Table S5: List of additional parameters required for the simulation of bFGF-induced angiogenesis.

Figure S2: Summary statistics for vascular density profiles. We characterise vessel density profiles
using the location of the vascular front, the maximum amplitude of the neovascular wavefront and
the area under the vessel density curve.
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Parameter Fold increase in parameter value w.r.t. default values
Variant 1 Variant 2 Variant 3 Variant 4 (Default)

𝜆𝑓
1 1.84 2.00 1.84 1

𝛼𝑓
0 4.00 1.19 4.00 1

𝜒𝑓 0.88 1.04 0.88 1

Table S6: Parameter modifications for the four variants of our model, (S31)-(S40). For each variant
𝜆𝑓

1 , 𝛼𝑓
0 and 𝜒𝑓 are changed w.r.t. their default values (Table S5) to ensure that the simulation

results remain faithful to the data arising from experiments in which angiogenesis is induced by
bFGF pellets only. All fold changes are correct to 2 d.p.

parameter at a time, keeping all others fixed at their default values. We increase/decrease the value
of each parameter by 5%, and simulate the model for each choice of parameter values. We use the
simulation results to calculate a central difference approximation to the normalised sensitivities of
our chosen summary statistics. For example, we calculate the normalised sensitivity of the area
under the vessel density curve, 𝐴, to parameter, 𝑝 as

normalised sensitivity = 𝑝0
𝐴(𝑝0)

𝜕𝐴
𝜕𝑝


𝐪𝟎

≈ 𝑝0
𝐴(𝑝0)

𝐴(𝑝0 + Δ𝑝0) − 𝐴(𝑝0 − Δ𝑝0)
2Δ𝑝0

,

where the subscript, 𝐪𝟎, indicates that the difference is calculated around the point 𝐪𝟎 in parameter
space. We present the normalised sensitivity analysis for the vascular front location (Figure S3a), the
maximum amplitude of the vascular wavefront (Figure S3b) and the area under the vessel density
curve (Figure S3c) on days 1, 3 and 5 of dimensional simulation time to illustrate how the sensitivity
of the system to different parameters changes over time. Such local sensitivity analysis techniques
are useful for identifying trends and also for uncovering potential weaknesses in models. That is, the
analysis can help convince us that our model is behaving reasonably. For instance, initially increases
in 𝐷𝑣 lead to increases in tip migration. This is because increasing 𝐷𝑣 exposes the limbal vessels to
increased levels of VEGF-A165 at early times, which promotes increased dematuration and allows for
migration towards the pellet at an earlier time than if 𝐷𝑣 were less. Meanwhile, at later time-points,
model behaviour is dominated by other effects. Namely, on days 3 and 5, increases in 𝐷𝑣 increase
the maximum amplitude of the vessel density (Figure S3b), and reduce the migration rate of sprout
tips (Figure S3a). This behaviour can be explained as follows. Increases in 𝐷𝑣 increase VEGF-A165
levels across the model domain and decrease its spatial gradient, promoting tip production and
reducing the chemotactic stimulus, respectively.

Our sensitivity analysis indicates which parameters may significantly influence the outcomes of
our model simulations. Notably, model outputs appear to be most sensitive to changes in parameters
affecting VEGF-A165 availability (e.g. 𝐿, 𝐷𝑣, 𝜆𝑣, 𝜃𝑣, 𝑘𝑣

𝑝, 𝜆𝑣
𝑝 and [𝑉 ]𝑖𝑛𝑖𝑡

𝑡 ) and the response of ECs to
VEGF-A165 (e.g. 𝜒𝑣, 𝛼𝑣

0 and 𝜅). The model predicts, in particular, that the neoangiogenic response
of the limbal vessels is highly sensitive to 𝐿, the distance between the pellet and the limbal vessels,
with our simulation results being approximately twice as sensitive to variations in 𝐿 than to any
other parameter. This is as discussed in the main manuscript.

6 Numerical convergence

The accuracy of the numerical solutions is sensitive to the resolution of the spatial discretisation.
Figure S4 shows how the location of the vascular front changes as the number of spatial nodes is
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(a) Normalised sensitivity of the location of the advancing vascular wavefront, 𝑑.

(b) Normalised sensitivity of the amplitude of the advancing vascular wavefront, 𝑎.

(c) Normalised sensitivity of the area under the vascular density curve, 𝐴.

Figure S3: Normalised sensitivity of model output summary statistics in response to local changes
in parameter values.
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increased when VEGF-A165-induced angiogenesis is simulated using default parameter values. As the
resolution of the spatial mesh is increased, sprout tips decrease their rate of migration. The distance
that the tips migrate converges to a finite value as the number of nodes is increased. The amplitude
of the vascular wavefront also converges to a finite value as the number of nodes is increased. We
use a spatial grid with 300 nodes as default for all simulations since this provides a good level of
accuracy whilst producing results within reasonable time-scales.

Figure S4: As the number of spatial nodes is increased the rate of migration of sprout tips decreases,
converging on a finite value.
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