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ensemble-averaging approach [5, 8], except that the
momentum exchange and mass transfer source terms
are directly obtained from the NDF description of the
particle phase.
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Synonyms

Morphogenesis; Self-organization

Glossary

Diffusion-driven instability The mechanism via
which chemical patterns are created from an
initially uniform field due to the destabilizing action
of diffusion.

Morphogenesis The generation of structure and
form in an embryo.

Morphogen A chemical that influences the differen-
tiation of cells during embryogenesis.

Short Definition

The emergence of global spatiotemporal order from
local interactions during embryonic development.

Description

Development is overflowing with examples of self-
organization, where local rules give rise to complex
structures and patterns which, ultimately, bring about
the final body structure in multicellular organisms. Un-
derstanding the mechanisms governing and regulating
the emergence of structure and heterogeneity within
cellular systems, such as the developing embryo, rep-
resents a multiscale challenge typifying current mathe-
matical biology research.

Classical Models
Classical models in the field consist mainly of sys-
tems of partial differential equations (PDEs) describing
concentrations of signaling molecules and densities of
various cell species [8]. Spatial variation, arising from
diffusion/random motion and a variety of different
types of directed motion (for example, due to chemical
or adhesion gradients), is represented through the use
of different types of flux terms, and chemical reactions,
cell proliferation and cell death through source terms
which are polynomial and/or rational functions. The
major advantages of using such types of models lie in
the wealth of analytical and numerical tools available
for the analysis of PDEs. For simple systems, exact
analytical solutions may be possible and, where they
are not, separation of space and time scales or the
exploitation of some other small parameter enables the
use of multiscale asymptotic approaches which give
excellent insight into system behavior under different
parameter regimes [3]. As the number of model com-
ponents becomes too unwieldy or the interactions too
complex for such approaches, increasingly sophisti-
cated computational methods allow accurate numerical
approximations to be calculated over a wide range of
parameter space.
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Pattern Formation and Development, Fig. 1 An illustration
of Wolpert’s “French Flag” model [15]. A concentration gra-
dient of a morphogen induces subsequent cell differentiation
according to thresholds in concentration with cells experiencing
concentrations above the highest threshold becoming red, cells
between thresholds becoming white, and cells below the lower
threshold becoming blue

Morphogen Gradient Models
Wolpert [15] proposed one of the first mechanisms
for providing positional information by a morphogen
gradient with his “French Flag” model. In the model,
each cell in a field has potential to be either blue,
white, or red. When exposed to a concentration gra-
dient of morphogen, arising from the combination of
production at a localized source, diffusion, and decay,
each cell interprets the information from the con-
centration profile by varying its response to different
concentration thresholds of morphogen: Cells become
blue, white, or red according to their interpretation of
the information – see Fig. 1 for an illustration. Appli-
cations of Wolpert’s model are still used in a number
of fields, including whole organism scale modeling of
Drosophila patterning [13].

Turing Reaction-Diffusion Models
Turing’s seminal work [12] proposed a mechanism
via which a field could organize without any external
cue from the environment. Given a system consisting
of two or more chemicals (morphogens), which react
according to certain rules, and diffuse at different rates
throughout a field, spontaneous patterns in chemical
concentration may arise as diffusion destabilizes the

spatially uniform steady state of the system. This is
known as a diffusion-driven instability and subsequent
cell differentiation is then assumed to arise much in
the same way postulated by Wolpert except that here,
typically, cells respond to one threshold instead of mul-
tiple thresholds. Applications of the Turing model to
patterning during development abound, and potential
candidates for Turing morphogens include: (1) Nodal
and Lefty in the amplification of an initial signal of
left–right axis formation and zebrafish mesoderm cell
fates; (2) Wnt and Dkk in hair follicle formation; (3)
TGF-ˇ as the activator, plus an unknown inhibitor, in
limb bud morphogenesis [1].

General, necessary and sufficient, conditions for a
Turing instability on an n-dimensional spatial domain
are presented in the literature for the two-component
system and can be found in most textbooks, see for
example [9], but the analysis for more than two
chemicals is still an open question. Methods for the
analysis of Turing systems on finite domains start by
linearizing around a spatially homogeneous steady
state and examining the behavior of the discrete spatial
Fourier modes as one of the model parameters is
varied. Asymptotic techniques, such as the method of
multiple scales, and the Fredholm alternative are used
to examine the exchange of stability of bifurcating
solution branches in a small neighborhood of the
bifurcation point, and may be used to distinguish
the types of patterns that arise. Figure 2 illustrates
the patterns that may arise in such a model in two
spatial dimensions.

Turing’s postulation has stimulated vast amounts
of theoretical research into examining the finer detail
of the Turing model for patterning, for example: (1)
characterization of the amplitude equation and possible
bifurcations in terms of group symmetries of the under-
lying problem being offered as an alternative approach
to the weakly nonlinear analysis; (2) many results
have been derived on the existence and uniqueness of
localized patterns, such as spikes, that arise in certain
Turing models; (3) the development of sophisticated
numerical methods for solving Turing models on a
variety of surfaces and investigating bifurcation behav-
ior. For a comprehensive guide to the analytical and
numerical methods used to investigate Turing models,
see [14] and the references therein. The model has been
shown to be consistent with many observed pattern
formation processes and to also yield predictions that
agree with experimental manipulations of the system.
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Pattern Formation and Development, Fig. 2 Results from
numerical simulation of a Turing reaction-diffusion model in two
dimensions. Gierer–Meinhardt kinetics [9, page 77] were used

with parameters b D 0:35 andD D 30 (see [2] for more details)
and red (blue) indicates high (low) chemical concentration

However, the model can produce many more patterns
than those observed in nature and this leads to the
intriguing question of why patterning in biology is
rather restricted. It is observed that in many cases in
biology, patterning occurs behind an advancing front,
either of a permissive signaling cue, or of domain
growth. Analysis of the model shows that precisely
these constraints are sufficient to select in a robust
manner certain (observed) patterns at the expense of
other (unobserved) patterns. It is important to note that
such a propagating front can also serve to move a
bistable system from one state to another, and this is an
alternative mechanism to the Turing model for pattern
formation.

Cell Chemotaxis Models
Whereas Turing’s model assumes no explicit inter-
action between cells underlying the field and evolu-
tion of the chemical pattern, cell chemotaxis models
assume that cells move preferentially up chemical
gradients, and at the same time amplify the gradient
by producing the chemical themselves. Examples of
chemotaxis during development include the forma-
tion of the gut (gastrulation), lung morphogenesis,
and feather bud formation [1]. In addition to mod-
eling chemotaxis in development, such models are
also commonly considered for coat marking patterns
and swarming microbe motility. We note that there
are numerous types of “taxis” that can be observed
during development, including those up/down gradi-
ents in cellular adhesion sites (haptotaxis), substrate

stiffness (mechanotaxis), light (phototaxis), to name
but a few [1, 11].

Whereas the Turing model gives rise to a parabolic
system, taxis models can be of mixed parabolic/hy-
perbolic type, although the parabolic part is usually
taken to dominate. Mathematically, therefore, taxis
models are similar to the Turing model, with lin-
ear and nonlinear analyses demonstrating the exis-
tence of bifurcations and predicting the emergence
of steady state patterns. In addition, a large body of
work has been devoted to considering the potential
for certain formulations of the chemotaxis model to
exhibit “blow up,” where solutions become infinite
in finite time, and showing existence and uniqueness
of solutions [5]. The unifying mechanistic theme be-
hind many of these models – Turing, chemotaxis, and
mechanochemical – is that of short-range activation
and long-range inhibition [9]. From a mathematical
viewpoint, the patterns exhibited by all these mod-
els at bifurcation are eigenfunctions of the Lapla-
cian.

Growing Domains
Throughout development the embryo undergoes
enormous changes in size and shape, and as a result
biologically accurate patterning models must take
these variations into account if they are to be capable
of validating hypotheses and making predictions. The
inclusion of growth in reaction-diffusion models was
first considered sytematically by Crampin and co-
workers [4] who derived a general formulation by
considering conservation of mass and the application
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Pattern Formation and Development, Fig. 3 The Turing
model on a growing domain using both deterministic (PDE)
and stochastic (Monte Carlo) formulations. Schnakenberg kinet-
ics [9, page 76] were used with parameters k1 D 1:0, k2 D 0:02,
k3 D 10�6, k4 D 3:0, DA D 10�5, DB D 10�3, and uniform

growth rate r D 10�4. (See [4] for more details of the growing
domain formulation.) Black shading indicates where the system
is above the spatially uniform steady state, and the red line the
edge of the domain

of Reynold’s transport theorem. The extra terms arising
in the reaction-diffusion system as a result of growth
occur as material is both transported around the domain
and diluted during growth. Key to applications of
Turing’s model to development was the discovery
that domain growth increases the reliability of pattern
selection, giving rise to consistent patterns without
such tight control of the reaction parameters and, more
recently, to the discovery that patterns may form in
systems that do not satisfy Turing conditions under
certain types of domain growth [7]. Figure 3 shows the
results of numerical simulation of the Turing model on
a growing domain, and illustrates the changing patterns
that arise as the domain grows.

More Recent Developments
However, one should be aware of the limitations of
these classical models. The flux and/or production

terms in the conservation formulation generally
employed are often phenomenological, without
derivation from universal or fundamental principles.
In addition, as the material density becomes low,
stochastic effects can become significant. (Compare,
for example, the results of stochastic and deterministic
simulations of patterning on a growing domain in
Fig. 3.) Finally, tortuous cellular level geometry
complicates the investigation of spatial fluctuations at
the cellular scale and the possibility of large variations
among neighboring cells prevents straightforward use
of a continuum limit. Moreover, the parameters within
the kinetic terms themselves arise due to dynamics
at a lower scale level. As such, many of the recent
developments in modeling pattern formation have
explored the derivation of these classical models
from individual considerations where cell-level
behavior may be taken into account [10] and the
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role of noise explicitly studied. However, with careful
consideration of these pitfalls and awareness of when
and where techniques can successfully be applied,
PDEs remain one of the most useful and insightful
tools for modeling self-organization in developmental
biology [1].
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Petrov-GalerkinMethods for Variational
Problems

For the solution of partial differential equations, a
corresponding variational problem can be derived, and
the variational solution can be approximated by !
Galerkin methods. Petrov-Galerkin methods extend the
Galerkin idea using different spaces for the approxi-
mate solution and the test functions.

This is now introduced for abstract variational prob-
lems. Let U and V be Hilbert spaces, let aWU �V �!
R be a bilinear form, and for a given functional f 2 V 0
let u 2 U be the solution of the variational problem
a.u; v/ D hf; vi for all v 2 V .

Let UN 	 U and VN 	 V be discrete subspaces of
finite dimension N D dimUN D dimVN . The Petrov-
Galerkin approximation uN 2 UN is a solution of the
discrete variational problem a.uN ; vN / D hf; vN i for
all vN 2 VN .

It is not a priori clear that the continuous and the
discrete variational problems have unique solutions.
For the well-posedness of the continuous problem, we
assume that positive constants C � ˛ > 0 exist such
that

ja.u; v/j � CkukU kvkV

and

sup
v2V nf0g

a.u; v/

kvkV � ˛ kukU ;

and that for every v 2 V n f0g some uv 2 U exists such
that a.uv; v/ ¤ 0. The variational problem corresponds
to the equation Au D f , where A 2 L.U; V 0/ is the


