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Angiogenesis is the process by which new blood vessels develop from existing vasculature. During
angiogenesis, endothelial tip cells migrate via diffusion and chemotaxis, loops form via tip-to-tip and tip-to-sprout
anastomosis, new tip cells are produced via branching, and a vessel network forms as endothelial cells follow
the paths of tip cells. The latter process is known as the snail trail. We use a mean-field approximation to
systematically derive a continuum model from a two-dimensional lattice-based cellular automaton model of
angiogenesis in the corneal assay, based on the snail-trail process. From the two-dimensional continuum model,
we derive a one-dimensional model which represents angiogenesis in two dimensions. By comparing the discrete
and one-dimensional continuum models, we determine how individual cell behavior manifests at the macroscale.
In contrast to the phenomenological continuum models in the literature, we find that endothelial cell creation
due to tip cell movement (vessel formation via the snail trail) manifests as a source term of tip cells on the
macroscale. Further, we find that phenomenological continuum models, which assume that endothelial cell
creation is proportional to the flux of tip cells in the direction of increasing chemoattractant concentration,
qualitatively capture vessel formation in two dimensions, but must be modified to accurately represent vessel
formation. Additionally, we find that anastomosis imposes restrictions on cell density, which, if violated, leads
to ill-posedness in our continuum model. We also deduce that self-loops should be excluded when tip-to-sprout
anastomosis is active in the discrete model to ensure propagation of the vascular front.
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I. INTRODUCTION

Angiogenesis is the process by which new blood vessels
develop from existing vasculature. Angiogenesis is important
for wound healing, in developmental processes, such as
embryogenesis, and in pathological conditions, such as cancer.
Solid tumors initiate angiogenesis, a hallmark of cancer [1,2],
to increase nutrient and oxygen supply and remove metabolic
waste [2]. Typically, angiogenesis is initiated when hypoxic
tumor cells secrete tumor angiogenic factors (TAFs) such as
vascular endothelial growth factor (VEGF) [3–5]. TAFs diffuse
towards the nearby vasculature, establishing a spatial gradient
between the tumor and the vasculature. TAFs that reach the
vasculature induce endothelial cells (ECs) lining blood vessels
to degrade their basement membranes [3,5,6] and migrate, via
chemotaxis, up the spatial gradient of TAFs and towards the
tumor [7], using filopodia to sense environmental guidance
cues [5,6,8] (see Fig. 1). ECs, or stalk cells [5,6], follow
the paths of leading ECs, known as tip cells (TCs). The ECs
proliferate and elongate to form a snail trail of capillary sprouts
behind the leading TCs [3,5,6].

As the sprouts approach the tumor, they fuse and form
interconnected loops through tip-to-sprout and tip-to-tip anas-
tomosis [5,6] (see Fig. 1). Capillary loop formation and
perfusion are essential for blood circulation and nutrient
supply. As the sprouts migrate towards the tumor, new TCs
emerge through branching (see Fig. 1), a process which is
stimulated by the TAFs [5]. Experimental results [9] in the
corneal assay indicate that the density of the vascular network,
specifically the density of TCs, increases as the tumor is
approached, producing the so-called brush-border effect. Once
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the sprouts reach the tumor, vascularization occurs followed
by reorganization and remodeling of the networks.

Since angiogenesis is important for tumor growth and
spread, the treatment of cancer via antiangiogenic therapies
is an active area of research [5,10–12]. Paradoxically, certain
antiangiogenic treatments have been found to transiently “nor-
malize” tumor vasculature, resulting in improved nutrient and
drug supply [10]. Combination therapies, which administer
anticancer drugs in conjunction with antiangiogenic drugs, are
a promising methodology for treatment [10–12]. Thus, for
antiangiogenic therapies to improve the prognosis of cancer
patients, a more complete understanding of angiogenesis is
necessary. To further elucidate the angiogenic process, an
understanding of how cell-level (microscale) processes, such
as vessel structure, affect tissue-scale (macroscale) processes,
such as nutrient and drug transport, is required. Given its
importance in biology and the therapeutic drive for a more
holistic understanding of angiogenesis, a large body of math-
ematical literature has been devoted to modeling angiogenesis
(see the reviews Mantzaris et al. [13] and Scianna et al. [14]
and references therein).

Mathematical models of angiogenesis can, broadly speak-
ing, be split into two distinct types, namely discrete and con-
tinuum. While discrete models can produce detailed vascular
structures based on the microscale behavior of cells, continuum
models, which describe the vessel network in terms of cell
densities, provide a more tractable framework for analysis.
Some of the earliest continuum models [15,16], known
as snail-trail models, were developed phenomenologically
to establish qualitative agreement with angiogenesis in the
corneal assay. Given its avascular nature, the corneal assay
is widely used to study angiogenesis in vivo [17]. A TAF
source implanted into the cornea of a small animal, usually
a mouse [17], stimulates new vessels to emerge from the
limbus, which forms the border between the cornea and sclera
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FIG. 1. A schematic of angiogenesis. Endothelial cells follow the
paths of tip cells, which move chemotactically in response to a tumor
angiogenic factor (TAF) source to form sprouts. Sprouts may branch
and fuse through anastomosis to form loops. EC, endothelial cell;
TC, tip cell.

(the white of the eye), typically situated 1 to 2 mm from
the TAF source [9,18]. Given the negligible thickness of the
cornea (approximately 100 μm in mice [19,20]), angiogenesis
can be approximated as a two-dimensional process in the
corneal assay. One-dimensional snail-trail models [15,16] aim
to capture two-dimensional processes by modeling the spa-
tiotemporal evolution of vessel and TC densities, averaged in
the direction perpendicular to propagation of the vascular front.
Extending the model of Balding and McElwain [15], Byrne
and Chaplain (BC) [16] assumed that the TCs move randomly
and chemotactically in response to a generic diffusible TAF
produced by a pellet or tumor fragment implanted into the
cornea. The vessel network forms in response to TC movement
such that the spatiotemporal evolution of the vessel density
is proportional to the flux of TCs. Numerous other authors
[21–24] have extended these snail-trail models [15,16]. While
one-dimensional snail-trail models are tractable, they describe
physical quantities in terms of densities and therefore do not
represent the network morphology. Discrete models [25,26]
can account for the network structure, including the microscale
behavior of cells. Anderson and Chaplain [27] and Chaplain
[28] developed an agent-based model by discretizing a con-
tinuum model to define transition probabilities for the discrete
model. Bentley et al. [29,30] used an agent-based approach
to model the inter- and intracell signaling mechanisms which
mediate TC selection and migration. Hybrid models [31–34]
couple discrete and continuum models; they model microscale
cell behavior in response to macroscale fields, such as TAFs,
which are described by partial differential equations (PDEs).
Hybrid models can also couple cell dynamics to models of
blood flow [35–37] and drug delivery in the vascular network
[35] as well as tumor growth [37]. These frameworks have
been used to test the impact of different therapeutic strategies
[31,35].

As more experimental data become available, model val-
idation becomes feasible. Tong and Yuan [33] and Connor
et al. [24] have analyzed images of corneal angiogenesis
to validate and parametrize their models. Experimental data
may describe both cell- and population-level behavior. Thus,
having continuum and discrete models can facilitate model
validation at both scales and, taken together, provide comple-
mentary perspectives of angiogenesis. Increasing recognition

of these benefits has stimulated efforts to connect discrete
and continuum models in a variety of biological contexts
[38–45]; see the review by Codling et al. [46]. Typically,
a lattice-based approach and a mean-field approximation,
in which the occupancy of lattice sites is assumed to be
independent, are used to derive continuum approximations
to discrete models, though corrections to mean-field models
have been investigated [47–49]. In the context of angio-
genesis, Spill et al. [50] used a one-dimensional mesoscale
lattice-based model to derive macroscopic descriptions of
angiogenesis based on the snail-trail approach. In so doing,
Spill et al. [50] reproduced the model developed by Byrne and
Chaplain [16], introducing a norm to ensure the positivity
of the TC flux. Bonilla et al. [51] developed a stochastic
mesoscale model of TC dynamics, coupled to underlying
macroscale fields, and derived a deterministic integro-PDE
system for the formation of the network using a mean-field
approximation.

In this work, we determine the macroscopic behavior
of TCs and ECs from their microscale behavior during
angiogenesis. We develop a two-dimensional lattice-based
cellular automaton (CA) model of angiogenesis in the corneal
assay, based on the snail-trail process, and using a mean-field
approximation, we systematically derive a new continuum
model describing the spatiotemporal evolution of the TC and
EC densities. From the two-dimensional model, we derive
a one-dimensional continuum model that can be used to
represent angiogenesis in two dimensions. By comparing
our discrete and one-dimensional continuum models, we
generate biological insight by determining how individual
cell behavior manifests itself at the macroscale. This also
enables us to elucidate, at a more fundamental level, the
assumptions underlying phenomenological one-dimensional
snail-trail models [15,16].

In contrast to other snail-trail models [15,16,50], our sys-
tematic modeling approach reveals that anastomosis imposes
restrictions on cell density in the continuum model. We also
find that ECs created in response to TC movement on the
microscale can be modeled as a TC source term on the
macroscale. Further, we find that phenomenological snail-trail
models [15,16] qualitatively capture the EC density (vessel
formation) in two dimensions. In particular, these models only
accurately capture vessel formation if TCs are restricted to
motion in the direction of increasing TAF gradient and must
be modified to account for TC movement and consequent EC
creation in other directions. We have also deduced that for our
CA model to produce a vascular front that propagates towards
the TAF source, self-loops (a TC anastomoses with an EC
from its own sprout) should be excluded when tip-to-sprout
anastomosis is active.

II. CELLULAR AUTOMATON

We represent the cornea as a two-dimensional, regular
lattice, (x,y) ∈ [0,1] × [0,1], with lattice spacing h. Each
lattice site is indexed by (i,j ), where i,j, ∈ Z+ (0 � i,j � R,

Rh = 1), so that the position of a site is given by (xi,yi) =
(ih,jh). The lattice spacing h represents the diameter of a
cell. The limbus and TAF source are located at x = 0 and
x = 1, respectively.
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Our CA model is presented in nondimensionalized units,
where we have rescaled distance with the limbus to TAF
source separation L and time with L2/DTAF (DTAF is the
TAF diffusion coefficient). Generally, the TAF concentration
(nondimensional), c(x,y,t), satisfies a reaction-diffusion equa-
tion [16,24,27,52]. Since the timescale for diffusion of TAFs
is typically much faster than the timescale for changes in
the vessel network (see [16]), we apply a quasi-steady-state
approximation, (setting ∂c/∂t = 0) and, for simplicity, assume
that the TAF field is diffusion dominated. Thus, the TAF field
satisfies

∇2c = 0, for 0 � x,y, � 1, (1)

c(0,y) = 0, c(1,y) = 1, for 0 � y � 1 (2)

∂c

∂y
(x,0) = 0,

∂c

∂y
(x,1) = 0, for 0 � x � 1. (3)

We have also assumed that TAFs are produced at a constant
rate at x = 1, and are removed by a sink at the limbus (x = 0).
The solution to Eqs. (1)–(3) is

c(x,y) = x. (4)

This simplified TAF profile enables us to focus on the dynamics
of TC movement and sprout creation.

Based on the biology of angiogenesis (TCs migrate and
ECs follow the TCs), we distinguish two agent types in our
lattice-based CA model: active TCs and passive ECs. TC
dynamics are governed by the following processes: movement
via random motion and chemotaxis towards the TAF source
(at x = 1), new TC formation through branching, and TC
annihilation through tip-to-tip and tip-to-sprout anastomosis.
ECs are created as a result of TC movement (snail-trail process)
and tip-to-tip anastomosis.

Our algorithm for updating TCs on the lattice is both
random and sequential. If there are N̄ TCs on the lattice at the
beginning of a discrete time step K̄ , then N̄ TCs are selected
independently at random, with replacement. Once chosen, a
TC is given the opportunity to move with probability Pm.
A further set of probabilities Px± and Py± dictate to which
site a TC moves (described later). Once N̄ motility attempts
have been made, another N̄ TCs are selected at random with
replacement during the same discrete time step and are given
the opportunity to branch with probability Pb. ECs are not
actively updated in the CA model; rather, they are created as
a consequence of TC movement. We now discuss the specific
rules governing TC motility and branching.

A. Movement and anastomosis

If a TC at site (i,j ) within the lattice is given the opportunity
to move, the probabilities Px±(i,j ) and Py±(i,j ), defined as

Px±(i,j ) = 1 ± gx(i,j )

4
, 0 < i,j < R, (5)

Py±(i,j ) = 1 ± gy(i,j )

4
, 0 < i,j < R, (6)

govern its ability to move from site (i,j ) to a site within its
von Neumann neighborhood (i ± 1,j ± 1). The functions gx

and gy , which bias the TC random walk, are central difference
approximations to the TAF gradient at the location of the TC

(a) Tip-to-tip anastomosis

(b) Tip-to-sprout anastomosis

FIG. 2. (a) If a TC at site (i,j − 1) moves to site (i,j ), occupied by
a TC, a tip-to-tip anastomosis event occurs. Both TCs are removed
from the simulation and ECs are placed at site (i,j ) and (i,j − 1)
due to anastomosis and movement, respectively. (b) If a TC at site
(i,j ) moves to site (i,j − 1), occupied by an EC, a tip-to-sprout
anastomosis event occurs. The TC is removed from the simulation,
the EC at site (i,j − 1) remains and an EC is placed at site (i,j ) due
to TC movement. EC, endothelial cell; TC, tip cell.

in the x and y directions, respectively, and are assumed to
represent the TC’s ability to migrate up the TAF gradient via
chemotaxis. We define gx and gy as

gx(i,j ) = k(ci+1,j − ci−1,j ), 0 < i,j < R, (7)

gy(i,j ) = k(ci,j+1 − ci,j−1), 0 < i,j < R, (8)

where ci,j is the TAF concentration and the constant parameter
k (independent of time and space) scales the TAF gradient
and therefore the chemotactic response and is chosen so that
gx,gy ∈ [−1,1] to ensure that Px±,Py± ∈ [0,1]. For a linear
TAF [Eq. (4)], ci,j = ci , gy = 0 and therefore Py± = 1

4 . Our
CA model is valid up until the first TC reaches the TAF source
at i = R,0 � j � R, and we do not allow TCs to cross the
remaining lattice boundaries (no flux).

When a TC moves to a site within its neighborhood, an EC
is left behind, creating the trail of vessels associated with the
snail trail.

If a TC moves to a site that is occupied, an anastomosis
event occurs. We assume that anastomosis annihilates TCs.
We distinguish two types of anastomosis events, depending
on the occupancy of the site to which the TC moved. If the
target site is occupied by a TC, then two TCs anastomose, a
tip-to-tip anastomosis event occurs, and an EC is deposited at
the site of annihilation [i.e., TC + TC → EC; see Fig. 2(a)].
If the target site is occupied by an EC, then a TC anastomoses
with an EC, known as a tip-to-sprout anastomosis event, the
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FIG. 3. A schematic showing how branching is accomplished in
the CA model. A TC at site (i + 1,j ) may branch during a time step
by placing daughter TCs at (i + 1, j ± 1). EC, endothelial cell; TC,
tip cell.

TC is annihilated, and the EC remains [i.e., TC + EC → EC;
see Fig. 2(b)].

We introduce two binary variables, an and ae, to act as
switches for tip-to-tip and tip-to-sprout anastomosis, respec-
tively. If these variables are set to 1, then the corresponding
anastomosis process is active. In our CA model, we may allow
movement only (i.e., no anastomosis, an = ae = 0), movement
and tip-to-tip anastomosis (an = 1, ae = 0) or movement and
tip-to-sprout anastomosis (an = 0, ae = 1), or movement and
both tip-to-tip and tip-to-sprout anastomosis (an = 1, ae = 1).

B. Branching

We assume that branching occurs in the direction perpen-
dicular to the direction of propagation of the TCs (towards
the TAF source in the x direction). Branching is stimulated by
TAFs [5]. Therefore, we assume that the probability, Pb, with
which a TC at site (i,j ) branches, increases linearly with the
TAF concentration, c, such that

Pb(i,j ) = Ppci,j ∈ [0,1], (9)

where Pp is a constant (independent of time and space) that
scales the TAF concentration. Branching from a TC located at
(i,j ) places daughter TCs at (i,j ± 1) and the TC at site (i,j )
is removed (see Fig. 3). We assume that ECs are not created
through branching. The resulting Y pattern (see Fig. 3) simu-
lates the branching pattern and TC selection that is, in practice,
mediated by complex signaling involving the DLL4/Notch
pathway [5,6]. Given that new TCs predominantly emanate
from the front of the propagating vascular front (brush-border
effect [9] observed in experiments), we assume branching
occurs from the TCs only.

C. Initial conditions

TCs are placed along i = 0 at alternating lattice sites, i.e.,

TCs placed at (i = 0,j = 1,3, . . . ,R − 1), (10)

representing sprouting from the corneal limbal vessels, follow-
ing the initiation of angiogenesis. Initially, there are no ECs
on the lattice. ECs are created when the TCs begin to move.
In practice, as with branching, TC selection at the limbus is
mediated by TAF (VEGF) and Notch signaling [5,6,53].

The CA algorithm for updating TCs after initialization is
outlined in Appendix B.

D. Cell occupancy

Branching and movement (incorporating anastomosis) have
been implemented as two separate processes in our CA
model. Each process affects the occupancies of the CA model
differently.

Movement does not incorporate volume exclusion explic-
itly, i.e., a TC move is not aborted if the target site is occupied.
However, anastomosis does impose occupancy restrictions on
the CA. In particular, tip-to-tip anastomosis (an = 1, ae = 0)
implies that only one TC can occupy a site (though a TC and
an EC can occupy the same site), tip-to-sprout anastomosis
(an = 0, ae = 1) implies that a TC and EC cannot occupy the
same site (though multiple TCs can occupy the same site),
and, taken together, tip-to-tip and tip-to-sprout anastomosis
(an = 1, ae = 1) imply that no two cells of any kind can
occupy the same site.

Branching does not incorporate volume exclusion; i.e.,
branching may deposit daughter TCs at sites already occupied
by other TCs or ECs. Therefore, branching does not adhere to
the occupancy restrictions imposed by anastomosis. We will
discuss this issue further later (see Sec. III B).

These rules may lead to cases where multiple TCs occupy a
site [produced by either branching or tip-to-sprout anastomosis
(an = 0, ae = 1)] or cases where TCs occupy the same site as
an EC [produced either by branching or tip-to-tip anastomosis
(an = 1, ae = 0)]. As a result, multiple ECs can be deposited
at that site as these TCs are updated and given the opportunity
to move.

When branching and both anastomosis processes (an = 1,

ae = 1) are implemented, we may encounter cases where
a TC moves to a site that is occupied by both TCs and
ECs (occurs through branching). We therefore impose the
hierarchy that a tip-to-tip anastomosis event occurs first
(see CA algorithm in Appendix B).

We also remark that though a target site may be occupied
by multiple TCs and/or ECs, only one anastomosis event can
occur during a TC move and therefore involves only one cell
at the target site [see Figs. 2(a) and 2(b)].

E. Ensemble averages

To relate the discrete model to a continuum, macroscopic
description, we average the occupancy of site (i,j ) over M

realizations of the discrete model at discrete times 1,2, . . . ,K̄ .
In particular, we define ni,j (K̄) and ei,j (K̄) as

ni,j (K̄) = 1

M

M∑
m=1

nm
i,j (K̄), ei,j (K̄) = 1

M

M∑
m=1

em
i,j (K̄), (11)

where nm
i,j (K̄) and em

i,j (K̄) are the TC and EC occupancies of
site (i,j ) after K̄ discrete time steps at the mth realization,
respectively. We also define the column averages as

Ni(K̄) = 1

M(R + 1)

M∑
m=1

R∑
j=0

nm
i,j (K̄), (12)

Ei(K̄) = 1

M(R + 1)

M∑
m=1

R∑
j=0

em
i,j (K̄), (13)

where R is the index of the last column on the lattice.
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III. THE CONTINUUM MODEL

We derive our continuum PDE model by formulating dis-
crete conservation equations (DCEs) that relate the average TC
and EC occupancies at site (i,j ) at time K̄ + 1, ni,j (K̄ + 1),
and ei,j (K̄ + 1) [ensemble averages defined in Eq. (11)], to
the average occupancies at site (i,j ) at time K̄ and the change
in occupancy during a discrete time step. In formulating this
conservation equation for the TCs and ECs, we must include
TC movement due to diffusion and chemotaxis, anastomosis,

and branching, as well as the creation of ECs due to TC
movement and tip-to-tip anastomosis. Defining δni,j and δei,j

by

δni,j = ni,j (K̄ + 1) − ni,j (K̄), (14)

δei,j = ei,j (K̄ + 1) − ei,j (K̄), (15)

the DCEs for the TC and EC population within the lattice
(0 < i,j < R) are, respectively,

δni,j = Pm

⎧⎪⎨
⎪⎩Px+(i − 1,j )ni−1,j + Px−(i + 1,j )ni+1,j + Py+(i,j − 1)ni,j−1 + Py−(i,j + 1)ni,j+1︸ ︷︷ ︸

movement into (i,j )

− [Px+(i,j ) + Px−(i,j ) + Py+(i,j ) + Py−(i,j )]ni,j︸ ︷︷ ︸
movement out of (i,j )

− anni,j [Px+(i − 1,j )ni−1,j + Px−(i + 1,j )ni+1,j + Py+(i,j − 1)ni,j−1 + Py−(i,j + 1)ni,j+1]︸ ︷︷ ︸
tip-to-tip anastomosis

− aeei,j [Px+(i − 1,j )ni−1,j + Px−(i + 1,j )ni+1,j + Py+(i,j − 1)ni,j−1 + Py−(i,j + 1)ni,j+1]︸ ︷︷ ︸
tip-to-sprout anastomosis

⎫⎪⎬
⎪⎭

+Ppci,j (ni,j−1 + ni,j+1 − ni,j )︸ ︷︷ ︸
branching

(16)

and

δei,j = Pm

⎧⎪⎨
⎪⎩Px+(i,j ) + Px−(i,j ) + Py+(i,j ) + Py−(i,j )︸ ︷︷ ︸

movement of TCs out of (i,j )

+ an[Px+(i − 1,j )ni−1,j + Px−(i + 1,j )ni+1,j + Py+(i,j − 1)ni,j−1 + Py−(i,j + 1)ni,j+1]︸ ︷︷ ︸
tip-to-tip anastomosis

⎫⎪⎬
⎪⎭ni,j . (17)

Equations (16) and (17) describe how TC and EC occu-
pancies, respectively, change during a time step assuming
that the occupancy of lattice sites is independent (mean-field
approximation). We remark that Eqs. (16) and (17) have been
written in generality and that for a linear TAF, Py± = 1

4 .
The first line on the right-hand side of Eq. (16) represents

TC movement from sites (i ± 1,j ) and (i,j ± 1) into site
(i,j ). TC movement from site (i,j ) into a neighboring site
is represented by the second line. The third and fourth lines
model tip-to-tip and tip-to-sprout anastomosis, respectively.
If a TC from a neighboring site moves into site (i,j ) and it
is already occupied by a TC or EC, then the TCs are lost,
and a new EC is deposited at (i,j ) for tip-to-tip anastomosis,
while for tip-to-sprout anastomosis, the EC at site (i,j )
remains. The fifth line on the right-hand side of Eq. (16)
represents branching into the site (i,j ) from a TC located
at (i,j − 1) or (i,j + 1) (source terms) and the loss of a
TC from site (i,j ) if it branches into neighboring sites (sink
term).

We can rewrite the first four lines of equation (16) governing
TC movement and anastomosis as

Pm{[Px+(i − 1,j )ni−1,j + Px−(i + 1,j )ni+1,j

+Py+(i,j − 1)ni,j−1 + Py−(i,j + 1)ni,j+1](1 − anni,j

− aeei,j ) − [Px+(i,j ) + Px−(i,j ) + Py+(i,j )

+Py−(i,j )]ni,j }. (18)

Written in this form, we conclude that when anastomosis is
active (i.e., an �= 0 or ae �= 0) a TC can always move out of
site (i,j ), with the outcome depending on the occupancy of
the target site. A TC only remains a TC if the target site is
vacant.

In Eq. (17), ECs are created when a TC moves out of a
site and via tip-to-tip anastomosis. These source terms are the
counterparts of sink terms in Eq. (16).

We now relate the DCEs to a continuum description. We
expand all dependent variables, n, e, and c, in Eqs. (16)
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and (17) in a Taylor series about the site (i,j ). Recall that
Px± and Py± are defined in Eqs. (5) and (6), respectively.
By setting xi → x,yj → y, ni,j (K̄) → n(x,y,t), ei,j (K̄) →
e(x,y,t) and dividing the resulting expressions by τ , we
eventually arrive at the expressions

1

τ
[n(x,y,t + τ ) − n(x,y,t)]

= (1−ann−aee)
Pm

τ

[
h2

4
∇2n− h2k∇ · (n∇c)+O(h4)

]

− Pm

τ
(ann

2 + aene) + Ppc

τ

[
n + h2 ∂2n

∂y2
+ O(h4)

]
,

(19)

and
1

τ
[e(x,y,t + τ ) − e(x,y,t)]

= Pmn

τ
(1 + ann)

+ anPmn

τ

[
h2

4
∇2n − h2k∇ · (n∇c) + O(h4)

]
, (20)

for the TC and EC populations, respectively.
By taking the limit as τ → 0, and neglecting terms of O(h4)

and higher, we can relate our DCEs to a PDE model, and we
find that n(x,y,t) and e(x,y,t) satisfy

∂n

∂t
= (1 − ann − aee)[D∇2n − χ∇ · (n∇c)]

−μ(ann
2 + aene) + c

(
λn + Db

∂2n

∂y2

)
(21)

and
∂e

∂t
= μn + ann[μn + D∇2n − χ∇ · (n∇c)], (22)

respectively, where

μ = lim
τ→0

Pm

τ
, λ = lim

τ→0

Pp

τ
, (23)

and the diffusion coefficient, D, chemotactic coefficient, χ ,
and diffusion coefficient due to branching, Db, are defined as

D = μh2

4
= lim

τ→0

Pmh2

4τ
, χ = μkh2 = lim

τ→0

Pmkh2

τ
, (24)

Db = λh2 = lim
τ→0

Pph2

τ
. (25)

These expressions for D, χ , and λ are consistent with existing
literature [39,40,46], though we have not taken the limit
τ,h → 0 with h2/τ constant. If we took the limit as h → 0
with μ defined by Eq. (23), the diffusive and chemotactic
terms, as well as the diffusive term due to branching, would
vanish. Our PDE for n would involve only source terms, which
is at odds with our CA model, where TCs move by diffusion
and chemotaxis. By defining D̄ = μ/4, χ̄ = μk, and D̄b = λ

and rewriting D, χ , and Db as D = h2D̄, χ = h2χ̄ , and
Db = h2D̄b, respectively, it is clear that in the limit as h → 0,
we have a singular perturbation problem. Since we use small
nonzero values for h and τ in the discrete simulations, and

to define the continuum model parameters, we must retain
the O(h2) terms in (21) and (22) in order to capture the
boundary layer in which the TC density changes rapidly.
Similar approaches in which the limit h → 0 was not explicitly
taken or O(h2) diffusive terms were retained were used in
[43–45] to derive PDE approximations to discrete agent-based
models of growing domains. We have neglected terms of O(h4)
and higher in our model and we will show later that when these
higher-order terms are neglected, the PDEs approximate the
discrete model well.

We approximate the boundary conditions in the discrete
model by imposing no flux boundary conditions on Eqs. (21)
and (22), assuming that anastomosis and branching are
negligible there. With these boundary conditions, our PDE
model remains valid until the TC front reaches x = 1.

The initial condition for the TCs in the discrete model
[see Eq. (10)] is discontinuous. We instead use the averaged
CA simulation results for the TCs and ECs at some later
discrete time step K̄IC , ni,j (K̄IC), and ei,j (K̄IC) ∀ i,j [ensem-
ble averages defined in Eq. (11)], respectively, as the initial
conditions in the continuum model. Here, tIC is related to the
discrete time step KIC by tIC = τK̄IC .

Our continuum model, valid for t � tIC , can now be written
as

∂n

∂t
= (1 − ann − aee)[D∇2n − χ∇ · (n∇c)]

−μ(ann
2 + aene) + c

(
λn + Db

∂2n

∂y2

)
, (26)

∂e

∂t
= μn + ann[μn + D∇2n − χ∇ · (n∇c)], (27)

subject to

D
∂n

∂x
− χn

∂c

∂x
= 0, at x = 0,1, 0 � y � 1, (28)

D
∂n

∂y
− χn

∂c

∂y
= 0, at y = 0,1, 0 � x � 1, (29)

with

n(x,y,tIC) ∀ x,y = ni,j (K̄IC) ∀ i,j,

e(x,y,tIC) ∀ x,y = ei,j (K̄IC) ∀ i,j. (30)

It is clear that terms multiplied by D or χ only arise from the
diffusive and chemotactic motion of the TCs, terms multiplied
by λ and Db arise from TC branching, and terms multiplied
by an or ae arise from tip-to-tip and tip-to-sprout anastomosis,
respectively. The EC population is created predominantly
through TC movement, via random motion and/or chemotaxis,
as indicated by the source term μn on the right-hand side
of Eq. (27). Here μ can be interpreted as the TC motility
rate. We also note that, given the form of Eq. (27), we need
only specify an initial condition for e(x,y,t). Equations
(26)–(30) constitute a two-dimensional (nondimensional)
model of angiogenesis. While the terms that govern TC
diffusion and chemotaxis are standard (see [15,16,27,52]),
the terms associated with anastomosis, TC branching in two
dimensions, and most notably, EC creation, are not.

We note that the diffusive term due to branching would
read Db∇2n had we implemented branching in the x direction.
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Recall that we assumed that branching occurs only in the
direction perpendicular to the direction of propagation of the
vascular front (i.e., in y only). We also assumed that branching
does not create ECs, and therefore Eq. (27) does not contain
source terms arising from branching. Our implementation of
branching at the microscale gives rise to a branching term, λcn,
at the macroscale that is consistent with those used in existing
continuum models [16,50]. We note that we could have
implemented branching in many ways, as the leading-order
branching term, λcn, describes a multitude of branching
processes on the microscale (see Simpson et al. [39]).
We also note that, for a linear TAF, Eq. (4), ∂c/∂y = 0 in the
no flux boundary condition in y [Eq. (29)].

A. One-dimensional model

We reduce our PDE model from two spatial dimensions to
one by defining the following variables:

N (x,t) =
∫ 1

0
n(x,y,t)dy, E(x,t) =

∫ 1

0
e(x,y,t)dy.

Integrating Eqs. (26) and (27) with respect to y, and using the
definitions above, we find that N (x,t) and E(x,t), for t � tIC ,
satisfy

∂N

∂t
= (1 − anN − aeE)

[
D

∂2N

∂x2
− χ

∂

∂x

(
N

∂c

∂x

)]

−μ(anN
2 + aeNE) + λcN, (31)

∂E

∂t
= μN + anN

[
μN + D

∂2N

∂x2
− χ

∂

∂x

(
N

∂c

∂x

)]
, (32)

subject to

D
∂N

∂x
− χN

∂c

∂x
= 0, at x = 0,1, (33)

with

N (x,tIC) = Ni(K̄IC), E(x,tIC) = Ei(K̄IC), ∀ x,i, (34)

where Ni and Ei are column ensemble averages as defined in
Eqs. (12) and (13), respectively. By reducing the model in this
manner, we are making the following approximations:∫ 1

0
n2dy ≈

[ ∫ 1

0
n(x,y,t)dy

]
×

[ ∫ 1

0
n(x,y,t)dy

]
,

∫ 1

0
nedy ≈

[ ∫ 1

0
n(x,y,t)dy

]
×

[ ∫ 1

0
e(x,y,t)dy

]
. (35)

We will show later that with these approximations, the PDEs,
Eqs. (31) and (32), approximate the discrete model well. We
can also derive the one-dimensional equations directly from
the DCEs, Eqs. (16) and (17), by summing over j and using
the discrete analog of the approximations above (mean-field
approximation), which amounts to replacing the ensemble
averages with their column averages [equivalent to replacing
n and e with N and E in Eqs. (26) and (27)]. Equation (32)
reveals that in the absence of tip-to-tip anastomosis (an = 0),
the spatiotemporal evolution of the EC density is proportional
to a source term of TCs, μn. In contrast, one-dimensional
phenomenological [15,16] snail-trail models (see Appendix A)

assume that EC (vessel) creation is proportional to the flux of
TCs in the x direction while Spill et al. [50] found that EC
creation is proportional to a source term of TCs if TCs undergo
diffusion only.

We compare the solutions of Eqs. (31) and (32) to the
column ensemble averages, defined in Eqs. (12) and (13).

B. Cell density

In earlier work by Balding and McElwain [15], Byrne and
Chaplain [16], and Spill et al. [50], tip-to-sprout anastomosis,
and as an extension tip-to-tip anastomosis, were modeled
via terms of the form −βene and −βnn

2 (see Appendix A).
In our model, tip-to-tip and tip-to-sprout anastomosis give
rise to flux terms of the form −n[D∇2n − χ∇ · (n∇c)]
and −e[D∇2n − χ∇ · (n∇c)], respectively, in addition to
the standard sink terms −μn2 and −μne. As mentioned,
anastomosis imposes occupancy restrictions on the discrete
model. These effects manifest in the continuum model
through the anastomosis flux terms, written as (1 − ann − aee)
[D∇2n − χ∇ · (n∇c)] in Eqs. (26) and (31), and effectively
impose density restrictions on the continuum model. If ae = 0,
our model is well-posed, provided we impose initial conditions
with n � 1. However, if ae = 1, (1 − ann − aee) may become
negative even if the initial TC/EC densities do not exceed
one. This may occur when the continuum model deviates
from the discrete model due to a breakdown of the inde-
pendence assumption. Alternatively, when only tip-to-sprout
anastomosis is active (an = 0, ae = 1), it may occur due
to modeling assumptions made to replicate the snail-trail
process. We conclude that tip-to-sprout anastomosis should
be implemented with tip-to-tip anastomosis for the model to
remain well-posed when our mean-field approximation holds.

As mentioned, branching has been implemented without
any volume exclusion and thus may violate cell density (occu-
pancy) restrictions imposed by anastomosis in the continuum
(discrete) model. However, provided the branching rate, λc, is
low, the model will remain well-posed.

In the next section, we will compare our one-dimensional
PDE model to the averaged CA simulation results to assess
agreement. We will also compare Byrne and Chaplain’s (BC)
nondimensional snail-trail model [16] (see Appendix A for
model details) to the CA simulation results.

IV. CONTINUUM-DISCRETE COMPARISONS
IN ONE DIMENSION

A. Parameter values

To compare discrete and continuum models, we must set
and relate microscale and macroscale parameters. There are
five macroscale parameters: D, χ, λ, μ, and tIC and six
microscale parameters: R, h, Pm, Pp, τ , and k. We set the
macroscopic diffusion and chemotactic coefficients (using
values from the BC model), D and χ , and tIC , and the
following microscale parameters in the CA model: the size of
the lattice, R (which determines the lattice spacing h), and the
probabilities Pm, Pp. We then use the relationships in Eq. (24)
to derive values for the microscale parameters k and τ . The
value for k allows us to define the remaining probabilities in
our CA model, Px±. From the value for τ , we can then find
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TABLE I. CA and DCE-derived PDE model parameters.

R Pm Pp h τ k gx gy Px+ Px− Py± D χ λ μ tIC

200 1 10−3 1
200

1
160 100 1 0 1

2 0 1
4 10−3 0.4 0.16 160 0.2

the remaining macroscopic coefficients in our DCE-derived
model, μ and λ, from Eq. (23). Note that we must also set an

and ae in the CA model to fix which anastomosis processes
are active. These parameters, an and ae, also appear in the
continuum model.

The parameter values used in the discrete and DCE-derived
continuum models are stated in Table I. The remaining
parameter values for the BC model, λ,βn = anμ and βe = aeμ

are chosen to be consistent with the values used in our
continuum model.

B. Continuum-discrete comparisons in one dimension

We compare the solutions (see Appendix B for numerical
schemes) of the one-dimensional equations (31) and (32)
and solutions to the one-dimensional BC model [Eqs. (A1)
and (A2)] to averaged CA simulation results defined in
Eqs. (12) and (13), where lattice site occupancy has been
averaged over M = 200 realizations and R = 200 columns.

In Fig. 4 we compare solutions to our PDE model with
the CA simulation results and solutions to the BC model when
anastomosis is neglected, when tip-to-tip anastomosis is active
and when both tip-to-tip and tip-to-sprout anastomosis are
active.

We see good agreement between the CA simulation results
and the DCE-derived PDEs (solutions fall within the standard
deviation (not shown) of the averaged CA simulation results)
for both the TC and the EC densities when anastomosis is
neglected [Figs. 4(a) and 4(b)] and when tip-to-tip anastomosis
is active [Figs. 4(c) and 4(d)]. The agreement is poor when both
tip-to-tip and tip-to-sprout anastomosis are active [Figs. 4(e)
and 4(f)]. The removal of TCs associated with anastomosis
results in a decrease in the TC density. The effect is more
pronounced for tip-to-sprout anastomosis, with all TCs lost
and propagation of the vascular front halted for t � 0.4.

We also compared the BC model to the CA simulation
results [see Figs. 4(a)–4(f)]. However, we rescaled the EC
density generated by the BC model [Eq. (A2)] by 2 such that

∂e

∂t
= 2

h

∣∣∣∣D ∂n

∂x
− χn

∂c

∂x

∣∣∣∣. (36)

In the BC model, the vessel/EC density is proportional to the
flux of TCs in the x direction. However, TCs are able to walk
randomly in the y direction [recall that in the CA model, a TC
can move in the positive x direction with probability 1/2 and in
the y direction with probability 1/2 (see Table I)]. This means
that TCs leave behind ECs as they move in the y direction.
This effect is not included in the BC model, and therefore
Eq. (A2) underestimates the true EC density by a half. We
note further that in the discrete model, if the probabilities
for TC movement in the x and y directions, Px± and Py±,
respectively, were different, then the path of the TCs would be

different and the EC density would have to be rescaled as

∂e

∂t
= κ

h

∣∣∣∣D ∂n

∂x
− χn

∂c

∂x

∣∣∣∣, (37)

where the non-negative parameter κ accounts for EC density
created via TC motion in directions other than the positive x

direction.
When Eq. (36) is used in place of Eq. (A2), there is good

agreement between the CA simulation results and solutions
to the BC model [see Figs. 4(a)–4(d)]. We see poor agree-
ment between the CA simulation results and the BC model
when both tip-to-tip and tip-to-sprout anastomosis are active
[see Figs. 4(e) and 4(f)].

The proximity of cells affects the chances of an anastomosis
event, and thus, the assumption that the occupancy of lattice
sites is independent may no longer hold. This is the most
likely reason why our continuum model, derived using a mean-
field approximation, does not capture the rapid rate of tip-
to-sprout anastomosis [see Figs. 4(e) and 4(f)]. In deriving
our PDE model, we neglected terms that involve higher-order
derivatives of n [O(h4) and higher], which describe a boundary
layer in which the TC density changes rapidly. Thus, it is
unlikely that these terms capture the rapid rate of tip-to-sprout
anastomosis which removes all TCs and prevents propagation
of the vascular front in the CA model. Including correlations in
our framework would be intractable (see [47]). Therefore, we
opt instead to make our CA model more biologically realistic,
modifying the tip-to-sprout anastomosis process to prevent
annihilation of all TCs (explained further in the next section).
We then capture this more realistic behavior with our PDE
model through parameter fitting.

V. TIP-TO-SPROUT ANASTOMOSIS:
EXCLUDING SELF-LOOPS

In our CA model, tip-to-sprout anastomosis occurs when
a TC encounters an EC. Extensive simulations (results not
shown) reveal that eventually all TCs are annihilated even
if they are initially well separated. We deduce that diffusive
motion of the TCs in the y direction and, in general, in
directions other than the positive x direction, causes TCs
to anastomose with ECs in their own sprout (self-loops),
creating a stunted sprout. All TCs are annihilated through
these self-loops. Such self-loops are inefficient as they will
not become perfused or connect the tumor to the limbus (blood
supply). Further, in practice, it is unlikely that many stunted
sprouts occur, and if they do, most will likely regress [5].

To make our discrete model more biologically realistic, we
modify our CA model to preclude self-loops during tip-to-
sprout anastomosis in the following way. When a TC attempts
to move to a site occupied by an EC (identified as the last EC to
be created at that site), movement occurs without tip-to-sprout
anastomosis if that EC belongs to the same sprout as the TC. If
the EC belongs to a different sprout, then anastomosis occurs.

We must account for this modification to the CA model in
our PDE model. As it would be intractable to keep track of
ECs in a particular sprout in our DCE framework, we instead
allow the parameter that controls the rate of tip-to-sprout
anastomosis, ae, to vary and estimate it by fitting PDE solutions
to the CA simulations results with self-loops excluded.
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(a) Tip cell density (no anastomosis)
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(b) Endothelial cell density (no anastomosis)
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(c) Tip cell density (tip-to-tip anastomosis)
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(d) Endothelial cell density (tip-to-tip
anastomosis)
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(e) Tip cell density (tip-to-tip and
tip-to-sprout anastomosis)
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(f) Endothelial cell density (tip-to-tip and
tip-to-sprout anastomosis)

FIG. 4. (Left column) Tip cell density; (right column) endothelial cell density. (a), (b) Tip cells (TCs) migrate via diffusion and chemotaxis
towards the TAF source at x = 1, leaving behind a trail of endothelial cells (ECs). (c), (d) Tip-to-tip anastomosis annihilates TCs as they
migrate towards the TAF source. (e), (f) Tip-to-sprout anastomosis annihilates all TCs such that the vascular front ceases to propagate towards
the TAF source. Column-averaged CA simulation results (black solid curve) are shown from t = 0.2 to t = 2 in 0.2 intervals, incorporating
TC movement, branching, EC creation, (c), (d) tip-to-tip anastomosis, and (e), (f) tip-to-tip and tip-to-sprout anastomosis. The CA simulation
results at tIC = 0.2 are used as the initial conditions in the DCE-derived PDE model [blue (dark gray) dash-dotted curve] [Eqs. (31) and (32)]
and the BC model [red (light gray) dashed curve] [Eqs. (A1) and (36)], with the PDE solutions shown from t = 0.4 to t = 2. Discrete and
PDE model parameters are given in Table I with the parameters controling anastomosis specified in the DCE-derived PDE model as (a), (b)
an = ae = 0, (c), (d) an = 1,ae = 0, (e), (f) an = ae = 1. The corresponding anastomosis parameters for the BC model can be calculated as
βn = 160an and βe = 160ae. The arrow shows the direction of increasing time.
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TABLE II. Least squares fit: Tip-to-sprout anastomosis parameters.

Parameter (Model) Value 95% Confidence interval

ae (DCE-derived) 0.0343 ±0.0003
βe (BC model) 5.0648 ±0.0423

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

Distance from limbus x

N
(x

,t)

t

(a) Tip cell density
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(b) Endothelial cell density

FIG. 5. Tip-to-sprout anastomosis decreases (a) tip cell (TC) and
(b) endothelial cell (EC) densities. Column-averaged CA simulation
results (black solid curves) are shown from time t = 0.2 to 2 in
increments of 0.2, incorporating TC movement, branching, tip-to-
tip, tip-to-sprout anastomosis excluding self-loops, and EC creation.
Solutions to the DCE-derived PDE model [blue (dark gray) dash-
dotted curve] [Eqs. (31) and (32)] and the BC model [red (light gray)
dashed curve] Eqs. (A1) and (36)] are shown from t = 0.4 to t = 2
with the averaged CA simulation results at tIC = 0.2 used as the initial
conditions. Discrete and PDE model parameters are given in Table I
with the parameters controlling tip-to-sprout anastomosis specified
as ae = 0.0343 and βe = 5.0648 in the DCE-derived model and the
BC model, respectively. The parameters ae and βe have been found
by fitting the PDE solutions to the CA simulation results. The arrow
shows the direction of increasing time.

A. Parameter fitting

When we fit our PDE model to the averaged CA simulation
results, we fix an = 1 and suppose that ae is no longer a
binary variable. With 0 < ae � 1, we can control the rate
of tip-to-sprout anastomosis. In the same way, when fitting
the BC model, we fix βn = 160 and suppose 0 < βe � 160
(see Appendix B for details).

The resulting parameter estimates and the 95% confidence
intervals are stated in Table II.

B. Tip-to-sprout anastomosis: Continuum-discrete
comparisons in one dimension

With ae = 0.0343 in Eqs. (31) and (32) [and βe = 5.0648
in Eqs. (A1) and (36)], there is good agreement between
the PDE models and the CA simulation results (see Fig. 5).
Furthermore, when self-loops are excluded, the vascular front
continues to propagate towards the TAF source as the TCs are
not exhausted [see Figs. 4(e) and 4(f)].

VI. DISCUSSIONS AND CONCLUSIONS

Directly relating discrete and continuum models, and
therefore the microscale and macroscale, allows not only for a
greater understanding of angiogenesis but also model valida-
tion at both scales. We have developed a two-dimensional
CA model of angiogenesis in the corneal assay, based on
the snail-trail process. Using a mean-field approximation
and DCEs, we derived a continuum model of angiogen-
esis consisting of a set of PDEs for the spatiotemporal
evolution of the TC and EC densities. From this PDE
model, we derived a one-dimensional continuum model
that represents two-dimensional angiogenesis in the corneal
assay.

We found that EC creation due to TC movement can be
modeled as a source term of TCs on the macroscale. In
contrast, phenomenological models [15,16] assume that EC
creation is proportional to the flux of TCs in the direction
of increasing TAF concentration (i.e., towards the TAF
source). We have found that these snail-trail [15,16] models
qualitatively account for vessel formation (EC creation) in
two dimensions. However, for these models to accurately
account for vessel formation in two dimensions, the PDEs
for EC density must be scaled by a factor to account for TC
motility in directions other than towards the TAF source. This
scaling factor and, therefore vessel formation, depends on the
microscale behavior of TCs.

Additionally, we found that anastomosis imposes cell
occupancy and density restrictions on the discrete model and
continuum model, respectively. As a result, for our continuum
model to remain well-posed, tip-to-sprout anastomosis should
be implemented when tip-to-tip anastomosis is active. The
density restrictions are as follows: when tip-to-tip anastomosis
is active, the TC density should not exceed 1, and when
both tip-to-tip and tip-to-sprout anastomosis are active, the
combined cell density (TC and EC) should not exceed 1. These
findings differ from existing continuum models [15,16,50],
which model anastomosis entirely through phenomenological
sink terms, and do not impose any restrictions on cell density.
Branching was implemented as a separate process in our model
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and thus may not adhere to the density restrictions imposed by
anastomosis. However, provided the branching rate is low, the
continuum model will remain well-posed.

When both tip-to-tip and tip-to-sprout anastomosis are
active, we found that our PDE model does not agree with
the CA model. In particular, our PDE model does not capture
the rapid rate of tip-to-sprout anastomosis which annihilates
all TCs in the CA model. This TC exhaustion occurs as a
result of self-loops in the CA model. We postulate that the
discrepancy between the discrete and continuum model arises
due to a breakdown of the independence assumption (mean-
field approximation) introduced by tip-to-sprout anastomosis.
In order to produce a more realistic discrete model of
angiogenesis (a TC front which propagates towards the TAF
source), we modified our CA model to prevent the formation
of self-loops during tip-to-sprout anastomosis. As it would
have been intractable to use our DCE-framework to account
for self-loops, we fitted the parameter in the continuum model
that controls the rate of tip-to-sprout anastomosis, ae, to the
averaged CA simulation results with self-loops excluded.

Our PDE models were derived by assuming that the lattice
spacing h is small (h � 1) and terms of O(h4) and higher
were negligible. In addition, for our model to be valid, the
assumption that the occupancy of lattice sites is independent
must hold. This places constraints on the probabilities for
movement, Pm, and branching (TC proliferation), Pp, in the
CA model. Anastomosis may also lead to a breakdown of
the independence assumption. However, we have shown that
we can account for the complexity introduced by anastomosis
by fitting the relevant parameters in the PDE model to the
CA simulation results. We also remark that we could relax
the assumptions on the TAF field, and develop a CA and
corresponding one- and two-dimensional continuum models
for the TC and EC densities for a two-dimensional and/or
time-dependent TAF field. In the future, we will extend this
work to comprehensively understand the effects of volume
exclusion and determine how predictions differ across different
continuum models of angiogenesis.
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APPENDIX A: REVIEW OF BYRNE AND CHAPLAIN’S
SNAIL-TRAIL MODEL [16]

We use a modified version of Byrne and Chaplain’s
nondimensional model [16],

∂N

∂t
= D

∂2N

∂x2
− χ

∂

∂x

(
N

∂c

∂x

)
+ λNc − βeNE − βnN

2,

(A1)

∂E

∂t
= 1

h

∣∣∣∣D∂N

∂x
− χN

∂c

∂x

∣∣∣∣, (A2)

where N (x,t) denotes TC density in units of number of TCs
per unit area, EC density, E(x,t), in units of number of ECs per
unit area and TAF concentration (molar concentration) per unit
area, c(x,t). The model is defined on (x,t) ∈ [0,1] × [0,∞),
where the TAF source is located at x = 0 and the limbus
at x = 1, subject to no flux boundary conditions [Eq. (33)],
with initial conditions and linear TAF profile taken from the
CA model. In this model, TCs migrate via diffusion and
chemotaxis, new TCs emerge from existing TCs at a rate λc,
tip-to-sprout anastomosis is modeled through the sink term
−βeNE, and ECs form in response to TC flux. We have
introduced tip-to-tip anastomosis in the BC model by including
a term of the form −βnn

2 in Eq. (A1).
The original BC model represented the network in terms

of vessel length per unit area, ρ (i.e., not EC density). To
relate the vessel density to EC density extracted from the CA
model, measured in units of number of ECs averaged over the
y direction (i.e., per unit area), we converted vessel density
from a length to a number density. The length of a cell is
defined by the lattice spacing in our model, h. Thus, to convert
vessel density to EC density, we must divide ρ by h such that

E = ρ

h
. (A3)

As in Spill et al. [50], we have used the absolute value
of the TC flux in Eq. (A2) to guarantee that the source of
ECs generated by the TC flux is non-negative. We have also
neglected branching from ECs and vessel regression, originally
included in the BC model. Following [16], we set D = 10−3

and χ = 0.4, with λ, βe, and βn chosen to be consistent with
our continuum model (see Table I). With these values for D

and χ , the TC flux is always negative and thus the absolute
value in Eq. (A2) can be replaced with a negative sign.

APPENDIX B: NUMERICAL SCHEMES

1. CA algorithm

The algorithm for the CA model is as follows.
While K̄ � K̄final and TCs have not reached i = R

1. Choose N̄ TCs at random with replacement
Loop 1: For 1 to N̄

(a) Choose a random number, T̄ ∈ [0,1]
(b) If T̄ � Pm, then the TC to move as follows:
(i) A random number S̄ ∈ [0,1] is chosen
(ii) The TC moves according to probabilities

Px±,Py± and an EC is left behind
(iii) If an = 1 and the target site is occupied by TCs,

tip-to-tip anastomosis occurs
(iv) Otherwise, if ae = 1, and the target site is

occupied by ECs, tip-to-sprout anastomosis
occurs

(v) Otherwise, the TC remains at the target site
End Loop 1

2. Choose N̄ TCs at random with replacement
Loop 2: For 1 to N̄

(a) Choose a random number, R̄ ∈ [0,1]
(b) If R̄ � Pb = Ppc, then branching occurs

End Loop 2
3. Increment time step: K̄ = K̄ + 1

End While Loop
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2. PDE Solvers

Equations (31), (32), (A1), (A2), and (37) are solved
numerically using the method of lines with a finite difference
scheme in space [upwinding for Eqs. (A2) and (37)]. The
resulting ordinary differential equations in time are solved over
t ∈ [0.2,2] using MATLAB’s ODE15S solver, which implements
adaptive time stepping [54].

3. Parameter fitting

We carry out the parameter fitting using a nonlinear
least-squares fitting procedure using MATLAB’s LSQNONLIN

routine, which implements a trust-region-reflective algorithm
[55,56], with the PDEs solved as described above. We fit
the parameters using averaged CA simulation results over
t ∈ [0.2,2] in intervals of 0.2 for both the TC and EC densities.
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