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Abstract Over 60 years have passed since Alan Turing first postulated a mech-
anism for biological pattern formation. Although Turing did not have the chance
to extend his theories before his unfortunate death two years later, his work has
not gone unnoticed. Indeed, many researchers have since taken up the gauntlet
and extended his revolutionary and counter-intuitive ideas. Here, we reproduce
the basics of his theory as well as review some of the recent generalisations and
applications that have led our mathematical models to be closer representations of
the biology than ever before. Finally, we take a look to the future and discuss open
questions that not only show that there is still much life in the theory, but also that
the best may be yet to come.

1 Introduction

The initiation and maintenance of biological heterogeneity, known as morphogen-
esis, is an incredibly broad and complex issue. In particular, the mechanisms by
which biological systems maintain robustness, despite being subject to numerous
sources of noise, are shrouded in mystery. Although molecular genetic studies have
led to many advances in determining the active species involved in patterning,
simply identifying genes alone does not help our understanding of the mechanisms
by which structures form. This is where the strengths of mathematical modelling lie.
Not only are models able to complement experimental results by testing hypothetical
relationships, they are also able to predict mechanisms by which populations
interact, thus suggesting further experiments [1].

The patterns we are considering are thought to arise as the consequence
of an observable population, e.g. skin cells, responding to diffusing signalling
populations, known as morphogens, e.g. proteins. Specifically, the morphogens
we consider are simply chemical reactants that do not sense their surroundings
and freely diffuse. Through morphogen diffusion and interactions, non-uniform
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patterns in concentration can emerge. The observable population is then thought
to undergo concentration-dependent differentiation based on this heterogeneous
morphogen distribution, thereby producing a corresponding heterogeneous pattern
in the observable population [2, 3].

Many mathematical frameworks have been postulated to explain how such
patterns arise. Here, we focus on one such paradigm mechanism: Alan Turing’s
diffusion-driven instability [4]. Turing conjectured that diffusion, normally known
as a homogenising process, could destabilise a spatially homogeneous stable
steady state of morphogen concentration. At its simplest, the instability can be
characterised by interactions between two diffusing morphogen populations. There
are two possible types of kinetics that can lead to instability, the better studied being
the type where one of the species acts as an activator and the other behaves as an
inhibitor [5, 6]. These names are derived from the fact that the activator promotes
its own production in a positive feedback loop, which, in turn, is controlled by an
inhibitor in a negative feedback loop. If the reaction domain is small enough such
that the populations are well-mixed everywhere diffusion dominates the system,
i.e. the product of the diffusion rate and reaction time scale is much greater than
the domain size squared, the reactions will simply tend to a homogeneous stable
steady state of concentration. However, as the domain size increases, diffusion can
destabilise the homogeneous steady state. Explicitly, if the inhibitor diffuses faster
than the activator, local growth in the activator is able to occur whilst the inhibitor
prevents activator spreading [7]; thus, once the domain is large enough, spatial
heterogeneity will arise.

Although we will be specifically thinking about Turing’s theory in terms of
biological pattern formation, the mathematical formalism is quite general and can be
used to discuss any situation where the morphogen populations can be considered to
be randomly moving reactive agents. Thus, the ideas of diffusion-driven instability
are not restricted to biology. Indeed, the idea has been applied to such diverse areas
as semiconductor physics [8], hydrodynamics [9] and even astrophysics [10].

2 Where We Started

We will be primarily concerned with multiple biochemical populations, Ui, where
i D 1; : : : ; n, which are collectively denoted by the vector U D .U1; : : : ;Un/. Fur-
ther, the populations are identified with chemical concentrations � D .�1; : : : ; �n/.
These populations are able to diffuse in a spatial domain V with boundary surface
@V . As the populations diffuse around the domain, individual particles will often
collide with each other, allowing reactions to occur. The reactions that occur are
either motivated through biological observations or are of mathematical interest,
proposed to reflect general aspects of the underlying biology.

The system could be completely described deterministically by Newton’s laws
of motion, treating individual morphogen particles as point masses that can collide
and bounce off one another. In this framework, reactions are defined to occur when
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particles collide with sufficient force. However, due to our ignorance of the initial
positions and velocities of the active and solvent particles and our inability to cope
computationally with the large number of particles involved (which can easily be
of the order of 107 particles and higher [11]), we instead choose to assume that the
discrete populations, Ui, are large enough to be approximated by the continuous
chemical concentrations, �i, which are described using deterministic differential
equations. Immediately, we see that this assumption has produced an error as the
populations can only physically take integer values, whereas, once we take the
continuum limit, the concentrations can take any continuous value. However, it has
been shown that stochastic influences that arise due to the discrete nature of the
particles scale as the reciprocal of the square root of the population size [12]. Thus,
if in a specific biological application the chemical population of interest can be
justified to be large, then a deterministic description is, in general, valid [13].

Since we are dealing with biochemical species, the populations will not be
able to sense their surroundings and, thus, in the absence of some external force
producing directionality, e.g. an electric field, their movement will be a simple
random walk down concentration gradients, deterministically modelled by Fick’s
Law of Diffusion [14]. This law postulates that the chemicals move from regions
of high concentration to regions of low concentration, with a magnitude that is
proportional to the size of the concentration gradient. Although the framework is
described in the context of molecular particles, it is in fact more general and can be
applied to any system where motility is considered to be governed by an unbiased
random walk [15–17].

The evolution of the concentrations �i at position x 2 V and time t � 0 is defined
by the coupled system of partial differential equations (PDEs)

@�.x; t/
@t

D Dr2�.x; t/C F.�.x; t//; (1)

�.x; 0/ D �0.x/ 8x 2 V ;

G.�.x; t// D 0 8x 2 @V and t > 0;

where r2 denotes the Laplacian operator and represents diffusion. The term

F D .F1.�/; : : : ;Fn.�// (2)

defines the (usually non-linear and highly coupled) interactions between the
populations whilst D D Œdii� is a diagonal matrix of diffusivities that is generally
constant in space and time. The diffusivity constants control how quickly the
chemicals spread throughout the domain. Finally, the functional form of G specifies
how the chemicals behave on the boundary of the spatial domain that we are
considering and �0.x/ is the initial concentrations of the chemicals [18].
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Numerous different types of boundary conditions are possible: for example,
homogeneous Neumann, or zero-flux boundary conditions, i.e.

G D @�

@n
D 0; (3)

where n is the outward pointing normal of @V . This simply states that no material
may leave the domain; effectively, the domain is insulated. An alternative type
of boundary condition is known as Dirichlet, or fixed concentration boundary
condition, which, as the name suggests, simply fixes the concentration of the
chemical on the boundary,

G D � � C D 0; (4)

where C is normally a constant. Other boundary conditions, e.g. reactive boundary
conditions [19] or periodic boundary conditions [20, 21], also can be used although
they are not considered here.

Systems such as Eq. (1) are known as ‘reaction-diffusion’ equations. They are
able to produce a large variety of stationary and temporally varying patterns, such
as stationary gradients, travelling waves and moving fronts [22], even without the
Turing instability. Thus, unless biologically motivated to add further components to
capture relevant dynamics, we concentrate on capturing the maximum amount of
complexity through the simplest forms of reaction-diffusion equations.

2.1 Turing Instability

For clarity the current formulae are quoted for reaction-diffusion systems of two
concentrations .�;  /, with Neumann (zero flux) boundary conditions in a one-
dimensional domain, Œ0;L�. Extensions to higher dimensions and various other
boundary conditions are possible [18, 23]. In full generality the equations are

�t D D��xx C f .�;  /; (5)

 t D D  xx C g.�;  /; (6)

where the subscripts x and t denote partial derivatives, and suitable initial conditions
are defined to close the system. Usually the initial conditions are taken simply to be
random perturbations around a spatially uniform steady state, as it is the final pattern
that is evolved that is important, not the initialisation of the system.

The first requirement of a diffusion-driven instability is that there exists a
spatially homogeneous, linearly stable steady state, i.e. there exists .�0;  0/ such
that f .�0;  0/ D g.�0;  0/ D 0 and all eigenvalues of the Jacobian (evaluated at the
homogeneous steady state),

J.�0;  0/ D
 

@f
@�
.�0;  0/

@f
@ 
.�0;  0/

@g
@�
.�0;  0/

@g
@ 
.�0;  0/

!
; (7)
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have a negative real part. The second requirement is that the steady state becomes
linearly unstable in the presence of diffusion. Note that although we derive
conditions that will allow a reaction-diffusion system to realise a Turing pattern,
as we will see in the biological applications section, the solution domain also has to
be bigger than a critical size in order for the patterns to exist.

To derive necessary conditions for pattern formation to occur, the steady state is
perturbed using functions that also satisfy the boundary conditions. Since we are
using zero flux boundary conditions, we use a Fourier cosine expansion of the form
.�.x; t/;  .x; t// D .�0 C O�.x; t/;  0 C O .x; t//, where

� O�
O 
�

D
1X

mD0

�
am
bm

�
e�mtcos .kmx/ ; (8)

and km D m�=L, m D 0; 1; 2; : : : : Explicitly, the cosine function allows us to
satisfy the zero flux boundary conditions since at the boundaries of the solution
domain its spatial derivative will take the form of a sine function, which evaluates
to zero when x D 0 or L. Moreover, because the cosine functions, fcos.kmx/g1

mD0 ,
form a complete orthogonal set, any solution of the linearised equation system can
be decomposed into a series solution of superpositions.

The growth rate �m informs us about the stability of the homogeneous steady
state with respect to the wave mode, km. If the real part of �m is negative for all m,
then any perturbationswill tend to decay exponentially quickly. However, in the case
that the real part of �m is positive for any non-zero value ofm, our expansion solution
suggests that the amplitude of these modes will grow exponentially quickly and so
the homogeneous steady state is now linearly unstable. Moreover, in the case where
there are multiple cos.kmx/ terms growing, small alterations in the initial conditions
(which are bound to occur, since we are assuming that initial conditions are random
perturbations around the homogeneous steady state) can lead to completely different
final outcomes. Critically, the integer values of m for which �m has a positive real
part then indicate how many pattern peaks we will see in the final solution. For
example, if �5 is the only growth rate with positive real part, then we expect that
the system will tend to a solution in which a cos.5�x=L/ function is dominant, so
the final pattern will have the corresponding number of peaks. However, if a range
of growth rates is positive, then multiple cosine modes will fight for dominance and
we will be unable to predict with certainty which mode will dominate in the final
solution, because of the initial random perturbations and nonlinear interactions. This
is the robustness problem. When dealing with animal pigmentation patterns, this
dependence on initial conditions can be a useful property; for example zebra stripes
are as individual as fingerprints [24]. However, such variability is problematic
when we apply Turing’s theory to more robust forms of biological development.
Fortunately, as we will see later, this robustness problem is surmountable.

Substituting Eq. (8) into the linearised form of Eqs. (5) and (6), we obtain

0 D
�
�m C D�k2m � f� �f 

�g� �m C D k2m � g 

��
am
bm

�
: (9)
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This matrix equation has a non-trivial solution (.am; bm/ ¤ .0; 0/) if and only if the
determinant is zero:

�2mC�m..D�CD /k
2
m�f��g /CD�D k

4
m�k2m.D�g CD f�/Cf�g �f g� D 0:

(10)

Letting h.k2/ D D�D k4 � k2.D�g C D f�/C f�g � f g� , the linear stability of
the homogeneous steady state is now governed by the signs of the real parts of

�m˙ D f� C g � .D� C D /k2m ˙p
. f� C g � .D� C D /k2m/

2 � 4h.k2m/

2
:

(11)

First, we consider the linear stability in the case where there is no diffusion, D� D
D D km D 0. For the homogeneous steady state to be linearly stable, the real parts
of both eigenvalues need to be negative. Thus

f� C g < 0; (12)

and

h.0/ D f�g � f g� > 0: (13)

Diffusion is now included and we derive conditions to ensure that at least one
of the eigenvalues has positive real part. Since f� C g < 0 by inequality (12), it
follows that f�Cg �.D�CD /k2m < 0; thus the real part of �m� is always negative.
The only way to obtain an instability is if the real part of �mC is positive. From (11),
this occurs if h.k2m/ < 0. Explicitly,

D�D k
4
m � k2m.D�g C D f�/C f�g � f g� < 0; (14)

) k2� < k2m < k2C; (15)

where

2D�D k
2˙ D D�g C D f� ˙

q
.D�g C D f�/2 � 4D�D . f�g � f g�/: (16)

For inequality (15) to be realised, k2C needs to be real and positive, implying

D�g C D f� > 0; (17)

.D�g C D f�/
2 � 4D�D . f�g � f g�/ > 0: (18)

Since f�g � f g� > 0, from inequality (13), these two inequalities yield one
condition,

D�g C D f� > 2
p
D�D 

q
. f�g � f g�/ > 0: (19)

Thus inequalities (12), (13), (15) and (19) form the conditions needed for a Turing
instability in a reaction-diffusion system.
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f� C g < 0;

f�g � f g� > 0;

D�g C D f� > 2
p
D�D 

p
. f�g � f g�/ > 0;

k2� <
�
m�
L

�2
< k2C:

Turing’s computer science background ideally suited this problem, as not only
did he possess the mathematical skills to create the theoretical framework, but he
was perfectly situated to numerically simulate the equations and, hence, visualise
coarse-grained versions of the patterns (Fig. 1a, b). Due to the dramatic increase
in computational speed and numerical algorithms, we are able to revisit the
calculations (Fig. 1c, d) and see just how good Turing’s first simulations were.
Clearly, although his simulations were very coarse approximations to the equations,
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Fig. 1 Heterogeneous patterns visualised in (a) one and (b) two dimensions, originally created by
Turing himself. Modern versions of the Turing pattern in (c) one and (d) two dimensions. Figures
(a) and (b) is reproduced from [4] by permission of the Royal Society



226 T.E. Woolley et al.

the basic patterns are still visible and very close to those we are now able to generate,
illustrating his impressive computational abilities.

3 Where We Are

Turing’s research was ahead of its time and so, for a while, his ideas lay dormant.
However, the fast pace of theoretical, numerical and biological development that
occurred towards the end of the twentieth century meant that it was the perfect time
for Turing’s theory to enjoy a successful renaissance [25, 26]. Here, we review just
a few of the convincing biological applications, as well as some of the theoretical
extensions, illustrating the richness of the original theory.

3.1 Biological Applications

Perhaps the most colourful application is to pigmentation patterns. Importantly, this
is not restricted to coat markings and animal skin. The Turing instability has also
been suggested to be the mechanism behind the patterns on many seashells [27].

One prediction that immediately springs from the theory concerns tapered
domains, for example a tail. By rearranging inequality (15), we obtain a bound onm,

Lk�
�

< m <
LkC
�
: (20)

Since kC and k� are constants, this means that as the domain size, L, decreases, the
window of viable wave modes shrinks, eventually disappearing. This means that as
a domain becomes smaller, we should see a simplification of the pattern, e.g. from
peak patterns to homogeneity. This result can be extended to the second dimension,
where spot and stripe patterns are available. Once again, as the domain shrinks,
we would expect a transition from spots to stripes, and finally to homogeneity, if
the domain is small enough (Fig. 2a). This is excellently exemplified on the tail of
the cheetah (Fig. 2b). However, the biological world does not always have respect
for mathematics, as illustrated in Fig. 2c, where we observe that the lemur’s pattern
transition goes from a simple homogeneous colour on the body to a more complex
striped pattern on the tail. Potentially, this means that Turing’s theory does hold for
the lemur’s skin. Alternatively, if Turing’s theory is used to account for the lemur’s
patterns, then we have to postulate either that the parameter values for the body and
the tail are different, causing the difference in pattern, or that the patterns arise from
the highly nonlinear regime of the kinetics, where our linear theory breaks down
and, hence, we can no longer use the above predictions.

Importantly, we are not restricted to stationary domains, and these predictions
were extended by Kondo and Asai [28] to pattern transitions on growing angelfish.
As angelfish age, their bodies grow in size and more stripes are included in the
pattern. Critically, the evolving patterns maintain a near-constant stripe spacing,
which is one of the crucial features of a Turing pattern.
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(a)

(b) (c)

Fig. 2 (a) Turing pattern on a tapered domain. Pattern transitions on (b) a cheetah and (c) a lemur

Turing patterns have also been postulated to underlie formation of the precursor
patterns of many developmental systems, for example in mice, where it has been
suggested that molar placement can be described by a diffusion-driven instability.
Critically, not only can the normal molar placement be predicted by the model, but,
by altering the model parameters to mimic biological perturbations, fused molar
prepatterns are predicted, thereby reproducing experimental results [29]. Sheth et al.
[30] further showed that Turing systems could underlie mouse digit development.
In particular, experimental perturbations produced paws that did not change in size,
but the number of digits did increase, leading to a reduction in digit spacing. Like
the stripes on the angelfish, this new digit spacing in the treated mice was constant,
consistent with a Turing-like mechanism. Critically, the reduction in wavelength
could be linked to changes of parameters in a general Turing model.

3.2 Theoretical Extensions

As already discussed, growth is an essential and readily observed process in
development that has been identified as an important factor in the production of
spatial heterogeneity since it can fundamentally change the observed dynamics of
patterning mechanisms. Although growth had previously been included in an ad hoc
manner [31], Crampin et al. [32] were the first to rigorously incorporate the effects
of domain growth into the reaction-diffusion framework. This led to the discovery
that uniform exponential domain growth can robustly generate persistent pattern
doubling, even in the face of random initial conditions (Fig. 3a). This insensitivity to
initial conditions is particularly significant in the context of biological development,
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Fig. 3 (a) Deterministic Turing kinetics on an exponentially growing domain. (b) Stochastic
Turing kinetics on an exponentially growing domain. (c) Stochastic Turing kinetics on an linearly,
apically growing domain. Figure (c) is reproduced with permission from [35]. Copyright 2011
American Physical Society

as not only does heterogeneity need to form, but also, in many cases, it is imperative
that the final pattern be reliably reproducible.

Continuing this idea of robustness, we note that biological systems are frequently
subject to noisy environments, inputs and signalling, not to mention that important
proteins may only appear in very small quantities. Fundamentally, we based the
derived partial differential equation (PDE) framework on the assumption that each
species was present in high concentration, which allowed us to use a continuous
approximation of the chemical concentrations. In order to investigate the Turing
mechanism’s sensitivity to noise, stochastic formulations have been created and
even extended to encompass descriptions of domain growth [33–35]. Although it is
clear that the Turing instability is able to exist (Fig. 3b), even in the face of intrinsic
randomness, we see that uniform domain growth is no longer able to support the
robust peak splitting that Crampin et al. [32] demonstrated in the deterministic
system. However, if growth is localized to one of the boundaries (known as apical
growth), then we see that pattern peaks appear in the domain one at a time, creating
a consistent consecutive increase in the pattern wavenumber (Fig. 3c). If apical
domain growth and wavenumber were connected in some form of feedback loop,
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then, once the desired wavenumber was reached, growth would stop, leaving a stable
pattern of exactly the desired wave mode. Thus, robust pattern generation can be
recovered. It should be noted that noise does not need to be generated explicitly
through stochastic reactions. Turing systems can also be chaotic, thus producing a
deterministic form of noise [36].

A further relaxation of the fundamental assumptions behind the PDE formulation
concerns the reaction rates as being defined by the Law of Mass Action. As
originally stated, the law assumes that reactant products are created at the same
moment that the reaction occurs. However, this may not always be the case. Reaction
delays are particularly important when dealing with the production of important
proteins as a cascade of time-consuming biological processes must occur in order
for a single protein to be produced. Firstly, a linear polymeric ribonucleic acid
(RNA) molecule is produced in a cell nucleus. This RNA molecule is an exact copy
of the relevant gene sequence and is modified into a form called messenger RNA
(mRNA). ThemRNA is then transported into the nuclearmembrane, where it is used
as a blueprint for protein synthesis. In particular, the process of mRNA translation
involves the polymerization of thousands to millions of amino acids. Given the
complexity of this mechanism, it should not be surprising that a delay occurs
between the initiation of protein translation and the point at which mature proteins
are observed. The exact delay depends both on the length of the sequence being
read and the sequence being created. However, typically the delay ranges from tens
of minutes to as long as several hours [37]. Work has been done on including these
gene-expression delays into both the deterministic and stochastic PDE formulations
of the Turing instability, leading to observations of wildly different outcomes when
compared to the non-delayed equations [38–40]. The potentially most worrying case
is that of kinetic delays causing a catastrophic collapse of the pattern formation
mechanism. Furthermore, such pathological dynamics occur consistently, regardless
of domain growth profiles [41].

4 Computational Extensions

Of course, our simulations on one-dimensional lines and two-dimensional flat
surfaces should always be questioned as to their accuracy in reproducing the effects
of a real surface, which may have high curvatures. For example, pigmentation
patterns are produced on skin surfaces that are stretched over skeletons that have
highly non-trivial geometries. Turing mechanisms have been studied on simple
regular surfaces, e.g. spheres, cones, etc. [42]. However, recent developments in
numerical algorithms have allowed us to push our studies even further, allowing us
to greatly generalise the geometries on which we numerically simulate the reaction-
diffusion systems.

PDEs on surfaces are normally solved using finite element discretisations on a
triangulation of the surface [43] or some other discretisation based on a suitable
parameterisation of the surface [42]. An alternative approach to parameterizing
the surface is to embed it in a higher-dimensional space [44]. The PDEs are then
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Fig. 4 Examples of Turing patterns on general surfaces, computed using the closest point method
[44]

solved in the embedding space, rather than just on the lower dimensional surface.
Embeddingmethods have the attractive feature of being able to work using standard
Cartesian coordinates and Cartesian grid methods [44]. Thus, it is within this class
that the Closest Point Method was developed and analyzed [45]. Although we will
not go into full details concerning the technique here, we do present the simple
central idea of the embedding, which, as the name suggests, is the construction of
the closest point function.

Definition 1 For a given surface S, the closest point function cp W Rd ! Rd takes
a point x 2 Rd and returns a unique point cp.x/ 2 S � Rd which is closest in
Euclidean distance to x. Namely,

cp.x/ D min
q2S jjx � qjj2: (21)

If more than one q should fit this property, a single one is chosen arbitrarily.

From this definition, equations governing quantities on the surface can be
extended to the embedding space. The equations are then solved more easily in the
regular grid of the embedding space. This solution in the embedded space evaluated
on the original surface will then agree with the solution that would have been
generated if we had simply tried to solve the equation on just the surface. Examples
of the impressive generality of this technique are given in Fig. 4.

5 Where We Want to Go

Now that we better understand the formation of Turing patterns on general two-
dimensional surfaces, it is natural to want to extend to three and higher dimensions.
Indeed, theoretical, experimental and computational work does exist heading in
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this direction [46–49]. However, by going to higher dimensions we start having
problems of pattern degeneracy. In one dimension, we are guaranteed only discrete
peaks. The only degeneracy is in the choice of polarity, i.e. for any pattern mode
that is based on a cos.kx/ form, � cos.kx/ is also a possible solution with opposite
polarity. In two dimensions, not only can we obtain stripes, spots and labrythine
patterns, but the orientation of these patterns is also variable, because any wave

vector k, which is associated with a critical wave number jkj D
q
k2xm C k2yn D kc,

such that Re.�m.kc// > 0, defines a growing mode. This means that in the
spatially bounded two-dimensional case a finite number of Fourier modes can have
wave vectors that lie on the critical circle [50]. Thus, spots can be arranged in
rectangular, hexagonal, or rhombic patterns amongst other, more varied templates.
This degeneracy problem becomes even more complex in three dimensions, where
lamellae, prisms, and various other cubic structures all exist, making prediction
even more difficult [51]. Weakly nonlinear theory and equivariant bifurcation theory
[7, 51–53] can be used to derive amplitude equations near a critical bifurcation point
that separate the homogeneous and patterned stationary stable states.

However, analysis will only get us so far and thus we are depending more and
more on numerical simulation in order to explore patterning parameter space. This
illustrates the great need for three-dimensional PDE solvers that are not only able
to efficiently approximate the solutions of stiff PDEs with fine spatial resolution,
but also are flexible enough to incorporate various boundary conditions, geometries
and spatial heterogeneities. Further, analogously to the above work, changing
from continuous descriptions of the populations to individual-based stochastic
simulations in three dimensions poses another computationally intensive task. There
has been work done on speeding up stochastic simulation algorithms [54–56];
however, work has only just begun to consider the potential powerful use of parallel
computing, which is a much underexplored territory [57].

Equally, the computational visualisation of Turing patterns in higher dimensions
needs consideration, as the basic planiforms, discussed above, are much more
complicated. Moreover, the ability to compare such visualisations with actual data
is still in its infancy and there are, as yet, few metrics by which a simulation can be
compared to an experiment. Currently, we depend on simply matching the general
pattern and the ability of the kinetics to reproduce experimental perturbations.
However, to rigorously compare such patterns we must be able to develop image
segmentation software that is capable of extracting dominant features of numerical
and experimental results and comparing them using statistical methods.

Importantly, we do not need to extend to a third spatial dimension to find new
problems. There are many still unanswered questions in lower spatial dimensions,
but with more than two chemical species [58]. To suggest that many complex
biological phenomena occur because of the interactions of two chemical species is
misguided, at best. In reality, a single developmental pathway can depend on many
hundreds of gene products interacting through a complex network of non-linear
kinetics. Moreover, living systems have numerous fail-safe mechanisms, such as
multiple redundant pathways, that only activate when there is a problem with the
main network. This means that even if we are able to produce a complete gene
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product interaction map for a given biological phenomenon, the phenomenon may
still occur if the network is disrupted, making conclusions difficult.

Once again, analysis of such large systems can only lead us so far, before
numerical simulations are required [59]. However, we are starting to see new
branches of mathematical biology that seek to deal with these large networks,
either through mass computer parallelisation of data processing [60, 61] or through
rigorously and consistently identifying key features and time scales that allow
the full system to be greatly reduced to a much smaller number of important
species [62–66]. In either approach, efficient numerical algorithms are of paramount
importance, and we hope to see more development in this direction in the future.

A rapidly growing research area is that of synthetic biology [67, 68]. In the
future, no longer will we use mathematics to mimic a natural system’s ability
to produce patterns; instead, we will design tissues and cells that are able to
reproduce mathematical predictions. Further, by utilising the large knowledge
base surrounding the numerous extensions of Turing’s theory, we may be able to
customise such designs in order to produce patterns with specific properties.

6 Discussion

As can be clearly seen, Turing’s theory for the chemical basis of morphogenesis has
been applied to a wide range of patterning phenomena in developmental biology.
The incredible richness in behaviour of the diffusion-driven instability has also
allowed the theory to be extended dramatically from its humble beginnings of two
chemicals deterministically reacting in a simple domain. Indeed, it is testament to
Turing’s genius that, not only did he discover such a counter-intuitive mechanism,
it is still generating new ideas, even after 60 years of research. Importantly,
our progress has significantly benefited from the recent rapid developments in
computational software and hardware. Indeed, with the continued development of
the biological techniques and computational visualisation abilities discussed in the
last section, we could be at the dawn of a new age of Turing’s theory, enabling us to
further strengthen the links between experimental and theoretical researchers.
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