
Math j Bio
Semblance of Heterogene
ity in Collective Cell
Migration
Graphical Abstract
Highlights
d Homogeneous cells appear heterogeneous due to limited

sampling and repeatability

d Heterogeneity bias increases with attraction/repulsion

between cells

d Movement in confined environments decreases apparent

heterogeneity

d Hypothetical applications in neural crest and in vitro cancer

systems
Schumacher et al., 2017, Cell Systems 5, 119–127
August 23, 2017 ª 2017 Elsevier Inc.
http://dx.doi.org/10.1016/j.cels.2017.06.006
Authors

Linus J. Schumacher, Philip K. Maini,

Ruth E. Baker

Correspondence
l.schumacher@imperial.ac.uk

In Brief

Schumacher et al. use a mathematical

model to show how cell populations can

appear heterogeneous in their migratory

characteristics, even though they are

made up of identically behaving

individual cells. This has important

consequences for the study of collective

cell migration in areas such as embryo

development or cancer invasion.

mailto:l.schumacher@imperial.ac.�uk
http://dx.doi.org/10.1016/j.cels.2017.06.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2017.06.006&domain=pdf


Cell Systems

Math j Bio
Semblance of Heterogeneity
in Collective Cell Migration
Linus J. Schumacher,1,3,* Philip K. Maini,2 and Ruth E. Baker2
1Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
2Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
3Lead Contact
*Correspondence: l.schumacher@imperial.ac.uk

http://dx.doi.org/10.1016/j.cels.2017.06.006
SUMMARY

Cell population heterogeneity is increasingly a focus
of inquiry in biological research. For example, cell
migration studies have investigated the heterogene-
ity of invasiveness and taxis in development, wound
healing, and cancer. However, relatively little effort
has been devoted to exploring when heterogeneity
is mechanistically relevant and how to reliably mea-
sure it. Statistical methods from the animal move-
ment literature offer the potential to analyze hetero-
geneity in collections of cell tracking data. A
popular measure of heterogeneity, which we use
here as an example, is the distribution of delays in
directional cross-correlation. Employing a suitably
generic, yet minimal, model of collective cell move-
ment in three dimensions, we show how using such
measures to quantify heterogeneity in tracking data
can result in the inference of heterogeneity where
there is none. Our study highlights a potential pitfall
in the statistical analysis of cell population heteroge-
neity, and we argue that this can be mitigated by the
appropriate choice of null models.

INTRODUCTION

Collective migration of cell populations plays an important role in

development, regeneration, and disease. Evidence is mounting

that population heterogeneity functionally contributes to the col-

lective behavior of cells in many systems. One form of heteroge-

neity that is frequently studied is that of leader and follower cell

states within a population. This has been investigated in the

migration of the zebrafish lateral line primordium (Streichan

et al., 2011), Drosophila border cells (Inaki et al., 2012), and

neural crest cells (McLennan et al., 2012, 2015a), as well as neu-

trophils and T cells (Lim et al., 2015), to mention only a few

examples.

However, leader-follower heterogeneity is not found in all

collectivelymigrating cell populations, andmathematical models

are able to produce collective migration of a group of identical

agents, calling into question the need for such heterogeneity

(see discussion in Box 2 in Schumacher et al., 2016). In addition,

evidence for the plasticity of leader cell states in neural crest
C

(McLennan et al., 2012, 2015b), as well as Drosophila border

cell migration (Rørth, 2012), indicates that population heteroge-

neity may often emerge from the interaction of cells with micro-

environmental signals. Recent theoretical work has also shown

that (proliferative) heterogeneity can arise from constraints,

such as confinement, alone (Smadbeck and Stumpf, 2016).

Together these pieces of evidence raise the question of how

cell interactions and microenvironmental conditions can induce,

promote, or otherwise affect the heterogeneity of a cell popula-

tion, and our ability to measure it.

Cell-tracking data provide a major source for evidence of het-

erogeneity of movement. Advances in three-dimensional (3D)

imaging and computational tracking of complete cell popula-

tions in vivo or in realistic in vitro assays give rise to rich datasets

amenable to measuring distributions of statistics of interest. For

example, recent efforts by Sharma et al. (2015) have drawn on

methods from the literature on animal movement (Nagy et al.,

2010) to measure cross-correlational delay times of mammalian

cell cohorts moving in a 3D extracellular matrix gel. Such

methods could be of great interest, for example to characterize

the invasiveness of cancer cells from different tumor samples

and assess the efficacy of potential metastasis-inhibiting treat-

ments. However, unlike the animal experiments for which such

methods were initially developed, cell biology assays are limited

in observation time, and typically cannot be repeated with the

same cells while retaining individual identification. Both these

shortcomings result in smaller datasets, which are more prone

to spurious correlations from chance.

As researchers we are faced with the problem of when, and

when not to, include heterogeneity in our mechanistic descrip-

tions of collective cell migration. In short, when we observe

what appears to be heterogeneity, is this an intrinsic property

of the system, an emergent phenomenon, or a statistical artifact?

Here, we take inspiration from previous studies to highlight po-

tential pitfalls in the analysis of tracking data from cell collectives.

We develop a suitably versatile model for 3D collective cell

migration and use this to generate trajectory data which we, in

turn, analyze with a commonly used measure of heterogeneity,

the distribution of delay times in directional cross-correlation.

By showing that, under this protocol, we can measure heteroge-

neity in the form of leader-follower relationships despite

individuals being identical, we demonstrate that care must be

taken when using this, or similar, measures of heterogeneity.

Our results highlight that appropriate null models must be care-

fully dedicated to particular experiments to assess the statistical

significance of observed correlations. By analyzing the
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systematic bias of our analysis toward apparent heterogeneity

as a function of model parameters and boundary conditions,

we propose two hypothetical applications of our work that could

be tested using in vivo and in vitro cell-tracking data. We

conclude by discussing alternative measures of heterogeneity,

further model extensions, and potential avenues for the develop-

ment of statistical tests.
RESULTS

A Generic Model for Collective Cell Migration
Grégoire et al. (2003) have previously developed a self-propelled

particle (SPP) model for collective migration in two dimensions.

We here extend this model to three dimensions, but for simplicity

first explain the basic model components in two dimensions. The

direction of movement, q, of cell i at time t+1 is given by

qt +1
i = arg

2
4a X

rij%re

vtj + b
X
rij%r0

fij +Nihu
t
i

3
5: (Equation 1)

In this equation, three terms independently influence the direc-

tion of movement, variously depending on the separation, rij, be-

tween cells i and j: (1) alignment with the movement direction of

all neighboring cells (within distance re, where vtj is the velocity of

cell j at time t, for simplicity assumed to be of fixed speed), scaled

by parameter a R 0; (2) intercellular forces, fij, i.e., attraction/

repulsion toward/away from neighboring cells (within distance

r0), scaled by parameter b R 0; (3) noise, here chosen to be a

random vector on the unit sphere, ut
i , which scales with the num-

ber of neighbors, Ni (within distance r0, including cell i itself), to

represent the uncertainty in the forces from neighboring cells

(Grégoire et al., 2003). The noise term is controlled by parameter

hR 0, and without loss of generality we have set h = 1 in the sim-

ulations presented here. Interactions between cells are further

restricted to nearest Voronoi neighbors only, even if more cells

are within the respective distance cut-off. Figure S1 illustrates

the various interaction zones.
Extension to Three Dimensions
In the 3D model we have developed here, the direction of move-

ment is parameterized by two angles, the azimuthal angle,

q (from �p to p), and the polar angle, f (from 0 to p), which are

updated according to

F=a
P

rij%re

vtj + b
X
rij%r0

fij +Nihu
t
i ;

qt + 1
i = arctan

�
Fy; Fx

�
;

ft + 1
i = arccosðFz=jFjÞ;

(Equation 2)

where the interactions in (Equation 2) are again between nearest

neighbors only. Cell positions for cell i are updated via

xt +1
i = xti + v0 ðcosqt + 1

i sinft +1
i ; sinqt +1

i sinft + 1
i ; cosft +1

i Þ, with

fixed speed v0 = 0.05, respecting boundary conditions. For de-

tails on the form of the intercellular forces, see Method Details

in the STAR Methods. In this paper, we have implemented

both free (cells are unconfined) and no-flux (reflective) boundary

conditions. A similar 3D model has also been developed by

Sharma et al. (2015), with small but important differences in the
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model implementation. Crucially, we have kept the original

idea by Grégoire et al. (2003) to restrict interactions to nearest

Voronoi neighbors.

Intrinsic Heterogeneity
In the work shown here, we primarily focus on homogeneous

populations and how they can appear heterogeneous. To explic-

itly include heterogeneity, we repeated a subset of our simula-

tions with a few ‘‘informed’’ cells, or cells in a leader state. The

randomly chosen subset of informed cells aligns, not with their

neighbors, but with a prescribed direction (here chosen to be

the x-axis, without loss of generality). This preferred direction

could represent, for example, a chemoattractant gradient or

other directional cue. The alignment strength, a, is the same as

for the other cells, and other cells still align with the informed

cell if they are neighboring them. We chose 10% of cells to be

in such a leader state, as similarly small fractions have been re-

ported as sufficient to affect the overall population behavior in

migrating cell populations (McLennan et al., 2015a) and active

systems more generally (Yllanes and Marchetti, 2017).

Computational Experiments
The mathematical model has been implemented in MATLAB.

Unless stated otherwise, 3D simulations were run without

confinement (free boundary conditions), for 100 cells whose

initial positions were chosen randomly from within a cube of

edge length L = 2. To alleviate the influence of transient behavior

dependent on initial conditions, we run simulations for 1,000

time-steps and ignore the first 500 time-steps in our analysis, in-

specting the order parameter (see Global Model Behavior in the

STAR Methods) plotted against time to validate that this is suf-

ficient to reach a (quasi-)steady state. We find that groups of

cells move in an ordered (globally aligned) manner for high

values of a and b (Figure S3). Example trajectories (Figure 1)

reveal moving streams and slowly translating clusters that break

apart as the strength of intercellular forces, b, becomes compa-

rable to the noise strength, h = 1, or lower. At low a and high b,

groups of cells are in static, positionally ordered, arrangements

(Figure 1).

Delay Correlation Analysis
To measure heterogeneity of movement within a group of mov-

ing cells, we measure the extent to which cells are following

one another using delay correlation analysis. For two cells

i and j the directional cross-correlation at lag t is calculated as

Ct
ij =

*
vti,v

t + t
j���vti ������vt + t
j

���
+

t

; (Equation 3)

where , denotes the scalar product and h.it time-averaging.

The peak-delay time, tC, for a pair of cells is that for which Ct
ij

is highest in the observed data. By binning the peak-delay times

for all cells in the population, we obtain the sample distribution

P(tC), so that P(t1) = 1 would mean that all pairs of cells have their

highest directional cross-correlation at lag t1, andP(t0) = 0means

no pair of cells has peak correlation at lag t0 (note that P(tC) is

symmetric about t = 0 since Ct
ij =C�t

ji ). Thus, P(tC) constitutes a

population-scale measure of heterogeneity.



Figure 1. Simulated Cell Trajectories

Example trajectories of simulations with N = 100 cells and free boundary conditions, showing a range of migratory behaviors achievable with our generic model,

such as dispersal, streaming, moving, and static clusters, as well as disordered arrangements (labeled by visual inspection). Different model behaviors are

achieved by varying the alignment strength, a, and the strength of attraction/repulsion, b. See also Equation (2). Here, 100 time-steps are shown after simulations

have run for 500 time-steps, starting from random initial positions (see main text for details). Scale bar shows L = 1.
To only consider cohesively moving populations, we restrict

our analysis to model realizations with directional order above

a minimum threshold, that we set at Fmin = 0:1. Within those

simulation results, we then find peak-delay times for any pairs

of cells which have been within interaction radius r0 and have

directional cross-correlation of Cmin = 0.5 or greater at at least

one time point. An illustrative example of the resulting distribu-

tion of peak-delay times is shown in Figure 2A, indicating that

the width of the distribution increases with b. To test whether

some cells showed consistently non-zero lag times (either lead-

ing ahead or following behind others), we also calculate the

distribution of peak-delay times for the directional correlation be-

tween individual cells and all other cells in the population. An

example of the individual distributions is shown in Figure 2B.

For a more comprehensive view, we calculate the SD of the

peak-delay distribution, s(tC), as a measure of the width of the

distribution, which can be seen to increase consistently with

increasing b over a range of values for a (Figure 2C). The SD is

also high for low values of b at some values of a, but this trend

is not consistent across the range of a values. Increasing the

alignment strength, a, for fixed b does not increase the measure
of heterogeneity. In summary, stronger attraction/repulsion be-

tween cells leads to increased apparent heterogeneity.

When we included heterogeneity in our simulations, we found

that the increase in apparent heterogeneity is less strong for high

alignment strength (Figure 2D). This can be understood as strong

alignment with a prescribed direction suppressing directional

fluctuations. The model with heterogeneity fit the experimental

data (see Box 1 and Comparison with Experimental Data in the

STAR Methods) at lower values of the interaction strength

parameter (Figure B1) than the homogeneous model. This illus-

trates the cohesive effect that even small numbers of cells in

a leader state can have on the population.

DISCUSSION

In this paper, we have used a minimal model of collective cell

migration to highlight potential pitfalls in measuring heterogene-

ity from cell-tracking data. We have presented a model for 3D

collective cell migration that can generate trajectories of moving

cell populations with a variety of collective behaviors (Figure 1).

Focusing on cohesively moving cell populations, we analyzed
Cell Systems 5, 119–127, August 23, 2017 121



Figure 2. Delay Correlation Analysis

(A) Peak-delay distributions of model simulations with a = 16 for varying values of b. Points show the average for each bin over 10 simulations, shaded area shows

the SD. Peaks in directional cross-correlation between cells were calculated over 500 time-steps after 500 time-steps burn-in.

(B) Peak-delay distributions of individual cells (smoothed) for one simulation of the chosen parameter combination. Distributions with higher absolute mean are

shown in red, and distributions with lower absolute mean (closer to zero) are shown in lighter shades of red.

(C and D) SD of peak-delay distributions, s(tC), plotted against strength of intercellular forces, b, for varying values of alignment strength, a, calculated from

simulations of homogeneous populations (C), and from simulations including heterogeneity in the form of informed cells (D). Points showmean of 10 simulations;

shaded areas show standard error of the means. The horizontal axes on the main plots show log scale in b, while the insets show a linear scale, highlighting the

systematic increase in heterogeneity over a wide range of b (more pronounced in C). Any missing data were excluded due to simulations not being ordered or

sufficiently correlated (see main text for details).
the heterogeneity of migration using delay correlation analysis,

demonstrating that non-zero heterogeneity can be measured in

a homogeneous population with interactions (Figure 2A). This

apparent heterogeneity stemmed not just from cells with broad,

but symmetric, individual delay distributions, but also from cells

whose correlation with the rest of the population peaked consis-

tently at non-zero delays (Figure 2B), thus capturing leading and

lagging on the timescales of observation. We further found that

this bias toward apparent heterogeneity increases with stronger

intercellular forces (Figure 2C), but not consistently sowith stron-

ger alignment. By applying no-flux boundary conditions, we

investigated how confinement affects the appearance of hetero-

geneity and found that, for a given population density, more

narrowly confined populations appear less heterogeneous
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(Figure 3E). Finally, we suggested two biological applications

where our results may be relevant: (A) in the study of NC cell

migration in different embryonal microenvironments, and (B)

when cancer cells undergo a transition to becomemore invasive

(see Box 1). Based on the insight gained from our modeling

study, we considered potential in vitro, as well as in vivo, exper-

iments and hypothesized their outcomes.

Our goal was to present an illustrative example using a suitably

generic model of collective movement, rather than to construct

the most realistic model of collective cell migration—which

will differ with each biological application. Even within this

constraint, other modeling choices are possible: For example,

the explicit alignment term in our model equations might seem

unrealistic. In an alternative SPP model for collective cell



Box 1. Biological Applications

NEURAL CREST MIGRATION

Neural crest (NC) cells display a wide range of migratory patterns in different organisms and embryonal locations, yet a unified

mechanistic understanding has so far eluded the research community. For example, in chick cranial NC migration, data on cell

behavior and gene expression, as well as mathematical modeling, have suggested a collective migration mechanism whereby

the cell population is divided into leader and follower states (McLennan et al., 2012, 2015a), which are dynamically induced by

microenvironmental signals (McLennan et al., 2015b). In Xenopus cephalic NC a complementary mechanism has been studied,

based on balanced contact inhibition of locomotion and co-attraction (Carmona-Fontaine et al., 2011; Woods et al., 2014), without

explicit heterogeneity in the cell population.

Recent experiments in zebrafish used cell-tracking evidence to argue for heterogeneity in trunk NC, but not cranial NC (Richardson

et al., 2016). Measures of heterogeneity used in that study include the directional correlation of cells with the migratory route, and

change of relative position of cells within the group. As only a few tens of cells per embryo were analyzed, an appropriate null model

could help to answer how likely one is to see the differences observed in homogeneous populations. Furthermore, as cranial NC

cells migrate in streams and trunk NC cells migrate in narrower chains, appropriate models could explore how different microen-

vironmental conditions with varying degrees of confinement can affect the chances of observing differences in measures of het-

erogeneity.

Figure B1. Comparison of Models with and without Heterogeneity with Experimental Data

(A) Experimental data (black line, estimated from Sharma et al., 2015, Figure 4C) and simulations for N = 10, a = 8, b = 4.

(B) Experimental data (black line, estimated from Sharma et al., 2015, Figure 4D) and simulations for N = 20, a = 6, b = 8.

(C) Experimental data (black line, estimated from Sharma et al., 2015, Figure 4C) and simulations for N = 10, a = 6, b = 2.83, with one informed cell.

(D) Experimental data (black line, estimated from Sharma et al., 2015, Figure 4D) and simulations for N = 20, a = 6, b = 5.66, with two informed cells. Colored

lines show the mean of smoothed simulation results; shaded area shows 2s confidence interval (n = 10). See Comparison with Experimental Data in the STAR

Methods for details.

(Continued on next page)
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Box 1. Continued

In our delay correlation analysis we find that confinement tends to decrease the apparent heterogeneity (Figure 3E) for a given

parameter combination and population density. When including a fraction of 10% leader-like cells, confinement still decreases

the measure of heterogeneity (compared to no confinement), but increasing confinement has less effect on the ability to detect

heterogeneity (Figure 3F). For similar analysis of in vivo tracking data from trunk and cranial NC cells, we can thus predict the

following: If decreased heterogeneity wasmeasured in the trunk versus head, the populations may, in fact, both be homogeneous.

This would suggest that leader-like cell states may not exist in vivo, as the observations (differences in heterogeneity) can be

explained without them. If the measure of heterogeneity was greater in the trunk, then both locations could host heterogeneous

populations. Such an observation would support the notion that cells adopt leader-like states, or otherwise respond differentially

to guidance cues, which could be of biological importance.

TUMOR INVASION

Heterogeneity of cell migration is of great interest to cancer research, for example to identify whether a subpopulation of cells in a

tumor ismore invasive, andhow this invasivebehavior canbemodulatedbydrugsormicroenvironmental properties.Recent studies

of mammalian cell cohorts in 3D environments have used delay correlation analysis to quantify heterogeneity (Sharma et al., 2015).

The authors found a range of delay distributions of different cell clusters, indicating potential evidence for heterogeneity of move-

ment between different cell clusters (althoughmaking no direct claim as to any underlying heterogeneity of cell states themselves).

To distinguish between transient artifacts of small sample sizes and spatiotemporal heterogeneity as an intrinsic property of a cell

collective, one has to compare the delay distributions with those generated from a suitable null model. To illustrate this, we simu-

lated our model with lower cell numbers, representing the size of cell cohorts observed by Sharma et al. (2015) (see Comparison

with Experimental Data in the STAR Methods). Our results (Figure B1) show that existing data are broadly consistent with results

obtained from a model without heterogeneity, as well as a model with a few cells striving to move in a particular direction. Here,

heterogeneity cannot be inferred from the width of the peak-delay distribution alone. With heterogeneity, the model is best fit at

lower interaction strengths for either dataset. The best fit for each of the datasets is at different simulation parameters, suggesting

inter-cluster heterogeneity in the experimental observations, but a greater number of comparable experimental datasets is

required to make any such inference robust. However, the point of this illustration is explicitly not to argue that our model is the

best description for the data, but that one cannot deduce heterogeneity from the measurements without consideration of an

appropriate null model.

Furthermore, we found that stronger attraction-repulsion between cells can increase apparent heterogeneity in a population of

identical cells (Figure 2A). This leads to an intriguing hypothesis: When tracking cell clusters that undergo a transition to become

more invasive, they may appear less heterogeneous as the cluster loosens and cells start to break free from the attachments to

their neighbors.
migration, Szabó et al. (2006) have shown that short-range adhe-

sive forces can be equivalent to an alignment term. We therefore

anticipate that the results of our simulations and analysis would

not change qualitatively if alignment of movement directions was

mediated through another type of interaction, such as short-

range adhesion.

To quantify heterogeneity of collective movement, we chose

the popular method of delay correlation analysis (Nagy et al.,

2010). The idea behind this method is to calculate to what extent

some cells move first, and others follow. Alternative methods to

determine the (directional) coupling between cells, other than

cross-correlation, are available, such as causal information

flow (Richardson et al., 2013; Lord et al., 2016), or ‘‘delay space’’

measures using the Fréchet distance (Konzack et al., 2016).

Measures of heterogeneity other than delay in directional

coupling could be used to complement the analysis. One

example is the degree of rearrangement of cells’ relative posi-

tion, which can be quantified as ‘‘neighbor overlap’’ (Cavagna

et al., 2013).

Other studies have considered how tomeasure cell population

heterogeneity in, for example, gene expression (Altschuler and

Wu, 2010; Vallejos et al., 2016). Our work is complementary as

we show how even measuring distributions may not suffice to
124 Cell Systems 5, 119–127, August 23, 2017
‘‘determine which variation is random and which is meaningful’’

(Altschuler and Wu, 2010). Here, too, appropriate mathematical

methods (Vallejos et al., 2016) can be utilized to assess whether

genetic heterogeneities of cell populations are statistically signif-

icant in the first place. Even if genetic heterogeneity can be reli-

ably measured, it may still be of interest to correlate this with

behavioral analysis, e.g., cell tracking.

In vivo, cell population heterogeneity is often located at the

boundary of a migrating collective (McLennan et al., 2015a),

where cells are exposed to different microenvironmental signals

(McLennan et al., 2015b). Thus, it is natural to ask whether cells

at the boundary of our simulated populations also show

increased heterogeneity. Cells at the boundary have fewer

neighbors to interact with than cells at the core, which influences

the direction of movement through alignment, attraction-repul-

sion, and noise (Equation 2). However, when analyzing cells at

the boundary and core of the population separately, we found

no difference in peak-delay distributions (Figure S4). Therefore,

the apparent heterogeneity that can arise from interactions be-

tween identical agents is not an ‘‘edge effect.’’

In an extension of our model we included cells in a leader

state, which align with a prescribed direction instead of

with their neighboring cells. For this particular form of cell
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Figure 3. Heterogeneity underConfinement

(A–D) Example trajectories of free (A) and confined

(B, L = 2; C, L = 1; D, L = 0.6) simulations are

shown for a = b = 4. No-flux boundaries are shown

in gray and free boundaries in white, and the scale

bar shows L = 0.5. Colors are chosen to distin-

guish different lines only.

(E and F) The SD of peak-delay times in directional

cross-correlation, s(tC), for simulations with free,

as well as no-flux, boundary conditions in x, y for

three domain sizes, L. Cell number, N, was

decreased to maintain the population density for

different domain sizes. All parameter combina-

tions in the integer range a˛{4,8} and b˛
{1,2,4,8,16} were simulated, with each line dis-

playing results for a different parameter combi-

nation. Lines are to guide the eye only (horizontal

axis is not continuous). (E) Results from homo-

geneous cell populations. (F) Results with 10% of

cells in a leader state (alignedwith the x axis). Note

different scales in (E) and (F).
population heterogeneity, different implementations could

be considered within the SPP modeling framework. For

example, Ferdinandy et al. (2017) adapted the model of

Szabó et al. (2006) to include leader-follower heterogeneity

by also varying the interaction strengths (albeit to represent

horse harems, which also required directionality of interac-

tions). Similarly, Chang et al. (2013) have used an SPP model

with asymmetric alignment interactions to represent tumor-

stromal interactions.
Cell
Our work illustrates how different

choices of null models can affect the

interpretation of heterogeneity in cell

population data. Comparing different

versions of our model, with and without

heterogeneity, with experimental cell-

tracking data (Figure B1), we showed

that either was able to capture the

width of the peak-delay distribution,

but different parameter values gave the

best fit in each case. Without consider-

ation of the homogeneous model, one

may have been led to conclude hetero-

geneous motility in the tracked cell

clusters. Even with both choices of

null model to compare one could not

strongly differentiate, based on the

data at hand, between a homogeneous

cell population and a less strongly inter-

acting heterogeneous population—they

yield peak-delay distributions of similar

width. This fact can be used by experi-

mental researchers to assess limitations

in their data, such as observation time,

sampling frequency, and/or number of

replicates.

Going beyond simulation studies,

random matrix theory can be used to

rigorously quantify the expected corre-
lations between a collection of random variables. This branch

of statistics has numerous and fruitful applications in physics,

finance (Bouchaud and Potters, 2009), and, more recently,

biology (Klein et al., 2015). Analytical tractability of random

matrix statistics, however, decreases drastically when

venturing beyond independent Gaussian random variables.

In collective cell migration, and in biology more generally,

relevant null models fall into this territory more often than

not. We may never see a random matrix theory of collective
Systems 5, 119–127, August 23, 2017 125



cell migration, but perhaps we can use it as inspiration to

make headway with numerical calculation and computational

modeling.

To close, we would like to loosely suggest best practices to

avoid spurious correlations in complex biological systems. We

ought to maximize observation time in a given experiment, as

much as is reasonable without sacrificing the stability of the

experimental system. When interpreting the results, it is imper-

ative that we think carefully about what the null hypothesis is,

and be aware that the usual tests for statistical significance

may not apply. When comparing different biological systems,

or observing the change in a system over time, we should

also try to compare these with tailored, yet simple, simulations

to sanity-check at least the qualitative differences or trends

we observe. With this study, we hope to have contributed

to a conceptual guideline for researchers interested in quanti-

fying heterogeneity of cell populations, a field we expect to

grow substantially with the increasing abundance of cell-

tracking data.
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METHOD DETAILS

Intercellular Forces
Intercellular forces point in the direction of the unit vector eij between cells i and j, i.e., fij = f(rij)eij. The magnitude of the force, f(rij), was

chosen to reflect hard core repulsion at short distances (informally described as a force of infinite magnitude), spring-like attraction-

repulsion at intermediate distances, and no force at large distances. Specifically, the magnitude of the force between two cells i and j

separated by a distance rij is given by

fðrijÞ=

8>>>>>>>>><
>>>>>>>>>:

�N 0%rij%rc

rij � re
ra � re

rc<rij%ra

exp

�
� 2

rij � ra
r0 � ra

�
ra<rij%r0

0 r0<rij

: (Equation 4)

Here, rc denotes the core radius, re the equilibrium cell separation, ra the attraction radius, and r0 the interaction radius, above which

cells cease to exert forces on each other. Default parameter values used here are r0 = 0.2, re = 0.5, ra = 0.8, and r0 = 1. In our numerical

implementation we approximate the magnitude of infinite force (volume exclusion) by exp(100). The exponential regime was chosen

to represent de-adhesion processes for increasing cell-cell separation. This does not accurately reflect forces for cells forming a new

contact (decreasing distances), which would require a force-law exhibiting hysteresis. However, we have opted for the simpler form

above as our simulations are of cell collectives in contact and we are here not investigating cases when these become cohesive after

being initially separated. Thus, the form of intercellular force chosen is sufficient for our purpose. Figure S2 compares our choice of

intercellular force with that of Grégoire et al. (2003).

QUANTIFICATION AND STATISTICAL ANALYSIS

Global Model Behaviour
First, we quantify global alignment of velocities vi for N cells as

F=

���PN
i = 1vi

���PN
i = 1

���vi���=
���PN

i = 1vi

���
Nv0

; (Equation 5)

where the second equality holds for constant speed v0. Thus, a value of F = 1 means all cells are perfectly aligned, while a value of

F = 0 means complete disorder (or the special case of perfect anti-alignment, which we do not observe in our simulations). We use

this order parameter to globally characterise the model behaviour, and thus restrict our analysis to instances of the model that corre-

spond to the movement of ordered cell collectives only.

Comparison with Experimental Data
Sharma et al. (2015) conduct analysis of mammalian cell cohorts in 3D. In particular, they report broad peak-delay distributions of

clusters of Nc1 = 10 and Nc2 = 19 cells. We chose to represent these with N = 10 and N = 20 cells, respectively, in our computational

experiments. To keep the cell density consistent, we chose the (random) initial cell positions to lie within a cube of length L = 0.9 and

L = 1.1, respectively. Given these dimensions, our cell speed of v0 = 0.05 approximately matches the displacement of cells (2.0–2.4

mm per frame, with an initial cluster diameter ofz50mm, 2.4/50 = 0.048) seen in the datasets analysed. The experimental distributions

were reproduced by reading the height of the bars of Figures 4C and D in Sharma et al. (2015). To find matching peak-delay distri-

butions, we simulated for a range of parameters and calculated the best fit as given by the root mean square deviation. The mean

order parameter reported by Sharma et al. (2015) for these particular observations is hFic1 = 0.92 and hFic2 = 0.84. Hence, we

restricted our comparison to simulation outcomes in which the order parameter was within 5% of this range.

DATA AND SOFTWARE AVAILABILITY

Code for simulations and analysis can be accessed at https://github.com/ljschumacher/CellMigrationSPP.
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