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Abstract

Drug resistance is the single most important driver of cancer
treatment failure for modern targeted therapies, and the dialog
between tumor and stroma has been shown to modulate
the response to molecularly targeted therapies through prolif-
erative and survival signaling. In this work, we investigate
interactions between a growing tumor and its surrounding
stroma and their role in facilitating the emergence of drug
resistance. We used mathematical modeling as a theoretical

framework to bridge between experimental models and scales,
with the aim of separating intrinsic and extrinsic components
of resistance in BRAF-mutated melanoma; the model describes
tumor–stroma dynamics both with and without treatment.
Integration of experimental data into our model revealed
significant variation in either the intensity of stromal promotion
or intrinsic tissue carrying capacity across animal replicates.
Cancer Res; 77(19); 5409–18. �2017 AACR.

Introduction
In the past decade,manymolecular targets of oncogenic drivers

have been developed and approved for the treatment of pathway-
specific cancers, in the hope that they could accompany or even
replace highly toxic chemotherapeutic drugs (1–4). Unfortunate-
ly, this strategy turned out to be only partially successful, with
strong initial responses often followed by relapse (3). In an
attempt to improve these poor long-term responses, combina-
tions of multiple inhibitors (including immunotherapies) have
been attempted (5–7). Despite successes in concurrent inhibition
of several pathways in preclinical models (8, 9), it would seem
that in the clinical setting, combinationof targeted inhibitors does
not offer cure, but can at best delay inevitable disease progression
caused by the onset of drug resistance (2, 10, 11).

In an effort to understand why these treatment strategies fail,
and how we might redesign better and more successful treat-
ments, we must embrace the reality that cancer is a complex
evolving system. Because cancer is an evolutionary disease, it can
evolve strategies to override or circumvent the action of a given
inhibitor. These strategies include producing secondary muta-
tions (11) or exploiting preexisting genetic heterogeneity. How-
ever, mutations alone are not sufficient to explain the often rapid
time scale over which cancer stops responding to therapy (12).
Recent evidence suggests that cancer is able to coopt the surround-
ing stroma to create an environment that can facilitate treatment
escape (13, 14). This phenomenon is termed environment-
mediated drug resistance (EMDR; ref. 12), and includes several
processes ranging from cell adhesion–mediated drug resistance
(15–17) to therapy-induced secretomes, such as IGF, HGF, TGFb
(8, 18), and fibronectin (19). The mechanisms of context-driven
resistance we consider here are shared across a variety of solid
tumors characterized by aberrations in growth-control signaling
and a high level of interaction with the surrounding tumor
microenvironment. Our primary focus here is on BRAF-mutated
melanoma. A particular instance of EMDR in melanoma is repre-
sented by the action of cancer-associated fibroblasts (CAF)
that create a habitat favorable for drug tolerance and tumor
growth. The environmental remodeling includes deposition of
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Major Findings
Through the integration of a simple mathematical model

with in vitro and in vivo experimental growth dynamics of
melanoma cell lines (both with and without drug), we were
able to dissect the relative contributions of intrinsic versus
environmental resistance. Our study revealed significant het-
erogeneity in vivo, indicating that there is a diversity of either
stromal promotion or tumor-carrying capacity under targeted
therapy. We believe this variation may be one possible expla-
nation for the heterogeneity observed across patients and
within individual patients with multiple metastases. There-
fore, quantifying this variation both within in vivo model
systems and in individual patients could have a significant
impact on the design of future treatment strategies that target
both tumor and stroma. Furthermore, we present guidelines
for building more effective and long-lasting therapeutic strat-
egies utilizing our experimentally calibrated model. These
strategies explicitly consider the protective nature of the stro-
ma and utilize inhibitors that modulate it.
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extracellular matrix components, upregulation of growth factor
production, intensification of paracrine signaling between the
stroma and the tumor cells, and rewiring of the tumor cells'
proliferative and survival signaling via integrin binding (12). The
effect of this transformed habitat on the cancer and stromal cells is
transiently induced by application of the targeted drug and is
mostly reversible (20). Given the transient nature of EMDR, there
may be an opportunity tomodulate it through treatment holidays
by allowing renormalization of the stroma to occur, potentially
facilitating a better overall treatment outcome. In addition, pre-
liminary investigations have shown benefits in inhibiting stro-
mal-derived processes, such as elevated FAK signaling (13). Dual
targeting of tumor and stromal processes represents a promising
strategy for better management of BRAF-mutated melanoma.

Understanding this complex interplay between tumor and host
cells undergoing treatment is ideally suited for mathematical and
computational models. Recently, several theoretical studies have
addressed the role of the environment in facilitating drug resis-
tance.Mumenthaler and colleagues have studied howgradients of
nutrients and drug concentration modulate the fitness of drug-
sensitive and drug-resistant cell lines, and eventually determine
recurrence (21). Sun and colleagues modeled the environmental

adaptation to drug treatment via drug-induced resistance factors
that modulate the growth dynamics of metastatic disease (22).
Silva and colleagues and, more recently, Robertson-Tessi and
colleagues modeled microenvironmental heterogeneity, specifi-
cally the regulation of metabolism, to understand the evolution-
ary dynamics driving treatment response and leading to resistance
(23, 24). A significant literature already exists for mathematical
models of intrinsic resistance in cancer progression and response
to treatment. Lavi and colleagues offer a comprehensive review of
models of cancer resistance (25). However, the focus of the
majority of these models is limited to intrinsic chemotherapy
resistance (26).Models that integrate the role of the stroma,which
is key in the emergence of resistance to targeted therapeutics, are
less well developed, but are beginning to emerge. Many studies
analyze the dynamics emerging from tumor-immune interactions
(27–30). Fewer mathematical models specifically describe inter-
actions between cancer and stromal fibroblasts and their role in
drug resistance (31–34). To our knowledge, the problem of
separating intrinsic resistance from EMDR, through the dynamics
of response to targeted therapy, has not yet been addressed.

Here, we present a first minimal model of tumor–stroma
interactions, which aims to bridge the growth dynamics of cancer

Quick Guide to Equations and Assumptions
The tumor is classified into two subpopulations, with respect to their sensitivity to the targeted inhibitor. S and R are,

respectively, drug-sensitive and drug-tolerant populations. The stroma is divided into normal cells F (i.e., fibroblasts) and
reactive cells A (i.e., CAFs). The latter compartment represents fibroblasts in a transformed, secretory phenotype that promotes
survival and tumor growth under drug treatment. We assume that S grows in the absence of treatment with growth rate rs, R
grows under targeted treatment at rate rR. They share a carrying capacity K, representing the maximum packing capacity of the
tissue where the tumor is growing. Targeted therapy [BRAF inhibitor (BRAFi)] induces the stroma to switch to its reactive form
at a rate u. In turn, reactive stroma (A) will promote tumor growth by an additional growth rate h. Upon removal of the targeted
inhibitor, stromal renormalization occurs at rate w and cancer cells are resensitized at rate j. The stromal-targeted inhibitor
(FAKi) is assumed to reduce the stromal promotion by rate a. These interactions occur dynamically in time (t) as defined by the
following system of ordinary differential equations:

dS
dt ¼ rSS 1� gð Þ 1� Sþ R

K

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{growth

þ zRh
z}|{return to sensitivity

dR
dt ¼ ðrRRg

zffl}|ffl{growth

þ hARg
zfflffl}|fflffl{stromal promotion

� aARf
zfflffl}|fflffl{FAKi

Þ 1� SþR
K

� � � jRh
z}|{return to sensitivity

dF
dt ¼ ��Fg

zfflffl}|fflffl{stromal activation

þ’Ah
zfflffl}|fflffl{stromal renormalization

dA
dt ¼ �Fg

z}|{stromal activation

�’Ah
zfflffl}|fflffl{stromal renormalization

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ðAÞ

In addition we use the initial conditions: Sð0Þ ¼ S0;Rð0Þ ¼ R0; Fð0Þ ¼ F0;Að0Þ ¼ A0: Note that, g(t), h(t), and f(t) are binary
functions of time that allow for specific terms in the equations to be switched on and off, depending on treatment scheduling.
Given a protocol calling for targeted therapy for the time interval ½tTTi ; tTTf � and FAKi for ½tFFi ; tFFf �, the binary functions are defined as
follows.

f tð Þ ¼ 1 if tFFi < t < tFFf
0 otherwise

�
; g tð Þ¼ 1 if tTTi < t < tTTf

0 otherwise

�
; h tð Þ ¼ 1 if t > tTTf

0 otherwise

�
ðBÞ

A useful measure of tumor burden control over a window of time [tA, tB] is the inverse of the AUC, defined as follows:

P ¼ 1=
Z tB

tA

S tð Þ þ R tð Þð Þdt: ðCÞ
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from in vitro and in vivo experimental models. Specifically, by
using exponential growth dynamics from cells growing in vitro, we
can calibrate baseline unconstrained growth dynamics. Then,
using the same cancer cell line in vivo (mouse allograft), we can
capture the saturation dynamics. Using these two experimental
model systems, under treatment, we can then quantify the relative
contribution of the environment to tumor growth.

Our calibrated model describes the baseline growth dynamics
and the relevant tumor–stroma interactions determining growth
and response to treatment. This, in turn, allows a fuller explora-
tion of the role of stroma in the promotion of drug resistance,
which we propose is critical for the design of optimal treatment
strategies. To this end, we will explore treatment schedules that
exploit tumor–stroma interactions to limit and/or delay the
emergence of EMDR. Our study gives preliminary guidelines for
building more effective and long-lasting therapeutic strategies,
including dose fractionation and timing.

Materials and Methods
A commonparadigm for the treatment of advanced stageBRAF-

mutated melanoma includes targeted therapy in the form of a
BRAF inhibitor (BRAFi), such as vemurafenib, recently approved
for patients carrying the V600E mutation (35). Kinase inhibitors,
such as vemurafenib, specifically block a molecular pathway that
the cancer cells are strongly dependent on, resulting in reduced
toxicity for thewhole body and increased specificity for the tumor.
Although this treatment can keep the cancer in check for many
months, the disease will eventually recur. Having identified the
environment as a key factor in therapy failure (12), alternative
blockades of stromal-derived processes are actively being inves-
tigated. Here, we specifically model FAK inhibition (FAKi) that
has proved effective in the preclinical setting (13).

We propose a model of EMDR for molecularly targeted
cancers. Figure 1 shows a schematic of the interactions between
key players in our system: cancer cells classified as either
sensitive or tolerant to the targeted drug (S and R, respectively),
and stroma cells in normal or reactive form (F and A, respec-
tively). The R compartment accounts for an initial intrinsic
resistant cancer population as well as cells that are transiently
drug-tolerant through the action of EMDR. It is worth noting
that this "catch all" compartment does not correspond to a
single biological phenotype or genotype; however, it allows us
to analyze growth regimes with and without targeted treatment,
and most importantly to quantify the relative contribution of
the environment to tumor growth dynamics under treatment.
Significant bacterial literature indicates the existence of persist-
er phenotypes that are tolerant to a number of antibiotic agents
and yet do not appear to be driven by genetic changes (36).
Very recently, such populations of "cancer persister cells" have
been discovered in an EGFRþ lung cancer cell line (37, 38).
However, in the absence of more detailed data, we develop a
simplified model with an initial R population that includes
cells derived from any of these mechanisms, and allow all cells
to return to sensitivity, irrespective of resistance mechanism.

The interactions between the cell compartments, modulated by
the two drugs (BRAFi and FAKi), are defined by a set of ordinary
differential equations (ODE; Eq. A) discussed inmore detail in the
guide to equations. A key advantage of this simplemodel is that it
can incorporate data from both in vitro and in vivo experimental
models.

Figure 2 shows the experimental data for BRAF-mutated mel-
anoma cell lines 5555 and 4434. These cells were both cultured in
vitro (Fig. 2A) and injected in vivo (Fig. 2B). Growth was observed
over time, both in the absence of drug and under treatment with
PLX4720, a BRAFi. We can adapt the model (Eq. A) to represent
each one of these experimental conditions. Table 1 shows a
summary of the experimental conditions and correspondingmod-
els. Starting from the in vitro experimental setup, corresponding to
a simplified system of equations with fewer unknown parameters,
we obtain parameter estimates by data fitting and consequently
use these values for thedatafittingof the in vivo experimental setup.
In doing so, we significantly reduce the number of unknown
parameters for each fit, as well as the risk of overfitting.

The in vitro setup (with a time scale on the order of a few
days, Fig. 2A) can be represented by an exponential growth
regime, and lacks the stromal component. This corresponds to
reducing system (Eq. A) for small time t with F0 ¼ 0, obtaining:

dS
dt

¼ rSS 1� gð Þ S 0ð Þ ¼ S0

dR
dt

¼ rRRg R 0ð Þ ¼ R0

:

8>><
>>: ðDÞ

where the only unknown parameters are: R0, S0, rS for the
untreated case (g ¼ 0), and R0, S0, rR for the treated case (g ¼ 1).
Parameter estimation for these triplets is carried out by approx-
imate Bayesian computation, which builds a discrete approxima-
tion of the posterior distribution. Data are fitted to the analytic
solution of Eq. D. Analytic solutions are reported in Table 1, and a
detailed description of the estimation method is reported in the
Supplementary Material. Figure 3A shows the marginal distribu-
tions for the growth rates of each cell line. Comparing the
estimates for control and treated conditions, we see a reduction
in growth rate for the treated cancer. The deficit in growth rate
reveals that under drug treatment, the R population, irrespective
of themechanism of resistance, exhibits slower growth compared
with the Spopulation in untreated conditions, consistent with the
previous literature (20).

We assume that the growth dynamics of the cancer cells treated
in vitro can be solely attributed to preexisting drug-tolerant sub-
populations. On the other hand, to quantify the role of the
environment on the dynamics of resistance, we turn to themouse
allografts. When the same cell lines are injected inmice, growth is

Figure 1.

Interactions hypothesized in the compartmental model. Positive interactions
are represented by arrows, negative ones by flat ends. The BRAFi (targeted
to the tumor) inhibits growth in the drug-sensitive portion of the tumor (S)
and induces activation of normal stroma (F). In turn, reactive stroma (A)
promotes growth in the drug-tolerant portion of the tumor (R). The stroma-
targeted inhibitor FAKi dampens the effect of stromal-induced growth
promotion. Upon removal of BRAFi, the tumor reacquires sensitivity to the
drug and the stroma renormalizes (gray arrows).
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significantly constrained and experiments cover a longer time
scale (Fig. 2B). The observed dynamics are more accurately
captured with a logistic growth regime, as described by:

ds
dt ¼ rSð1� SþR

K ÞSð1� gÞ Sð0Þ ¼ S0
dR
dt ¼ ðrR þ hAÞð1� SþR

K ÞRg Rð0Þ ¼ R0

dF
dt ¼ ��Fg Fð0Þ ¼ F0
dA
dt ¼ �Fg Að0Þ ¼ 0

8>>>>><
>>>>>:

ðEÞ

By assuming that cells from the same cell line grow at the same
exponential rate in an unconstrained environment, we are able to
use the growth rates estimated from the in vitro data (i.e., and rS
and rR) to help calibrate the parameter estimates for the in vivo
model.

By fitting the model to the untreated mice data, we obtain
estimates for the parametersR0, S0, andK. Note that in the absence
of treatment (g ¼ 0), the equations for the tumor and stromal
populations are decoupled; therefore, the estimate of tissue-
carrying capacity (K) is independent of the quantification of
interacting stromal cells. However, K is intrinsically dependent
onnutrient constraints aswell as thepacking capacity of the tissue.
Indeed, variations of this quantity are captured in the range
of estimated values (see Fig. 3B and Table 2). Posterior distribu-
tions are wider in mice with higher values of carrying capacity (e.
g.,mice I, II cell line 5555). For lowK, logistic curves reach carrying
capacitywithin the timewindowof the in vivo experiments. Curves
with higher K, however, have a later inflection point, and their
characteristic shape is not captured in the same time window,

resulting in more uncertain estimates. It is worth noting that for
somemice, the data donot capture the saturating dynamics, as the
experiment had to be interrupted due to animal welfare (for
details on the original experiments, see ref. 13).

For the treatedmice setup (g¼ 1), the equations are coupled.We
can solve the last two equations of Eq. E analytically, to write A
as a function of F0 and u. Defining ~h ¼ hF0; we reduce the
parameter number in the analytic solution of Eq. E. At this stage,
experimental quantification of the rate of stromal activation is
not available; therefore, estimates for the parameters R0; S0; ~hwill
be carried out with a range of q values. We observed high sensiti-
vity of the estimates of ~h to variations in this experiment-
ally undefined parameter u (Supplementary Fig. S1). Figure 3C
shows the estimated values for ~h for each mouse. This reveals
considerable variation in the stromal support across mice, hinting
at an underlying heterogeneity in stromal habitats and activation.
As estimates of K and ~h are dependent on the previously estimated
growth rates (rS and rR, respectively), the ABC estimation was run
for values of growth rates within the range captured by the fit to the
in vitro data (see Table 2). The resulting posterior distributions
varying in relation to the growth rates are shown in Supplementary
Figs. S2 and S3, respectively. The variation in response to BRAF
inhibition across replicates could be the result of underlying
heterogeneity either in tissue-carrying capacity or in stromal sup-
port, or both. Our estimation protocol for the stromal promotion
parameter ~hmakes use of an average carrying capacityK previously
estimated. However, the variation across replicates could also
be explained by variation in carrying capacity. Therefore, we
further investigated the BRAFi-treated mice data, to infer the

Figure 2.

Unpacking the relative contributions of intrinsic resistance and extrinsic environment conferred tolerance (EMDR). A, In vitro data and fit. For each condition, we
obtained one estimate that best fits the three replicates at the same time. B, In vivo data and fit. Data consist of six and four untreated 5555 and 4434 mice,
respectively, and six and five BRAFi-treated 5555 and 4434 mice, respectively. Only a few representative mice are shown. For each condition, the model is fitted
individually to each replicate (mouse). Solid and dashed lines correspond to untreated and BRAFi-treated tumor, respectively. Note different y-axis scale for the two
cell lines. Data from ref. 13.
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posterior distribution of ~h as K is varied and vice versa. Supple-
mentary Figure S4 shows the resulting posterior distributions in
the ðK; ~hÞ space for a samplemouse. The posterior distributionofK
is highly sensitive to the variation of ~h (see yellow violin plots),
and vice versa. However, the best overall fits of ~h and K are located
in the same region of the space. Thismeans that for a givenmouse,
we can unequivocally identify a combination of values for the
carrying capacity and stromal support that best explains the data.

Finally, we can quantify the inhibiting action of the stromal-
targeted drug in the form of ~a ¼ aF0; fitting data from mice
treated with both BRAFi (PLX4720) and FAKi (PF562271) to the
following version of the model:

dS
dt ¼ 0 Sð0Þ ¼ S0

dR
dt ¼ ðrR þ ðh� aÞAÞð1� SþR

K ÞR Rð0Þ ¼ R0

dF
dt ¼ ��F Fð0Þ ¼ F0

dA
dt ¼ �F Að0Þ ¼ 0

8>>>><
>>>>:

: ðFÞ

Despite the variability of responses across replicates (see
data and fits in Supplementary Fig. S5), the resulting estimates
for ~a show little variation (Fig. 3D; Table 2). This implies that
the variability in treatment response may be attributed to the

heterogeneous stromal composition of the tissue (highlighted
in Fig. 3C), as opposed to the efficacy of the stromal inhibition.

Results
Calibrating ourmodel across in vitro and in vivodata allowsus to

gain insight into the dynamics of the system that a qualitative
analysis of these experiments cannot capture. Figure 3A shows the
marginal posterior distribution for growth rates rS and rR, with a
reduction of the latter quantifying the impact that drug tolerance
has on proliferative capacity.

Comparing in vitro and in vivo dynamics allows us to assess the
relative contribution of the environment to drug resistance. This
analysis revealed significant heterogeneity across replicates
(mice), both in terms of tissue-carrying capacity, and stromal
protection (Fig. 3B and C). This heterogeneity translates to a high
variability of response to treatments that target both the tumor
and the stroma, despite the apparent more homogeneous inhib-
itory effects of the stromal-targeted drug (Supplementary Figs. S5
and Fig. 3D).

Analysis of the ODEmodel with the combination treatment of
BRAFi and FAKi (Eq. F) gives insight into the dynamics of the

Table 1. Summary of experimental conditions, corresponding model, and set of parameters to be estimated

Experimental model Mathematical model Analytic solution Parameters

NOTE: Data are fitted to SðtÞ þ RðtÞ, using the analytic solution. Initial conditions for cell line model are: Sð0Þ ¼ S0;Rð0Þ ¼ R0 ; for mouse model:
Sð0Þ ¼ S0;Rð0Þ ¼ R0; Fð0Þ ¼ F0;Að0Þ ¼ 0: Note that S0 and R0 represent different quantities, depending on the model (cell count for cell line model and tumor
volume for mouse model).
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systemas a functionof stromal promotion and tumor growth rate.
Specifically, we can discriminate two distinct cases:

(i) If ða< hÞ or ða > h and rR
F0ða�hÞ >1Þ then dðSþRÞ

dt � 0 8 t � 0;

(ii) If ða > h and 0< rR
F0ða�hÞ < 1Þ then dðSþRÞ

dt � 08 0 � t � t�;

where t� ¼ � 1
�
log 1� rR

F0 a� hð Þ
� �

:

In the first case, either the stromal promotion is too strong to be
compensated by the FAKi, or the stromal promotion is weak, but
the tumor growth rate is elevated. Then, the overall tumor burden
is monotonically increasing, although bounded by the carrying
capacity, and therapy is ineffective. In the second case, when
stromal promotion is weak and the tumor growth rate is reduced,
then the therapy is effective provided that it is administered for a
sufficiently large period of time.

As an example, consider the cohort of 5555 BRAFi-treatedmice
(VII throughXII) andusing theparameterizedmodel (Eq. A),with
a taken as the average of the previous estimates (see Table 2), we
can subclassify the mice. According to our estimates, mice VII, X,
XI, and XII fall into case (ii), meaning that with a combination of
BRAFi and FAKi, it is possible to achieve control as long aswe treat
past time t�. On the other hand, mice VIII and IX fall into case (i);
hence, the tumor is always growing under treatment, eventually
reaching carrying capacity. Supplementary Figures S6andS7 show
a simulated treatment combinationof BRAFiþ FAKi calibratedon
two representative mice, case (i) and case (ii), respectively.

For a tumor–stroma system falling into case (i), recurrence is
inevitable, but may be delayed with alternative scheduling
strategies. Given that the phenotypic changes underlying EMDR

are transient and reversible upon drug removal, we hypothesize
that the introduction of drug holidays could significantly
improve treatment response and recurrence times. Intermittent
application of vemurafenib has proved to be successful in
melanoma xenograft models (20), and ongoing clinical trials
are testing intermittent versus continuous dosing of a combi-
nation of BRAF andMEK inhibitors (NCT02196181). However,
we believe that a mechanistic and quantitative approach to
treatment scheduling can improve the success of the otherwise
empirical approach that these studies offer. We therefore sys-
tematically explored the space of holiday versus treatment days
of an intermittent schedule treatment with BRAFi, combined
with continuous FAKi.

Specifically, the targeted inhibitor is administeredduring the time
windows ½tTT;ki ;tTT;k

f
�; for k2�0 with tTT;k

f
�tTT;ki ¼TT ; t

TT;kþ1
i �tTT;k

f
¼H; 8k� 0:

That is, we consider treatments of fixed duration TT, with the time
between the endof one treatment and the start of the next treatment
being fixed at H. Figure 4 shows the treatment outcome in the
holiday versus treatment space (H,TT), where the outcome of each
treatment strategy over the time frame of [0, 70] days is quantified
withP, defined in (Eq. C). This reveals that the region correspond-
ing to tumor burden minimization (P maximization) is concen-
tratedaround the lineH¼2TT. Intuitively, thismeans that the length
of holiday needed to renormalize the system is proportional to the
pulse of treatment. In addition, it indicates that longer treatment
holidays are more effective at controlling tumor burden, while the
total number of treatment days is reduced.

Figure 5 shows the temporal dynamics for one of the best
combination treatment schedules predicted by ourmodel. FAKi is
continuously administered, and helps control the tumor burden

Figure 3.

Approximated posterior distribution of estimated parameters. Violin plots show probability density functions (x-axis) of parameter estimates (y-axis).
A, Estimates for cancer growth rates: rS (untreated cancer), rR (treated cancer). The bar highlights the fitness cost of intrinsic resistance. B, Estimates for
K reveal heterogeneity of carrying capacity across mice. rS from previous estimate (Table 2). C, Estimates for ~h reveal heterogeneity of stromal-derived
protection found in vivo. � ¼ 0:03 1=day: rR from previous estimates (Table 2). D, Estimates for ~a for ten 5555 mice treated with BRAFi and FAKi
combination. � ¼ 0:03 1=day: rR ¼ 0:49539 1=day � ~h ¼ 12:67 1=day (average of previous estimates; Table 2).
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when EMDR sets in, whereas BRAFi is given periodically for 1 day,
then off for 2 days. This treatment induces only minimal stromal
activation and delays progression by approximately 10 dayswhen
compared with the untreated tumor. When compared with the
continuous treatment, this intermittent treatment delays progres-

sion by approximately 20 days, while using a third of the amount
of BRAFi. Although this study does not explicitly account for drug
toxicity, total dose reduction is a desirable outcome, especially in
the case of combination therapy,where resulting toxicitymight be
a significant issue.

Figure 4.

Exploration of treat/holiday space for intermittent BRAFi combined with continuous FAKi to maximize control of tumor burden. Surface plot of P
(see Eq. C) in the treat/holiday space. Model parameterized on mouse IX of cell line 5555. rS ¼ 0:66325 1=day; rR ¼ 0:49543 1=day; K ¼ 4818:62
mm3; ~h ¼ 26:876 1=day; ~a ¼ 14:4 1=day; � ¼ 0:03 1=day; j ¼ 0:01 1=day; ’ ¼ 1 1=day; S0 ¼ 48mm3;R0 ¼ 12mm3; F0 ¼ 60mm3;A0 ¼ 0mm3: The star
indicates the treatment schedule simulated in Fig. 5.

Figure 5.

Example of combination therapy
schedule (BRAFi þ FAKi) to exploit
tumor–stroma interactions. The
model is parameterized as reported
in Fig. 4. Bands above the graph
indicate the BRAFi and FAKi
administration windows. The BRAFi
is intermittently administered for
1 day with 2-day holiday. The FAKi
is continuously administered. This
treatment schedule delays the
disease progression by
approximately 10 days (compare
solid and dashed S(t) þ R(t) curves)
while using a third of the BRAFi dose.
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Discussion
Molecularly targeted therapies for cancers with known driver

mutations are extremely effective for 6 to 8 months (e.g., vemur-
afenib for BRAF V600E melanoma; ref. 39) and are accompanied
by lower toxicity when compared with cytotoxic chemotherapeu-
tic agents (3). However, with continuous and prolonged treat-
ment, the emergence of drug resistance seems to be inevitable.
Upon removal of the targeted drug, due to relapse, a typical
disease flare is observed (e.g., EGFR-mutated lung cancer treated
with a combination of tyrosine kinase inhibitors; ref. 40), suggest-
ing that the treatment has somehow selected for amore aggressive
clonal population in the tumor. However, subsequent treatment
with the same inhibitor often leads to an additional response (41,
42), suggesting that selection of resistant clones alone cannot
explain this disease etiology. The environment is now considered
an important source of nonintrinsic drug resistance mechanisms
(43), collectively referred to as EMDR. As the changes accompa-
nying EMDR are considered transient and therefore reversible, the
possibility of regulating EMDR dynamics with smarter treatment
scheduling is promising. However, a necessary first step toward
the design of such treatment strategies is a more quantitative
understanding of the interactions and dynamics occurring
between the tumor and the stroma.

In vitromodel systems can accurately quantify temporal tumor
growth and treatment response in controlled environments,
whereas in vivo models more readily capture the native environ-
ment that is directly relevant to patients. However, both of these
are models of human disease and only capture specific aspects of
reality over very specific spatial and temporal scales. The ODE
model we develop here bridges between these experimental
scales, to integrate relevant information from each of them.

Starting from analysis of BRAF-mutated melanoma cell lines,
we quantified the baseline dynamics of cancer cells in a uniform
nutrient-rich environment. By comparing the growth rates of cells
untreated and treated with the BRAF inhibitor, we were able to
quantify the overall reduction of growth under drug application.
Our model facilitates this analysis by classifying the cancer into
two separate populations, growing with or without drug (R and
S). Then, using approximate Bayesian computation, we calculate
plausible regions of parameter values. This type of estimation can
be particularly useful when assessing the error in fitting. Our
parameter estimationmethod does notmake assumptions on the
initial conditions, and R0 and S0 are included in the parameters
to be estimated. Consequently, the model is agnostic to the
mechanisms producing the initial resistant population, R0. These
mechanisms could be EMDR related as well as epigenetic or

Table 2. Estimated parameter values for 5555 and 4434 cell lines

Parameter Cell line Mouse Estimate Range of parameter values

rS ð1=dayÞ 5555 0.66325 0.6264–0.7002
4434 0.46520 0.4336–0.5011

rR ð1=dayÞ 5555 0.49543 0.4170–0.5922
4434 0.23942 0.2008–0.2942

K ðmm3Þ 5555 I 9,318.8984 8344.3248–10435.0950

II 8,352.5141 7587.9093–9264.7683
III 5,222.2471 5086.7338–5336.5553
IV 2,600.8830 2540.8448–2672.0427
V 2,345.1481 2316.3892–2371.1414
VI 1,475.6726 1449.7419–1504.5806
Average 4,818.6200

4434 I 2,290.2010 2232.7464–2334.0511
II 1,673.7862 1612.0517–1749.9593
III 215.6403 206.5229–225.9717
IV 1,989.7505 1919.6823–2067.3783
Average 1,543.6147

~h ð1=dayÞ 5555 VII 0.12569 0.00091–0.41951
VIII 42.65920 39.7300–45.0200
IX 26.87600 24.9689–28.4394
X 0.07974 0.00104–0.22109
XI 1.93710 1.29530–2.63000
XII 4.37480 4.07460–4.60220

4434 V 0.52429 0.36648–0.66820
VI 0.34886 0.25731–0.44138
VII 7.54000 6.11320–11.99230
VIII 0.85680 0.65997–1.33520
IX 0.10473 0.00315–0.20759

~a ð1=dayÞ 5555 XIII 14.6163 14.2953–14.9547
XIV 15.0018 14.4410–15.5339
XV 14.3818 14.1820–14.5668
XVI 14.7552 14.2099–15.4362
XVII 14.0455 13.6516–14.3181
XVIII 13.9436 13.6503–14.1428
XIX 14.2911 13.7735–14.8590
XX 14.1929 13.6946–14.5971
XXI 14.4799 14.2231–14.7290
XXII 14.5452 14.0820–15.1437
Average 14.4253

NOTE: For each in vitro condition, we obtained one growth rate estimate that best fits the three replicates at the same time. For each in vivo condition, themodel was
fitted to each replicate (mouse) to obtain individual estimates of carrying capacity, stromal promotion, and stromal inhibition. Range of values of approximated
posterior distributions are also reported.
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nonautonomous. However, at this stage, no data are available to
distinguish between these instances of resistance, andwe group all
cells that grow under drug treatment in the R compartment,
irrespective of the underlying mechanisms of resistance.

Subsequent analysis of data from mice xenografts implanted
with the same cell lines allowed us to identify the relative
contribution of the environment to drug resistance. This analysis
revealed heterogeneity in both the local tissue-carrying capacity
and in the stromal promotion of tumor growth. This heteroge-
neity may be one possible explanation for the spectrum of
response observed across patients. In the context of metastatic
disease, with tumors seeded across a variety of tissues, heteroge-
neity in stromal composition could be an important discriminat-
ing factor in the success of a systemic treatment. Therefore,
quantifying this variation in individual patients could have a
significant impact on the design of future treatment strategies that
target both the tumor and stroma.

Within the current experimental and modeling framework,
assessing the strength of stromal protection is nontrivial. This
quantity is dependent on the abundance of the interacting stroma
(we could only estimate the overall promotion rate ~h ¼ hF0) as
well as the speed of drug-induced stromal activation (we found
high sensitivity to parameter u). At the same time, with the
available data, we can explain the variability of responses across
mice by variation in carrying capacity and/or stromal promotion
(Supplementary Fig. S4). Further investigation of the heteroge-
neity that our study revealed would require additional experi-
mental quantification of these stromal-related processes. This
would, in turn, allow us to address the main shortcoming of the
current model, namely the high sensitivity of the estimate of
stromal protection to the parameter u (Supplementary Fig. S1).

Analysis of our ODEmodel revealed that the degree of stromal
protection h, and cancer proliferation rRunder drug treatment, are
key in discriminating between responses to the combined action
of inhibitors targeting tumor and stromal processes (BRAFi and
FAKi, respectively).We found that for slower growing tumors, it is
possible to keep growth in check provided treatmentwith BRAFi is
applied for a sufficient periodof time. Conversely, for fast growing
tumors or elevated stromal protection, the tumor burden
increases, despite the administration of the inhibitors. However,
for these tumors, we can exploit the transient nature of the EMDR-
associatedmechanisms anddelayprogression. Specifically, sched-
uling treatment holidays for the mouse- (patient-) specific cali-
brated model would allow for renormalization of the system
directly translating into better disease burden control. We used
our parameterized ODE model to explore the space of intermit-
tent treatment strategies, with the hope of improving response in
cancers falling into the treatment refractory category. Neglecting
toxicity of targeted drugs, we searched the space of holiday versus
treatment length for intermittent BRAFi application, combined
with continuous FAKi. We found that most effective tumor
control is achieved with short BRAFi treatment pulses and longer
holidays, requiring significantly less inhibitor, when compared
with the continuous treatment.

It is worth noting that in optimizing the treatment schedule for
these inhibitors, we are only modulating the dynamics by reduc-
ing the emergence of EMDR. This allows us to delay recurrence by
approximately 10 days. If we were to combine this strategy with a
cytotoxic treatment, such as chemotherapy, which provides addi-
tional reduction of the tumor burden, then recurrence could be
further delayed (44). However, to consider additional treatments

for combination therapies, it is necessary to account for toxicity of
the single agents, as well as toxicity resulting from their combi-
nation. The latter would impose an additional constraint in the
optimization problem. Here, we made no assumption regarding
the toxicity of both inhibitors and therefore allowed any length of
continuous targeted drug administration. Nevertheless, it is worth
noting that the intermittent drug treatment we propose not only
delays progression but also uses only a third of the drug, when
compared with continuous treatment.

The heterogeneity our study revealed from the in vivo experi-
ments highlights the importance in accounting for mouse-
(human-) specific microenvironmental parameters to accurately
capture response dynamics. This heterogeneity is often ignored in
preclinical models, as they aim at establishing general relation-
ships of causality between biological mechanisms. However, as
our study suggests, heterogeneity can be key in explaining the
variation observed across replicates of an experimental system.
Furthermore, models that exploit the transient nature of EMDR
must rely on individually calibrated dynamics to propose effective
and improved treatment strategies.

Although this study has been focused on melanoma, our
model is also applicable to the treatment of other molecularly
targeted tumors, such as non–small cell lung cancer. Within the
practical constraints of frequency in monitoring a patient's
systemic tumor burden and tissue characteristics, our simple
model could be used to drive patient- (and tumor-) specific
treatment strategies that target both the tumor and stroma. In
addition, our approach is ideally suited to directly inform the
design of adaptive therapies (45).
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Correction

Correction: Integrating Models to Quantify
Environment-Mediated Drug Resistance

In this article (Cancer Res 2017;77:5409–18), which appeared in theOctober 1, 2017
issue of Cancer Research (1), The Quick Guide to Equations and Assumptions section
was incorrect. In the second line of the equations, "strong promotion" should have
read "stromal promotion."

The online version of the article has been corrected and no longer matches the print.
The publisher regrets this error.
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