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Abstract
A huge variety of mathematical models have been used to investigate collective cell
migration. The aim of this brief review is twofold: to present a number of modelling
approaches that incorporate the key factors affecting cell migration, including cell–cell
and cell–tissue interactions, as well as domain growth, and to showcase their appli-
cation to model the migration of neural crest cells. We discuss the complementary
strengths of microscale and macroscale models, and identify why it can be important
to understand how these modelling approaches are related. We consider neural crest
cell migration as a model paradigm to illustrate how the application of different math-
ematical modelling techniques, combined with experimental results, can provide new
biological insights. We conclude by highlighting a number of future challenges for
the mathematical modelling of neural crest cell migration.

Keywords Collective cell migration · Domain growth · Individual-based models ·
Partial differential equations · Neural crest

Mathematics Subject Classification 92

1 Introduction

Migration of cells is crucial in many areas of biology and medicine, including embry-
onic development, cancer, wound healing and tissue regeneration (Friedl and Wolf
2010). In most of these biological systems, cells migrate in groups as a result of cell–
cell communication and by cell–tissue interactions; a phenomenon known as collective
cellmigration.Understanding themechanisms that underpin and control collective cell
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migration can, potentially, enable us to prevent mistargeted or uncontrolled migration,
which can result in abnormalities such as developmental defects or cancer metastasis.

One of the key challenges to understanding collective cellmigration arises due to the
multiscale nature of the phenomenon where, by multiscale, we mean the interaction of
processes ranging from intracellular to tissue-level. Collective cell migration is usually
characterised not only by cell–cell communication, but also cell–tissue interactions,
which require careful understanding of the surrounding tissue through which, or on
which, the cells are moving. Interactions can range from local, via cell body contact,
to highly non-local, via extended cell protrusions (Tucker and Erickson 1986; Teddy
and Kulesa 2004). In addition, gene expression profiles can vary across cells, and it is
an open question as to how great a role heterogeneity in cell genotype and phenotype
plays in collective migration. All these phenomena combined make collective cell
migration highly complex, and individual fields, including biology, bioinformatics
and mathematics, have to be integrated to understand the process to the fullest extent.

Recent advances in biotechnology have contributed to an increase in availability
of quantitative biological data on cells, such as individual cell trajectories and cell
gene expression. To process such large amounts of data on highly complex interacting
systems and reach valid conclusions in many cases requires us to move beyond verbal
reasoning, and usemathematicalmodels. In the context of collective cellmigration, the
increasing number of experimental observations over many different scales requires
the use of different modelling frameworks, from cell-level individual-based models
(IBMs) to high-level partial differential equation (PDE) models [see, for example,
the reviews by Danuser et al. (2013) and Markham et al. (2014)]. The integration of
different modelling frameworks is essential to bridge the gap between parts of the
system evolving on different time and space scales [see the reviews by Banasiak and
Miekisz (2008) and Burini and Chouhad (2019)], while comparison of models allows
us to evaluate their strengths and weaknesses. Moreover, the ability to translate from
cell-level IBMs to PDEs facilitates analyses of the same system fromdifferent perspec-
tives and ensures that the continuum model incorporates mechanistic cell properties.
In this review, we will provide in a nutshell a summary of the modelling techniques for
collective cell migration, and briefly discuss the relations and derivations of different
modelling frameworks. It is important to note that we will focus on migratory streams
of cells in which the cells are separated from each other, allowing them to move more
freely as individuals, for example, as in long distance migration of some metastatic
cancer cells (Kedrin et al. 2008). Migratory streams of cells can also be composed of
tightly packed cells that move in continuous sheets, for example, cells within epithelial
tissue (Freshney and Freshney 2004), but models of this type of migration are beyond
of the scope of this review.

To showcase a wide range of applications of different modelling frameworks for
collective cell migration, we choose the embryonic neural crest (NC), a system which
encompasses most of the aforementioned challenges that arise in the quest to under-
stand collective cell migration. NC cells are multipotent, highly migratory cells that
delaminate from the neural tube all along the vertebrate axis and traverse along well-
definedmigratory routes to precise targets, where they differentiate (Fig. 1).We choose
the NC to exemplify diverse mechanisms that drive collective cell migration because,
even within a single species, a wide range of these mechanisms are displayed by dis-
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Fig. 1 Neural crest cell migratory streams in the chick head co-labelled with pMES (EGFP) in yellow and
DiI in purple. Rhombomeric segments of the hindbrain, from which some of the cranial NC cells emerge
are labelled rhombomere 1 (r1), r4, and r6 with branchial arch target sites, branchial arch 1 (ba1), ba2, ba3
and the scalebar is 200 microns (black). The top inset is of a typical individual migrating neural crest cell
with scalebar of 10 microns (white). The bottom inset is the neural crest cell migratory stream adjacent to
r4 and the scalebar is 100 microns (white) (color figure online)

tinct types of NC cells that emerge at different locations (for example; cranial, cardiac,
vagal, and trunk), and are affected by different signalling pathways [see, for exam-
ple, the reviews by Theveneau et al. (2010), Schumacher et al. (2016) and Szabó and
Mayor (2016, 2018)]. Moreover, there are further differences across different species
(Barriga et al. 2015). In addition, collective migration of NC cells has been studied
not only to understand embryonic development and the reasons for developmental
defects, but also to gain insights into metastatic cancer. This is possible due to the
remarkable similarities between the gene expression profiles of migrating NC cells
and highly invasive tumour cells (Theveneau and Mayor 2011; Kulesa et al. 2013).
Experiments on, and observations of, in vivo cancer cells are highly challenging, so
the study of the more experimentally tractable system of NC can provide clues for
potential therapeutic intervention in cancer.

The great variety of differentmechanisms ofmigration and experimental tractability
of theNCsystemensures the generation of extensive biological data,which can be used
to derive experimental hypotheses. Due to the fact that the system exhibits complex,
nonlinear, local and non-local feedback, it is typically the case that the hypotheses are
verified using computational modelling, and, in turn, model predictions can be tested
through custom-designed experiments. The similarities of NC cells and metastatic
cancer cells demonstrate that interdisciplinary studies of NC not only stimulate new
research in mathematical modelling of collective cell migration, but also contribute to
a broad range of new biology. Therefore, as well as being of interest in its own right,
NC serves as an important paradigm system for collective cell migration.

The remainder of this paper is organised as follows. We begin, in Sect. 2, with a
discussion of different types of IBMs that are used to model collective cell migration.
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In Sect. 3 we discuss how PDE models are used to describe collective cell migration
and note that they may, in some cases, be derived from IBMs. In Sect. 4 we introduce
integro-PDE models and explain how they have been used to describe collective cell
migration. We proceed with some relevant theory on growing domains to account for
cases of cell migration within growing tissues in Sect. 5. In Sect. 6 we summarise
different computational models used for NC cell migration and provide a motivational
example for future research.We conclude with a short discussion and future directions
in Sect. 7.

2 Individual-basedmodels

The enormous recent advances in biotechnology allow experimentalists to observe
individual cell behaviours and quantify some of the key cell specific parameters such
as, for example, cell size and shape, and the number of filopodia a cell extends to
explore its environment. To incorporate this detail at the cell level, stochastic IBMs
are frequently used. In an IBM each cell is treated as a distinct entity with individual
properties, such as its ability to interact with other cells and its environment, which can
be encoded via a set of rules and/or equations of motion based on these properties [see
the book by Anderson et al. (2008); and the reviews in the books by Alber et al. (2003)
and Drasdo (2003)]. Cell movement in an IBM can be either restricted to lattice sites,
in this case the models are called lattice-based, or the cells can move freely anywhere
in space, these models are called off-lattice. Lattice-based models are commonly used
because they are conceptually simple and computationally efficient (Simpson et al.
2013). Off-lattice models (Codling et al. 2008; Galle et al. 2005; Newman and Grima
2004) offer more flexibility, but they can be computationally expensive to simulate
and difficult to analyse. By way of example, we present two categories of lattice-based
models: cellular automaton (CA) and Cellular Potts (CP) models, and a selection of
off-lattice models.

Cellular automaton (CA) These models were introduced by Neumann and Ulam in the
1950s as a model of individual reproduction (Burks 1970). In CA models, individual
cell behaviour and cell–cell interactions are described by rules. The most common
processes modelled in this way are proliferation and movement. Two important char-
acteristics of CA models—simplicity and efficient parallel computation—justify the
wide use of this framework to model collective cell migration [see the books by
Deutsch and Dormann (2005, 2018), Chopard (2012) and the review by Hatzikirou
et al. (2012)]. There have been multiple extensions of the simple CA model, such as
asynchronous CA (Badoual et al. 2010) and lattice-gas CA (Bussemaker 1996), which
enable the model to account for more complex cell–cell and cell–environmental inter-
actions.

Cellular Potts (CP) models In the CPmodel each cell is a subset of lattice sites sharing
the same cell identity, i.e. a cell is made up of parts and so a cell can change shape
(Graner and Glazier 1992). The algorithm is updated by choosing a random lattice
site, proposing a movement and then deciding whether to accept it based on a Hamil-
tonian function, consisting of a volume constraint term responsible for maintaining an
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approximately constant cell volume, and a surface energy term responsible for cell–
cell adhesion properties. Other terms can be added to the Hamiltonian to account for
other interactions. The key advantage of CPmodels is their ability to resolve cell shape,
which accounts for the cell level detail, enabling them to provide a representation of
the cellular microenvironment (Szabó and Merks 2013).

Off-lattice IBMs The disadvantages experienced by lattice-based models due to lat-
tice effects can be resolved using off-lattice models. In off-lattice models there are
a number of ways to represent cells, either as points, spheroids, or more complex,
deforming shapes (Woods et al. 2014). Cell position evolves in time due to the action
of force laws governing the mechanical interactions between individual cells and cell–
tissue interactions, such as volume exclusion, meaning that a cell cannot occupy space
that is already occupied by another cell, co-attraction and chemotaxis. The studies
of off-lattice models include Newman (2007), Macklin et al. (2012), Yangjin et al.
(2007) to mention but a few. This type of modelling framework allows for detailed
realistic representations of cells, but there is a trade-off between biological realism
and computational cost.

IBMs form a framework that allows for the explicit incorporation of cell-level,
biological detail, but at the same time, via cell–cell and cell–tissue interactions, it
enables all cells to act as one collective body. This leads to biologically realisticmodels
for collective cell migration. However, the main limitation of IBMs is that they can
be less mathematically tractable than continuum models, which we will discuss in the
following section.

3 Partial differential equationmodels

PDE models assume that populations can be modelled as continuous entities, and a
strength of this approach is the large number of analytic results one can bring to bear on
the resultant models. Moreover, they provide a mathematically consistent framework
in which the effects of different model hypotheses proposed at the microscopic (cell)
level, can be seen and compared at the macroscopic (tissue) level. However, it should
be noted that the complexity of the underlying biology can lead to fully nonlinear
systems of PDEs for which there are few rigorous results, and many open questions.

Perhaps the most famous PDE in mathematical biology is the diffusion equation,
which has a long history of application to model collective cell motility. In this frame-
work, global population migration is assumed to be induced by individuals spreading
out as a result of random movements. There are many ways to derive the diffusion
equation from random processes (Murray 2002). One method involves the derivation
of the telegraph equation from a stochastic velocity-jump process, in which there are
discontinuous changes in the speed or direction of a cell, and then taking an appropri-
ate limit (Taylor 1922; Goldstein 1951; McKean 1967; Kac 1974; Segel 1978; Othmer
et al. 1988). It is assumed that cells move along the x-axis at a constant speed s and
at random times they reverse direction according to a Poisson process with constant
intensity λ (Othmer et al. 1988; Othmer and Hillen 2000). It can be shown that the
resultant cell density p(x, t) satisfies
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∂2 p

∂t2
+ 2λ

∂ p

∂t
= s2

∂2 p

∂x2
. (1)

Rescaling time and space with τ = ε2t and ξ = εx in Eq. (1), respectively, where ε

is a small parameter, gives

ε2
∂2 p

∂τ 2
+ 2λ

∂ p

∂τ
= s2

∂2 p

∂ξ2
. (2)

Then, in the limit ε → 0, i.e. time and space variables tending to zero, we obtain the
diffusion equation

∂ p

∂t
= D

∂2 p

∂x2
, (3)

with s2/2λ ≡ D. This method of rescaling reveals how space and time scales must be
related for a diffusive process.

Note that this approach to derive the telegraph equation is only possible in one
dimension, but the theory of mixtures can be used to obtain the telegraph equation in
any number of dimensions (Othmer 1976). There has been a significant focus on how
Eq. (1) is modified when the cell dynamics are also affected by chemotaxis (Stevens
and Othmer 1997; Painter et al. 2000; Erban and Othmer 2004, 2007). For example,
Erban and Othmer (2004) considered the changes in dynamics when the turning rate is
assumed to be a functional of the internal state of the cell. Using moment closure tech-
niques they derived and analysed a system of hyperbolic differential equations, which
exhibited results consistent with Monte Carlo simulations of individual movements
(Setayeshgar et al. 2005). This example shows how the construction of PDE models
from stochastic processes allows for the integration of microscopic intracellular pro-
cesses, such as signal transduction, into macroscopic parameters, such as chemotactic
sensitivity.

Many other different techniques have been developed to derivemacroscopic (tissue-
level) models from microscopic (cell-level) descriptions (Gavagnin and Yates 2018).
A general methodology to derive a PDE description from lattice-based IBMs includes
writingdown the continuous timeoccupancymaster equation and taking an appropriate
limit in lattice spacing and time step. The resulting continuum limit can take many
different forms depending on the assumptions included in the IBM. Mean-field and
moment dynamics approximations are used to derive continuum limits from stochastic
lattice-based and off-lattice models (Markham et al. 2015; Matsiaka et al. 2018).

Continuum limits from lattice-based IBMs have been used to justify the use of
PDEs to model diffusion, chemotaxis, exclusion processes, etc. (Baker and Simpson
2010; Binder et al. 2008; Muhuri et al. 2011; Alber et al. 2007; Simpson et al. 2011;
Lushnikov et al. 2008; Chauviere et al. 2012). A wide range of nonlinear advection–
diffusion equations that, at the macroscopic cell population level, incorporate different
assumptions on the dynamics of cells at the individual level, have been derived from
lattice-based models by Penington et al. (2011), who provided functional forms of
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the diffusion term, which incorporates different levels of complexity, from neighbour-
based movement to myopic exclusion processes. For the simple single-species cases,
in the continuum limit, Penington et al. (2011) obtained the general equation

∂ p

∂t
= D0∇ · (D(p)∇ p), (4)

where p(x, t) is the density of cells at position x ∈ R
d at time t , ∀d ∈ N, where d

is the number of spatial dimensions, and D0 is the constant single-agent diffusivity.
They showed that different forms of the diffusivity factor, D(p), arise depending on
the assumptions made for the transition probabilities between lattice sites associated
with the discrete (cell-level) model. This approach creates a framework in which we
canmove away from abstracted phenomenological arguments used to support different
proposed forms for diffusion coefficients in continuum models to those derived from
detailed biological considerations.

The ability to derive PDEs from cell-level details opens up paths to provide ana-
lytical results on the collective invasion of cells. For example, Johnston et al. (2017)
derived twenty-two different classes of PDEs from processes with different birth,
death and movement rates for isolated individuals and individuals in groups. They
examined the ability of each class of PDEs to support travelling wave solutions and
considered long time behaviour in terms of individual-level parameters. Johnston
et al.’s (2017) main analytical result revealed that a strong Allee effect and nonlinear
diffusion can lead to shock-fronted travelling waves, where a shock-fronted travelling
wave is defined as a sharp change in the function describing cell density that moves
with constant speed. This allows classification of the behaviour of populations with
different group and individual motility rates, and provides conditions for successful
collective invasion. There are further questions about the sensitivity of the behaviour
of these macroscopic nonlinear diffusion models to changes in cell-level details. For
example, in Eq. (4) an open question concerns how the nonlinear form of D(p) affects
the ability of the system to exhibit travelling wave solutions, and the properties of
these solutions if they exist. Answers to these questions would help to determine how
accurately we need to measure and categorise cell-level behaviour in order to include
all significant features in continuum models.

Significant progress has also been made in the derivation of continuum PDEs from
IBMs for off-lattice models. For example, Dyson et al. (2012) used moment-closure
approximations to derive a continuum description of a motile cell population from
an off-lattice IBM with volume exclusion, variations of which have been used to
investigate cell invasion (Plank and Simpson 2013; Irons et al. 2016), and crowding
and adhesion effects (Plank and Simpson 2012; Johnston et al. 2013; Middleton et al.
2014). Alternative to moment closure and mean-field approximations used in the
aforementioned models in this paragraph, Bruna et al. (2017) developed a systematic
upscaling method based on matched asymptotic expansions for systems with short
range repulsive interactions. Applying thismethod to a system of interacting Brownian
particles, they derived a nonlinear diffusion model for biological population density
where the nonlinear terms account for various types of interactions.
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4 Integro-partial differential equationmodels

It is likely that in many biological processes cell–cell and cell–tissue interactions are
not only local, as typically assumed in continuumPDEmodels, but also have non-local
components. For example, during collective migration newt pigment cells can extend
their ligand/receptor carrying filopodia ten times an average cell diameter (Tucker and
Erickson 1986). Armstrong et al. (2006) and Hillen (2006) were amongst the first
to use integro-PDEs to model cell–adhesion and chemotaxis/cell–tissue interactions,
respectively. Armstrong et al. (2006) constructed their model by considering the forces
acting on cells in a conservative system. Using mass conservation they described the
evolution of cell density in one dimension as:

∂ p

∂t
= D

∂2 p

∂x2
− ∂ Ja

∂x
, (5)

where p(x, t) is the cell density at position x at time t , D is the diffusion coefficient
and Ja is the adhesive flux. The adhesive flux accounts for non-local cell interactions
and is modelled using

Ja = φ

R
pF,

where φ is a constant of proportionality related to viscosity of the medium, R is the
cell sensing radius and F is the total force acting on cells. They assumed that the
forces depended on the cells at distance x0 < R with respect to the cells at position
x . Therefore, the total force was of the form

F(x, t) =
∫ R

−R
αg(p(x + x0, t))ω(x0)dx0, (6)

where α is a positive parameter reflecting the strength of adhesive force between cells,
g(p(x + x0), t) describes the nature of the forces and their dependence on the local
cell density, and ω(x0) describes how the direction and magnitude of the force alters
according to x0. In other words, the cell at position x experiences adhesive forces
exerted by cells closer than a distance R from it. The form of this kernel is chosen
based on the Chapman–Kolmogorov equation for a stochastic process (Pillai and
Papoulis 2002). Armstrong et al. (2006) demonstrated, using analytical and numerical
methods, that their model is capable of replicating biological processes that involve
cell adhesion, such as aggregation of dissociated cells and the active sorting process
of different cell types from a randomly distributed mixture.

Chauviere et al. (2007) used an integro-PDE framework to incorporate cell–cell
and cell–extracellular matrix (ECM) interactions. Their model takes into account hap-
totactic and chemotactic effects, as well as cell–cell and cell–ECM interactions. They
used the following transport equation to describe cell movement

∂ p

∂t
+ v · ∇x p + ∇v · [ f (c)p] = Jc + Jm, (7)
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where p(t, x, v) is cell density at time t ≥ 0 and location x ∈ D ⊆ R
3, with velocity

v ∈ V ⊆ R
3. They assumed a constant initial distribution of cells and zero Dirichlet

boundary conditions. The function f (c) ∈ R
3 models the effect of chemotaxis with

c(t, x) denoting the chemotactic signal, while Jc and Jm describe cell–cell and cell–
ECM interactions, respectively. These interaction terms are proposed to take the form
(for Jc)

Jc(v) =
∫
V

∫
V

νc(v
′, v′∗)ψc((v

′, v′∗) → v)p(t, x, v′)p(t, x, v′∗)dv′dv′∗

−
∫
V

∫
V

νc(v, v
′∗)ψc((v, v

′∗) → v′)p(t, x, v)p(t, x, v′∗)dv′dv′∗, (8)

where νc(v
′, v′∗) is the encounter rate, the number of encounters per unit volume and

unit time between cell pairs with velocities v′ and v′∗, and ψc((v
′, v′∗) → v) denotes

the probability of the transition of a cell having velocity v′ before encounter to continue
its motion with velocity v after having interacted with a cell having a velocity v′∗. Put
simply, this represents how the density of cells travelling at speed v changes due to
encounters with cells at the same position and time travelling at different speeds. The
kernel Jm is defined in a similar manner to incorporate changes resulting from cell
encounters with ECM fibres, which are assumed to be remodelled by cell-induced
degradation described by a Boltzmann-like interaction term. It is of the form

Jm(v) =
∫
V

∫
S2+

νm(v′, n′)ψm((v′, n′) → v)p(t, x, v′)m(t, x, n′)dv′dn′

−
∫
V

∫
S2+

νc(v, n′)ψm((v, n′) → v′)p(t, x, v)m(t, x, n′)dv′dn′, (9)

where m(t, x, n) is the density and orientation of the fibrous ECM, νm(v′, n′) is the
encounter rate of a cell with velocity v′ with a fibre with orientation n′ ∈ S2+ and
ψm((v′, n′) → v) denotes the probability of the transition of a cell having velocity v′
before the encounter to continue its motion with velocity v after having interacted with
a fibre oriented along n′. Using this novel approach to include cell–cell and cell–ECM
interactions, Chauviere et al. (2007)were able to provide insights into how cells behave
in anisotropic and heterogeneous ECM distributions. Further work on the application
of integro-PDEs to investigate the importance of cell–cell and cell–ECM adhesion in
cancer have been carried out by, for example, Gerisch and Chaplain (2008), Gerisch
and Painter (2010) and Chaplain et al. (2011).

A completely different application of integro-PDEs to model collective migration
is that of Colombi et al. (2015a, b). They used a measure theoretic approach to develop
a modelling framework for heterogeneous cell populations, for example, tip and stalk
cells in blood vessel formation and development, in which tip cells guide the rest of the
cells. Colombi et al.’s (2015a, b)model is a hybridmodelwherein specialised cells (e.g.
tip cells) are considered as discrete, and are coupled to unspecialised cells (e.g. stalk
cells) modelled using continuum approach. Their approach provides a mathematically
rigorous framework to incorporate cell-level concepts, such as cell interaction radii
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and forces, into the dynamics of populations. Their model is particularly useful for
biological systems with multiple cell populations which individually require a distinct
type of mathematical description according to their specific functions. There are many
mathematicalmodels that use integro-PDEs to account for larger phenotypic variability
in cancer (Lorenzi et al. 2016, 2018; Busse et al. 2016), but we do not describe them
in detail in this review.

Recently, Buttenschön et al. (2018) have developed a framework within which
non-local adhesion and chemotaxis integro-PDE models can be derived from a space-
jump process. They verified their results by comparing their continuummodel with the
mean-field behaviour of the stochastic random walk model for a large total number
of cells and constant diffusion and advection–diffusion coefficients. These results
demonstrate how the limiting behaviour of certain IBMs can be accurately described
by integro-PDEs, which can be used to model non-local interactions with parameters
for microscale properties directly inferred from experimental data. Furthermore, this
allows us to incorporate assumptions made on behaviour at the microscopic level into
the macroscopic description in a systematic fashion.

5 Domain growth

Thus far, we have focused on models defined on fixed (non-growing) spatial domains.
However, there are many cases where domain growth occurs on the same timescale
as the phenomena being modelled and so must be taken into account. One of the most
spectacular examples of the effects of domain growth is in the pigmentation patterns
on certain fishes, which change qualitatively due to domain growth. It was shown
that this is consistent with a Turing reaction–diffusion model solved on a growing
domain (Kondo and Asai 1995). In the context of collective cell migration, we define
the domain to be the tissue through which, or on which, the cells of interest migrate.
Depending on the model type, discrete or continuous, lattice-based or off-lattice, there
are different ways to incorporate domain growth. Therefore, we now proceed with a
description of the techniques used to model a growing domain.

In continuum reaction–diffusion models, the effect of domain growth is described
by an extra advection term, ∇ · (ap), in the reaction–diffusion equation:

∂ p

∂t
+ ∇ · (ap) = D∇2 p + f (p), (10)

where p is the density of cells, D is the diffusion coefficient, a is the velocity field
generated by domain growth: a · ∇ p corresponds to the transport of material around
the domain at a rate determined by the flow, p∇ · a corresponds to the diluting effect
of local volume increase, and f (p) represents a reaction function. Crampin et al.
(1999, 2002) provided a detailed derivation of the above reaction–diffusion Eq. (10)
for spatially uniform domain growth, and a few examples of non-uniform in space
and time domain growth. Crampin et al. (2002) demonstrated how the sequences of
patterns change for different domain growth profiles, giving a further mechanism for
controlling pattern selection. Landman et al. (2003) demonstrated that the same ideas
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can be extended to incorporate uniform domain growth into continuum models for
cell migration that include chemotaxis. Simpson et al. (2006) built on their work and
provided an efficient numerical algorithm for solving PDEmodels of chemotactic and
diffusive migration on a non-uniformly growing domain. In addition, they provided
rigorous mathematical results that show how different types of domain growth impact
cell invasion.

In the continuum models on a growing domain described above, the PDEs were
solvednumerically.However, Simpson (2015) derived an exact solution toPDEmodels
of linear reaction–diffusion processes on a uniformly growing domain. They used their
analytical solution to further investigate the interplay between different parameters
and model features, such as the rate at which the domain elongates and the diffusion
coefficient. This is a good example of how a mathematically tractable model can be
used to provide insights to the biology.

It is important to remark that it is challenging to implement integro-PDEmodels on
a growing domain due to changes in the domain of integration of the interaction terms
Jc and Jm in Eq. (7). To our knowledge there are no studies in this area, in particular,
when combined with cell migration.

Baker et al. (2010) demonstrated how mathematical models that include domain
growth at a microscopic level, referred to here as a discrete description, translate
to the macroscopic description, referred to here as a continuum description. They
used a one-dimensional lattice-based IBM to demonstrate the correspondence between
microscopic andmacroscopicmodelling frameworks. In their model cells were guided
by external signals, for example, those due to the presence of a chemottractant. They
incorporated domain growth by the instantaneous doubling in size and division of
underlying lattice elements. They obtained good correspondence between the micro-
scopic and macroscopic frameworks for slow growth (smaller than quadratic). Yates
et al. (2012) extended these studies and demonstrated that different ways to split the
lattice sites ensures that individual-based stochastic simulations provide equivalent
results to PDE models on any non-uniformly growing domain.

Ross et al. (2016, 2017) investigated different ways to implement domain growth
in lattice-based models. They simulated a one-dimensional random walk with volume
exclusion, cell proliferation and death. They demonstrated that changes in theway new
sites are added to the lattice influence steady-state densities and spatial correlations.
Their analyses provided evidence that to model domain growth accurately, detailed
experimental data on the underlying tissue growth must be incorporated to avoid
inaccurate predictions from a model.

While most of the work described in this section is theoretical, the authors discuss
how their suggested frameworks could be applied to model biological processes such
as the migration of melanoblasts through the developing dorsal lateral epithelium in
the embryonic mouse (Wilkie et al. 2002) and morphogenesis in general (Aman and
Piotrowski 2010). An application of an IBM on a growing domain to investigate the
formation of diffuse clones, chimeric stripes and belly spots induced by migration
of melanoblasts in mouse chimeras has been carried out by Mort et al. (2016). They
demonstrated that melanoblast colonisation is likely to proceed through a process of
undirectedmigration, proliferation and tissue expansion, and that reduced proliferation
is the main cause of the belly spots in mouse.
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6 Neural crest cell migration

We focus now on the NC illustrating that it is a diverse and very tractable experimental
collective cell migration model system. NC cells are unique to vertebrates and their
migration is fundamental in embryonic development. NC cells are derived from the
ectoderm at the crest of the neural tube, a structure which forms the spinal cord and
brain, and are released to migrate away from the neural tube to colonise different
sites. There are distinct NC cell populations that emerge at different axial levels of
the dorsal neural tube and migrate in streams which appear to be confined to spe-
cific corridors of the tissue domain (Fig. 1). Cranial/cephalic NC cells contribute to
mainly cartilage, bone, teeth, connective tissue and cranial neurons. Cardiac NC cells
contribute to cartilage and connective tissue of the cardiovascular system. Trunk NC
cells give rise to melanocytes, glia and neurons of the peripheral nervous systems.
Vagal/enteric and sacral NC cells give rise to the ganglia of the enteric nervous system
(Le Douarin 2004; Rogers et al. 2012). If NC cells fail to reach a target, or populate
an incorrect location, then improper cell differentiation or uncontrolled cell prolifer-
ation may result, which can further lead to developmental defects and diseases, for
example Hirschsprung’s disease, characterised by a failure of NC cells to fully migrate
throughout the developing gut (Landman et al. 2007).

In NC, many mathematical models have been developed to address different col-
lective NC cell behaviours observed within and across species. We summarise here
a few of the key studies, and refer the reader to some reviews on the wide range of
literature on NC cell migration (Kulesa et al. 2010; Schumacher et al. 2016; Szabó
and Mayor 2016, 2018).

6.1 Individual-basedmodels

As discussed in Sect. 2, an advantage of IBMs over continuum models is that they can
incorporate individual-cell-level properties more easily. Therefore, they are the most
commonly used models to simulate the migration of NC cells. We provide examples
of these models in the following two subsections: on a fixed domain and on a growing
domain.

6.1.1 Fixed domain

An agent-based model on a two-dimensional fixed lattice was used to model col-
lective cell motility of cephalic NC cells in Xenopus driven by contact inhibition of
locomotion (CiL) and co-attraction (CoA) (Carmona-Fontaine et al. 2011). CiL is a
process during which migratory cells momentarily stop upon physical contact and
subsequently repolarise to move in the opposite direction, whereas CoA describes a
mutual cell–cell attraction. The importance of CiL for the migration of NC cells was
demonstrated usingXenopus and zebrafish cephalic NC cells (Carmona-Fontaine et al.
2008; Theveneau et al. 2010; Mayor and Carmona-Fontaine 2010). Further evidence
for CiL has been recently provided by Roycroft et al. (2018), who showed how CiL
could arise via the redistribution of adhesive forces through Src/FAK (steroid receptor
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coactivator and focal adhesion kinase). The existence and necessity of the opposite
phenomenon, namely CoA, to ensure that the cells remain in a group, has been verified
in Xenopus cephalic NC cells (Carmona-Fontaine et al. 2011).

In their IBM Carmona-Fontaine et al. (2011) incorporated short-range repulsive
interactions aimed to emulate CiL, and longer-range attractive interactions for CoA.
CiL was modelled by enforcing alignment of cells after collisions and then induc-
ing a repulsive force with some noise. CoA was modelled in two ways: by enforcing
cells within a certain radius to move towards each other, or based on diffusion of a
co-attractant. Both implementations produced similar results. Their modelling results
supported conclusions drawn from experimental findings on these guidance mecha-
nisms, i.e. that the combination of CiL and CoA is essential for cells to self-organise
and respond efficiently to external signals. Woods et al. (2014) further extended
Carmona-Fontaine et al.’s model and incorporated elastic collisions to account for
the deformation of cell shape. Their simulation results reinforced the findings that
CiL and CoA are together sufficient mechanisms for successful invasion in cephalic
NC cells in Xenopus.

Another model which includes the biological assumptions of CiL and CoA was
developed by Szabó and Mayor (2016). They developed a Cellular Potts model to
investigate the effect of confinement on the collective migration of NC cells. The
optimal number of cells in a given confinement width predicted by their computational
results coincidedwith thewidth ofNCmigratory streams across different species. They
suggest that this may explain the evolutionarily conserved nature of NC streams.

The studies described in this section provide explanations for certain important
phenomena in collective cell migration, such as cell–cell interactions and domain
confinement. Nevertheless, there is evidence that for other types of NC cells external
guidance cues play an important role in collective NC cell migration. For example,
vascular endothelial growth factor (VEGF) for chick cranial NC cells and stromal
cell-derived factor (SDF1) for Xenopus cranial NC cells have been shown to act as
chemoattractants (McLennan et al. 2010; Theveneau et al. 2010; Kasemeier-Kulesa
et al. 2010). Therefore, while the modelling studies described in this section have
elucidated a potential mechanistic basis for collective migration, it is important to
note that the variety of behaviours observed in NC migration suggest that there are
other mechanisms that can give rise to collective cell migration.

6.1.2 Growing domain

The above models were all implemented on fixed (non-growing) domains. We now
proceed to review some models for different NC cell systems that incorporate domain
growth and external cell guidance cues.

The computational and experimental studies by McLennan et al. have provided
a number of insights into the migration of chick cranial NC cells (McLennan et al.
2012, 2015a, b, 2017). We provide a more detailed description of this model, repro-
duce their results and suggest future directions based on their work. Their key results
included evidence of guidance via a cell-induced gradient of VEGF, which acts as
a chemoattractant, heterogeneity of cell phenotypes, namely “leaders” and “follow-
ers”, and possibility of phenotypic transition. To model cell dynamics they used a
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two-dimensional off-lattice IBM with volume exclusion, which was coupled to a
continuum reaction–diffusion model for the dynamics of the chemoattractant VEGF.
The cell positions were updated in the following way: leaders undertake a biased
random walk up a cell-induced gradient of chemoattractant, whereas followers are
guided by the leaders, if sufficiently close to them, or move randomly. The exact guid-
ance mechanism is unknown, therefore McLennan et al. (2012, 2015a, b, 2017) made
the assumption that leaders guide followers by physical contact via filopodia, giving
rise to chain-like structures, which are observed experimentally (Wynn et al. 2013).
They included a phenotype switching mechanism between the cell phenotypes; in the
absence of VEGF, lead cells acquire follower cell behaviour. The dynamics were mod-
elled on a rectangular growing domain in the x direction (from the neural tube to the
target tissue). They assumed that the growth was spatially uniform but non-uniform in
time. Initially, the domain is empty of cells, which then enter at a constant rate at the
left-hand boundary, provided that there is space available. The cells satisfy zero flux
boundary conditions on the other three boundaries. McLennan et al. used Eq. (11) as
a (non-mechanistic) description of domain growth in the x direction with a sufficient
number of parameters to fit experimental data:

L(t) = L0

(
L∞ea(t−ts )L∞

L∞ − 1 + ea(t−ts )L∞ + 1 − L∞ea(−ts )L∞

L∞ − 1 + ea(−ts )L∞

)
, (11)

with a, ts, L∞, L0 > 0 parameters inferred from experimental results and L(t) is the
domain length (McLennan et al. 2012). They incorporated uniform domain growth in
the dynamics of cells by updating the positions of cells at each timestep. The VEGF
dynamics were modelled as follows:

∂c

∂t
= D

(
1

L2

∂2c

∂x2
+ ∂2c

∂ y2

)
︸ ︷︷ ︸

(1)

− c
N (t)∑
i=1

λ

2πR2 exp

[
− L2(x − xi )2 + (y − yi )2

2R2

]

︸ ︷︷ ︸
(2)

+ κc(1 − c)︸ ︷︷ ︸
(3)

− dL

dt

1

L
c

︸ ︷︷ ︸
(4)

, (12)

where c(x, y, t) represents the concentration of chemoattractant at position x ∈
[0, L(t)], y ∈ [0, Ly] (for Ly > 0 constant) and time t . The terms on the right-hand
side of Eq. (12) correspond to: (1) diffusion of chemoattractant with constant diffu-
sion coefficient D, with the 1/L2 factor due to the domain growth in the x direction
(L(t) is the length of the domain); (2) internalisation of chemoattractant by cells; (3)
production of chemoattractant; (4) dilution of chemoattractant due to domain growth.
The other parameters are as follows: R is the cell radius, λ is the internalisation rate, κ
is the production rate of chemoattractant and (xi , yi ), i = 1, . . . , N (t), is the position
of the centre of cell i , where N (t) is the number of cells at time t . They assumed zero
flux boundary conditions and initial conditions c(x, y, 0) ≡ 1. We refer the reader to
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Fig. 2 Simulation of the McLennan et al. (2015a, b, 2017) model (see text for details). Distribution of cells
along the domain when there are two different cell phenotypes, namely leaders and followers, and when all
the cells are leaders, average of 20 simulations after 24 h. Error bars represent standard deviation

(a)

(b)

Fig. 3 Snapshots at t = 24 h from simulations of the model developed based on McLennan et al.’s (2015a,
b, 2017) model (see text for details). Black circles correspond to leader cells, yellow circles correspond to
follower cells, and c is the concentration of chemoattractant. In the case of two cell phenotypes (a), in which
leaders guide followers by forming contact “chains”, the cells migrate collectively. If there is only cell type
with cells that are guided by a cell-induced VEGF gradient, then the stream breaks (b) (color figure online)

the supplementary information of McLennan et al. (2015a, b, 2017) for full details of
the model.

McLennan et al.’s (2012) study shows that it is possible to generate coherent cell
migration with two phenotypes. We reproduce this result by showing that successful
invasion is not possible when there is only one cell phenotype, but the invasion is
robust when there are two cell phenotypes (Figs. 2, 3). However, there may well be
other phenotypes expressing differentmovement properties, so theremay bemore than
two cell phenotypes. In fact, recent computational studies have demonstrated that cell
states do not necessarily have to be discrete and a continuum transition between cell
states offers a functionally equivalent description (Schumacher 2019). Measurements
of the whole transcriptome support the hypothesis of a continuum of cell states.
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In the above, McLennan et al. (2012, 2015a, b, 2017) have assumed, for simplicity,
that domain growth is uniform in space and non-uniform in time. This assumption was
based on simple length measurements of the entire NC migratory domain through-
out successive developmental stages. However, recent experiments that measure cell
proliferation and cell density changes of the mesoderm through which NC cells travel
suggest that this is not the case, and we are presently investigating the effects of this
on model predictions (results not shown).

Another IBM, which also incorporates domain growth, was used to model devel-
opment of the embryonic gut of avian embryos (Binder et al. 2012; Cheeseman et al.
2014; Newgreen et al. 2009; Zhang et al. 2010). In this study, domain growth was
incorporated using random insertion of lattice sites. Different types of domain growth
can be implemented in this framework, including spatially non-uniform growth. How-
ever, the effect of spatially non-uniform domain growth on collective cell migration
and successful colonisation of the domain in hybrid or continuummodels, for example
the McLennan et al. (2012, 2015a, b, 2017) model with continuum reaction–diffusion
for chemoattractant, are still open questions.

6.2 Continuummodels

Continuum modelling has been used to study the migration of NC cells to provide
biological insights. For illustrative purposes, we provide an example of a particular
PDE model and an integro-PDE model for different types of NC cell migration. We
identify their main assumptions and key results.

6.2.1 Partial differential equation model

Simpson et al. (2007) used a continuum model to investigate the roles of proliferation
and migration for successful invasion and colonisation of the gut by vagal NC cells
that establish the enteric nervous system. More specifically, they were looking for
the main causes that inhibit NC cells from reaching the end of the gut, which can
result in abnormal development (Newgreen et al. 1996). They developed their model
based on experimental studies of chick and quail embryos. Simpson et al. (2007)
proposed a coupled system of PDEs for the two cell types, which were observed to
differ experimentally, and described migration with diffusion, and proliferation with
logistic growth:

∂D

∂t
= αD

∂2D

∂x2
+ λDD

[
1 −

(
D + H

C

)]
, (13)

∂H

∂t
= αH

∂2H

∂x2
+ λH H

[
1 −

(
D + H

C

)]
, (14)

where x ∈ [0, L], for L ≥ 0 constant and t ≥ 0. D(x, t) denotes donor cell density
(usually from quail), H(x, t) host cell density (usually from chick), C is the carrying
capacity, αD, αH ≥ 0 are the respective motility rates and λD, λH ≥ 0 are the respec-
tive proliferation rates. They considered the cases in which donor and host cells were
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identical and the case in which donor cells were non-proliferative, i.e. λD = 0. They
used different initial conditions for donor cells, D(x, 0), relative to the host cells,
H(x, 0), to qualitatively replicate the initial state of invasion in graft experiments.
Their results are robust to boundary conditions, that is, they could be set either to no
flux or appropriate Dirichlet conditions.

Simpson et al. (2007) analysed their model mathematically and provided predic-
tions that were validated experimentally. In particular, they identified that cell invasion
waves are organised in such away that theNCcells at the front of the stream are respon-
sible for proliferation andmotility, while theNC cells behind them are not proliferative
and do not contribute to the invasion of unoccupied tissues. These differences were not
induced by intrinsic cell properties (verified using their mathematical model and graft-
ing experiments involving identical and non-identical cells) but whether or not the cells
were adjacent to NC-free tissue. Their modelling revealed the importance of prolifer-
ation to carrying capacity in the system. The model was further used to investigate the
reasons for developmental defects, including Hirschsprung’s disease (Landman et al.
2007). Hirschsprung’s disease is a motor disorder of the gut, which is caused by the
failure of NCs to fully invade and populate the gut. Landman et al.’s (2007) results
revealed that directional invasion of the gut is driven by a combination ofNCcell prolif-
eration and migration. This suggests that the experimental focus should be to examine
the mechanisms that regulate the balance between cell proliferation and migration.

6.2.2 Integro-partial differential equation model

Another continuum approach to model NC cells was considered by Painter et al.
(2015). They investigated different NC cell–cell interactions through a non-local PDE
modelling framework. This is a potentially promising approach because there is no
evidence that such interactions are purely local, for example, cranial and trunk NC
cells often use long membrane protrusions, such as lamellipodia and filopodia, to
sense their non-local extracellular environment (Clay and Halloran 2010; Painter et al.
2015). Painter et al. (2015) used an abstracted phenomenological argument, based on a
classical continuum approach (Murray 2002), to include mechanisms such as CiL and
CoA between NC cells (described in Sect. 6.1.1). We provide a short description of
their model to convey the main idea of their approach. Painter et al. (2015) developed
a modelling framework for an n-dimensional system, but restricted attention to a one-
dimensional case for their application to model NC cells. They considered a mass
conservation equation for cell density, p(x, t):

∂ p

∂t
= −∇ · J, (15)

where J represents the flux and x ∈ R
n . The flux consisted of two parts, namely

random, and interaction, J = Jrandom + Jinteraction . The random flux was defined
as Jrandom = −Dp∇ p, where Dp is the constant cell diffusion coefficient. The
interaction flux was of the form

123



498 R. Giniūnaitė et al.

Jinteraction(x, t) = p f (p)ω
∫
Rn

s
|s|�(|s|; ξ, μ)g(p(x + s, t))ds, (16)

where ω is a proportionality constant that depends on factors such as viscosity of the
medium, f (p) is a packing or volume-filling function, �(|s|, ξ, μ) : [0,∞) → R is
the interaction function, ξ is the interaction range, μ is the interaction strength, and
g(p(x + s, t)) is the functional dependence on cells at x + s, which corresponds to
the strength of the force exerted on cells at x due to the cell density at x + s. They
used different forms of the interaction function, such as a step function or exponential
function, to incorporate CiL and CoA.

Painter et al. (2015) also extended this model to include two populations with
varying interactions, but used a one population model to investigate NC cell migration
and provided simulation results that demonstrate how interaction strength and range
affect the invasion depth and dispersal. They observed that the solutions appear to
evolve to travelling wave profiles. However, it is still an open question to determine
the dependence of the wave speed on the parameters μ and ξ analytically. Painter
et al. (2015) hypothesised that if NC cells communicated at longer distances than
previously assumed by Carmona-Fontaine et al. (2008), then the invasion could be
significantly enhanced. These results suggest that it could be fruitful experimentally
to look for mechanical or chemical interactions between cells at different distances
via, for example, an extension of filopodia of varying length.

7 Discussion

In this review, we provided a brief summary of a range of mathematical modelling
frameworks (IBM, PDE, integro-PDE) for collective cell migration and discussed
their relative strengths and weaknesses. We considered examples of how continuum
models can be derived from IBMs. We discussed integro-PDEs and their usefulness
for incorporation of non-local cell–cell and cell–tissue interactions. We identified
that domain growth can have an important impact on collective cell invasion and
provided a short summary of techniques used to model growth in both discrete and
continuum frameworks. We pointed out how continuum models can be derived, on
fixed or growing domain, from IBMs allowing us to directly relate population level
properties to individual cell-level properties.

We considered the paradigm case of the highlymigratory, embryonic NC to demon-
strate how different modelling frameworks can be used to answer biological questions.
Interdisciplinary studies of NC cell migration have revealed a huge variety of cell–
cell and cell–tissue interactions across various NC cell types and different species.
Mathematical modelling has helped us to understand some of these behaviours and to
identify further open questions. There are still many other cell–cell/cell–tissue interac-
tions that may contribute to cell invasion. Furthermore, variations in the tissue, such as
tissue growth or chemical composition, are also likely to have an impact on collective
cell migration. Recent advances in imaging technology and single cell analyses now
mean that, experimentally,we can track individual cell behaviours and interrogate gene
expression changes to generate multiscale spatiotemporal data. One of the ongoing
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challenges in this field is to incorporate spatial statistics into modelling frameworks
for parameter identification and model refinement (Warne et al. 2018). This will allow
more precise model predictions and validation.
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Zhang D, Brinas IM, Binder BJ, Landman KA, Newgreen DF (2010) Neural crest regionalisation for enteric
nervous system formation: implications for Hirschsprung’s disease and stem cell therapy. Dev Biol
339(2):280–294

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Modelling collective cell migration: neural crest as a model paradigm
	Abstract
	1 Introduction
	2 Individual-based models
	3 Partial differential equation models
	4 Integro-partial differential equation models
	5 Domain growth
	6 Neural crest cell migration
	6.1 Individual-based models
	6.1.1 Fixed domain
	6.1.2 Growing domain

	6.2 Continuum models
	6.2.1 Partial differential equation model
	6.2.2 Integro-partial differential equation model


	7 Discussion
	Acknowledgements
	References




