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Abstract. Tissue interaction plays a major role in many morphogenetic pro- 
cesses, particularly those associated with skin organ primordia. We examine 
travelling wave solutions in a tissue interaction model for skin pattern forma- 
tion which is firmly based on the known biology. From a phase space analysis 
we conjecture the existence of travelling waves with specific wave speeds. 
Subsequently, analytical approximations to the wave profiles are derived 
using perturbation methods. We then show numerically that such travelling 
wave solutions do exist and  that they are in good agreement with our 
analytical results. Finally, the biological implications of our analysis are 
discussed. 
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I Introduction 

Travelling wavefronts are the precursors to a vast range of developmental 
processes seen in embryonic tissue. For  example, both chemical and mechan- 
ical waves propagate on the surface of many vertebrate eggs shortly after 
fertilization. Furthermore, during morphogenesis, regular patterns often de- 
velop behind a frontier of pattern which travels across tissue. 

Cheer et al. (1987) proposed a reaction-diffusion system to model the 
progression of calcium waves on the egg of the teleost fish Medaka. This 
model was extended by Lane et al. (1987) to account for cortical contraction 
waves which accompany the calcium waves. They coupled the mechano- 
chemical system for epithelial cell movements, as proposed by Murray and 
Oster (1984), to a calcium conservation equation. 
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Recently, Cruywagen and Murray (1992) proposed a novel model to 
account for the tissue interaction that leads to feather germ patterning in chick 
skin. In this paper we show that their model can similarly produce a contrac- 
tion wave propagating through the epithelial layer. At this stage we only 
consider the one-dimensional version of the model. Waves in two-dimensions 
are quite different. 

In Sect. 2 we present a brief review of the tissue interaction model and 
reduce it to an ordinary differential equation system by transforming into 
travelling wave coordinates. In Sect. 3 we carry out a linear analysis of this 
ordinary differential equation system and find conditions on the model 
parameters under which travelling wave solutions may be possible. A regular 
perturbation approximation to the travelling wave solutions is obtained in 
Sect. 4 while, in Sect. 5, these perturbation solutions are compared with the 
numerical solutions of the system of ordinary differential equations and also 
to the system of partial differential equations. From the perturbation analysis 
and numerical results we make some biological interpretations and predic- 
tions; these are discussed in Sect. 6. 

2. The model 

Here we briefly describe the tissue interaction model and refer the reader to 
Cruywagen and Murray (1992) for full details. (For more details about 
modelling tissue interaction in general see Murray et al., 1993). The model 
assumes that tissue interaction between the epithelial and dermal skin layers is 
mediated by two signal chemicals which are secreted, respectively, in each 
layer and diffuse across the basal lamina which separates the layers. It consists 
of seven equations: four to describe the production, degradation, and diffusion 
of the chemicals within and between layers; two conservation equations for 
the dermal and epidermal cell densities, and finally, a force balance equation 
for modelling stresses in the epithelium. As the chemical equations are stan- 
dard, we shall not describe them here but will, instead, focus on the force 
balance and cell density equations. 

The epithelium is modelled as a visco-elastic continuum at low Reynolds 
number in which active traction forces exerted by the epidermal cells are 
balanced by elastic restoring forces and external elastic tethering to the basal 
lamina. The force balance equations then has the form 

V ' ~ -  -f11V2,1~-[-~2(O-f12V20 ) + Ul~  + #2~-~I+ v = p u ,  (2 .1)  

where u (x, t) is the displacement at time t of a material point in the epithelium 
which was initially at position x, 0 = V.u  is the dilation, e = ½(Vu + Vu r) is 
the strain tensor, where T denotes the transpose, and s (x, t) is the concentra- 
tion of the signal chemical produced in the dermis. The parameters E and v are 
Young's modulus and Poisson's ratio respectively, while #1 and ]~2 are the 
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epidermis 

basal lamina 

dermis 

Fig. 1. A schematic diagram of the tissue interaction model of Cruywagen and Murray 
1992. Dermal cells, n, secrete a signal chemical s, which diffuses into the epithelial layer. This 
chemical increases the traction produced by the epithelial cells N. The chemical e is secreted 
by epithelial cells and diffuses into the dermis, where it acts as a chemoattractant for dermal 
cells 

shear and bulk viscosities respectively, I is the unit tensor, and fl, and f12 
reflect long-range elastic stresses (see Murray 1989). For  algebraic simplicity 
only, we have assumed here that the traction z is a linear function of the 
dermal signal chemical, rather than the more complicated non-linear form 
used in Cruywagen and Murray (1992). 

We assume that the epidermal cells move only due to convection, hence 
the epidermal cell density, N ( x ,  t), satisfies the conservation equation 

0N t3u 
- V .  N - -  (2.2)  

~t ~t " 

The conservation equation for dermal cell density, n (x, t), accounts for diffu- 
sion, mitosis, and chemotaxis towards the signal chemical produced in the 
epithelium. Hence, the dermal chemotaxis equation is 

0n 
- -  = D V 2 n  - ~V"  n V e +  rn (h - n)  , (2.3) 
Ot 

where D is the coefficient of diffusion, e the chemotaxis coefficient, e(x,  t) the 
concentration of the signal chemical produced in the epithelium, and r and 
fi are positive constants (see Fig. 1 for a schematic diagram of the interaction 
mechanism). 

We can linearise about the uniform steady state of N, say ]V, and integrate 
(2.2) to obtain a linear relationship between N and 0, namely N = N(1 - 0). 
Using this and assuming that the cell kinetics occur on a fast timescale one can 
find actual algebraic expressions for the signal chemicals. From these expres- 
sions, in particular s = n / (1  + v(1 - 0)) and e = (1 - 0)/(1 + 7"), we observe 
that the active traction stress in the epidermis is induced by high concentra- 
tions of dermal cells, but inhibited by high concentrations of epithelial cells. 
Similarly, dermal chemotaxis occurs towards high concentrations of epithelial 
cells, but is inhibited by high concentrations of dermal cells. 
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When nondimensionalised, the system takes the form, in one-dimension, 

O30 ~20 fl ~40 92 { "~l'l } 
P&---~x 2 + ~ x  2 -  ~ x  4 + ~ x  2 l + v ( l - - O )  = P O '  (2.4a) 

On 
t?t - ~?x 2 e~xx[ ~xx \ 1 ~ - ~ ]  J + n(1 -- n),  (2.4b) 

where #, fl, z, v, p, e and 7 are positive parameters. 
The tissue interaction in these caricature equations is represented in (2.4a) 

by the fourth term on the left-hand side, in which cell traction in the epidermis 
is a function of dermal cell density, and in (2.4b) by the second term on the 
right-hand side in which dermal cell chemotaxis is a function of the dilation in 
the epidermis. 

To analyse the system for travelling waves we look for solutions in the usual 
way by setting z = x + ct, where the constant c is the positive wavespeed. We 
are thus concerned with waves moving in the negative z-direction. With this 
change of variables (2.4) converts to the following system of ordinary differen- 
tial equations in z, where n and 0 are now functions of z, 

daO d20 - d40 d2 { n } 
+ - + + 1 v(1 - 0 )  = P 0 '  (2.5a) 

C-~z dZn ~-~z n-~z ~ + n(1 - n) (2.5b) 

Note that if we set c~ = 0, which is equivalent to ignoring epidermal to dermal 
interaction, (2.5b) decouples from (2.5a) and is, in fact, the well studied Fisher 
equation which exhibits travelling wave solutions with wavespeed c __> 2 (see, 
for example, Fife 1979, Murray 1989). 

3 Linear  analys i s  : 

To prove the existence of travelling wave solutions for the two-way tissue 
interaction system (2.5) is a non-trivial task, since one has to deal with 
a six-dimensional phase space. However, using a linear analysis about the 
steady states, we can conjecture under which conditions a trajectory corres- 
ponding to a travelling wave solution will be possible. 

The tissue interaction system (2.5) has the steady states 0 = 0, n = 0 and 
0 = 0, n = 1. Realistic waves require a heteroclinic orbit in n, connecting the 
steady state n = 0 to n = 1, and a homoclinic orbit in 0, connecting the steady 
state 0 = 0 to itself. By setting 

0o=0, 01=0', 02=0", 03=0'", no=n, nl=n' ,  
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we can rewrite the coupled pair of ordinary differential equat ions (2.5) as 
a sixth order  system, namely 

0~ = 01 , (3.6a) 

01 = 02,  (3.6b) 

0~ = 03 , (3.6c) 

Or3 = cO 3 "~ 02 - -  t000 ~- ~ [cr(anx + Vno02)  + 2zvOt(anl + vnoOa)] , (3.6d) 

' (3.6e) gl 0 ~ n 1 , 

1 
{~2[cnl + no(no - 1)] - c~7n1(1 - 0o) - c~((01nl + 

n'x = (2 + ~Tno(1 - 0o) n o 0 2 )  

2~Tnonl } 
[(0x + 7na(1 - 0o)] , (3.6f) + 

where 
tr = 1 + v(1 - 0o), ( = 1 + yno ,  

and the expression (3.6f) for n'l must  be substituted into (3.6d). 
We now investigate whether  a trajectory connecting the steady state 

So = (0, 0, 0, 0, 0, 0) to the steady state $1 -- (0, 0, 0, 0, 1, 0) is possible. As in 
the simpler Fisher case, we will show that  the steady state So has an unstable 
manifold and the steady state $1 has a stable manifold. 

First, we linearise about  the trivial steady state So and, in the usual way, 
look for solutions of the form A e  ~z, where the vector A is a constant  and the 
sign of N2 determines the stability of the steady state. Substituting this into 
the linearized system leads to a system of six simultaneous homogeneous  
equations. A non-trivial solution for this system exists only i f2  satisfies a sixth 
order  polynomial,  which includes as solution, the complex conjugate pair 

c _+ x / c S -  4 
4o+ - 2 ' (3.7) 

with the eigenvectors of the form 

[to, t¢2o _+, t¢2o 2 +, X2o 3 +, 1, 4o _+ ] (3.8) 

where 
z(CRo + - 1) 

K =  
(1 + .)(B2o'_+ -  c2o - 22 + + p )  

The four other  eigenvalues 2 ,  i = 1, 2, 3, 4 satisfy 

f12 4 - -  ~ C 2  3 - -  2 2 "q- p = 0 , 

with eigenvectors of the form 

[a, 2 .  0, 0 ] .  

(3.9) 

(3.1o) 
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By integrating (2.5b) with respect to z and imposing appropriate boundary 
conditions (see Sect. 4), we can easily show that c > 0. Hence the steady state 
So will always have a linearly unstable manifold (from (3.7)) spanned by the 
eigenvectors corresponding to the positive eigenvalues in (3.7) and (3.9). 

Biologically the dermal cell density no is non-negative. Since the eigen- 
vector (3.8), corresponding to the eigenvalue with the positive real part in (3.7), 
has an imaginary ni-component if c < 2, such unrealistic trajectories are 
possible. However, ifc > 2 then no > 0 on all trajectories originating from So, 
since the eigenvectors (3.8) will have real nl-components. Thus, similar to the 
Fisher equation, for realistic travelling wave solutions for the reduced tissue 
interaction model there is a lower bound on the wavespeed. 

We can also derive a linearly valid condition on the model parameters for 
determining when the epithelial cell dilation solution will exhibit oscillatory 
behaviour in the vicinity of So. Using Descartes' rule of signs, since all the 
model parameters, as well as the wavespeed c are positive, it follows that the 
polynomial (3.9) has either two or zero positive and either two or zero 
negative roots. To determine the three turning points (3.9) we set its first 
derivative equal to zero and solve for 2 to obtain 

2"  = 3/~c + x/9/.t2c 2 - 32fl and 2* = 0 .  
88 

By substituting 2* into the polynomial (3.9), we find the condition under 
which it will have two real positive roots, that is 

3 

512pfl 3 -- 27/,4c 4 -- 144fl#2c 2 -- 16fl - -  #c(9122c 2 q- 32fl)~ < 0 .  (3.11) 

Under this condition the eigenvalues in (3.9) with positive real part are real 
and therefore oscillatory behaviour in the model variable about So will not 
occur. However, if condition (3.11) is not satisfied then the imaginary eigen- 
values in (3.9) have positive real parts. In this case oscillatory trajectories in 
0 could shoot from the steady state So. 

Linearising about the steady state $1 we find eigenvalues 

(1 + 7)cw +_ ~/(1 + •)2C2W2 "q- 4(1 + 7)W 
2+ = 2 , (3.12) 

as well as the four roots satisfying 

where 

and 

f12 4 -  pc2 3 - (2 2 + p = O, 

1 + 7  
w (1 +7)  2+c~7 > 0 '  

"rv 

= 1 + (1 + v) - - - - - ~  

(3.13) 
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It is easy to see from (3.12) that $1 always has a stable manifold for positive 
values of c. Since the eigenvalues (3.12) have no imaginary parts there will be 
no oscillation in cell density n, in the vicinity of the steady state. 

Furthermore, as the polynomial (3.13), according to Descartes' rule of 
signs, has two or zero negative roots we can again find a linearly valid 
condition under which the dilation solution 0, would not approach the zero 
steady state solution in an oscillatory manner. Using a similar method as 
before we can find the condition as 

3 
512pfl 3 -- 27~4c 4 -- 144fl(p2c 2 -- 16fl~ 2 -t- #c(9~2c 2 + 32(fl)g < 0 .  (3.14) 

If this condition is violated oscillatory trajectories in 0 in the vicinity of $1 are 
possible. 

From the above analysis we conjecture that a biologically realistic travel- 
ling wave, connecting the steady states So and S~ for all parameter ranges 
could exist if c > 2. In the following sections we shall examine by analytical 
and numerical means whether such travelling wave solutions actually do exist. 

4 Regular perturbation solution 

In this section we find a regular perturbation solution for the travelling wave 
solutions of the tissue interaction system (2.5). For  the purpose of our per- 
turbation method we assume that there does indeed exist a travelling wave 
solution for (2.5) satisfying the boundary conditions 

lim n(z) =1, lim n(z) =0, lira O(z) =O'(z) =O"(z) =O"'(z) =n'(z) =0.(4.15) 
Z --~ oO z~--oo z~ +o0 

We begin by rescaling the system of ordinary differential equations (2.5). To 
find the appropriate scalings we rescale the dependent and independent 
variables in (2.5) by setting 

O = 2;-10, N = ~bn, ~ = fiz, (4.16) 

where O, N and ~ are the rescaled variables, 6 is an appropriate scale for the 
independent variable and Z and q~ are appropriate scales for the dependent 
variables. 

Since we have no a priori reason for favouring one term above another we 
try to employ a scaling which simplifies (4.15) the least, that is, which makes as 
many terms as possible in the relevant differential equation have the same 
order of magnitude. 

Using (4.16) gives, for (2.5a), after multiplying by 2;, 

3Z d30 2Z d20 4- d40 +.r~2~) d2  ~'ld~Z( N ZO)~=p~O " j  
+v(1-  

(4.1"1) 
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We find here that it is impossible to make all the terms the same order of 
magnitude, since there are five terms but only three free parameters (X, q~ 
and 6), and we are forced to favour some terms above others. 

To ensure that we have a non-zero solution for this equation at the lowest 
order we must assume that the interaction term, in which n(z) appears, is in 
the lowest order equations. Biological considerations suggest that the viscous 
and long range elastic terms, the first and third terms in (4.17), respectively are 
not as important  as the short range elastic term and the epithelial tethering 
term, the second term and the term on the right hand side of (4.17), respectively. 

We therefore assume that the interaction and the tethering terms are of the 
same order of magnitude, thus setting 62"~(~ = p• .  This determines a unique 
relationship between 6 and Z which would be violated if we assume other 
terms in the equation are also of the same order. Alternatively, one could 
assume that the elastic and the interaction terms are of the same order of 
magnitude. However, by using a similar procedure as we do below, exactly the 
same perturbation solutions for n and 0 result. 

By using the scaling (4.16), where ~b = 1, (2.5b) becomes 

c 6 ~  2 d2N 2 d ( d / 1 - SO \ )  

which is the Fisher equation with an interaction term included. Here again we 
have to favour some terms above others. Murray (1977) gives a perturbation 
solution for the normal  Fisher equation in terms of the small parameter  1/e z, 
by assuming that ~b = 1 and that  the term on the left hand side of the equation 
is the same order of magnitude as the logistic growth term on the right hand 
side. We make the same assumption for our interaction system, thus setting 
ca = 1. F rom now on we shall again use n instead of N. 

So, if we assume that 
1 z 

8 = - ,  X -  C pc 2 ' 

and set e = 6 2 we obtain the rescaled system 

d30 d20 g4 d40 d2 { n } 
" -dU +  -dU - / -aU + 1 + v(1 - = p O .  (4.18a) 

a.  42. d f a 
=e~-~--e~-~]n~-~-___ - - -  l + 7 n  / /J  + n ( 1 - n ) '  (4.188) d--~ 

with boundary conditions 

lim n(4) = 1, lim n(4) = 0, 

lim 0 (4 )  = 0 ' ( 4 )  = 0 " ( 4 )  = O'"(4)  = n'(4) = 0 .  (4.19) 
{--+ +co 

These equations are translation-invariant in 4, so for uniqueness we addition- 
ally fix one point, 

1 (4.20) n(O)  - ~ .  
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The linear analysis of the previous section predicted that if the tissue inter- 
action system has travelling wave solutions then their speed c > 2, so that 

< 0.25. Hence, we use a regular perturbation method to obtain approximate 
solutions to this system with e as our small parameter. Although e is relatively 
large when the wavespeed has minimum value c = 2, a similar method gives 
very good perturbation solutions to the Fisher equation (see Murray 1977). 
We therefore assume that the solution of (4.18), satisfying the boundary 
conditions (4.19) and (4.20), can be written as a series expansion of the form 

o ( ¢ , e )  = 00(4)  + ~ o , ( ¢ )  + . . .  (4.21a) 

n(~,~) = no( i )  + ~nl(~)  + . . . .  (4.21b) 

Substituting (4.21) into (4.18) reduces the system of nonlinear equations (4.18) 
to a hierarchy of linear equations. The boundary conditions at ~ = _+ oo and 
the choice of n(0) = 1/2, which requires that n(0, e) = 1/2 for all e, lead to the 
following conditions on Oi(~) and rti(~) , 

lim O i ( ~ ) = 0 ,  lim O'i(~)=0, fori=0,1,2, . . .  

lira no(~) = 0, lim no(i)  = 1, no(0) = 1/2, 
~--, -oo ~ o o  

lim n i (~ )=0 ,  n~(0)=0, f o r / =  1,2,3 . . . . .  (4.22) 

Before carrying out the perturbation procedure we must decide on the 
magnitude of the physical model parameters /~,/~, ~, v, p, c~ and 7. As these 
parameters are difficult to measure, we scale them so that the most significant 
biological terms have the same order of magnitude in the relevant equations. 
This way we keep as much flexibility as possible. 

We assume that p is O(1). If we assume that c~, y or v is O(1/e) or larger, it 
becomes analytically intractable to find perturbation solutions for the system. 
Thus we assume that they are all 0(1). Biologically we expect the long range 
elasticity, reflected by/~, and the viscous effects, measured by the parameter #, 
to be small and so, to insure that these effects do not dominate the short range 
elastic forces, we choose bo th / / and /~  to be O(1) or smaller. We also do not 
expect the chemically induced traction force, measured by the parameter z, to 
be larger than the restoring forces of the adhesion tethers, reflected by p, thus 
p/z is O(1) or larger. Later we shall discuss how the order of magnitude of 
these parameters may  influence the solutions. 

At O(1) the equations are 

1 dano 
6)0 - 1 + ~  d~ 2 (4.23a) 

dno 
- no(1 -- no) • (4.23b) 

d~ 
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In tegra t ing  the second equat ion  and using the midpoin t  condi t ion n(0) -- 1/2 
we find tha t  

e ~ 
- - -  (4.24) no 1 + e  ¢ " 

Subst i tut ing this into the first equa t ion  gives 

e~(1 - e ~) 
0 0  - (1 + v)(1 + e¢) 3 " (4.25) 

No te  that  Oo satisfies the b o u n d a r y  conditions.  
At O(e) we have  

# d3Oo 1 d20o 1 d2na V d2(noOo) 
0 1  - -  + - -  q - -  + - -  (4.26a) p d~ 3 p d~ 2 1 + v d~ 2 (1 + v) 2 d~ 2 

dnl dZn° ~-~ no (4.26b) 
d-T + (2no - 1)n, - d~---- ~ ~-~ 

By subst i tut ing no into (4.26b) and  integrating,  we have 

n l (~ )  =f (~) [ -~  - 21n(1 + e ~) + k] 
~Tf(~) 

2(1 + 7)2h2(~) 

where 

x {3 + 27 + 2hZ(¢)lnh(~) + h'(~)[,2 - 2h(¢) - h '(¢)]  } ,  (4.27) 

f (~)  - _ _  
e ~ 

(1 + e*) 2 ' h ( ¢ ) = l + ( l + 7 ) e  ¢, 

the pr ime denotes  the derivat ive with respect  to { and  k is the cons tant  of  
integration.  Using the midpo in t  condit ion,  nx(0) = 0, we find that  the integra-  
t ion cons tant  is given by 

k = 21n 2 + ~7 [2(2 + 7)2 ln(2 + 7) - 7(372 + 4)] 
2(1 + 7) / (2 + 7) 2 

Subst i tut ing no, nl ,  6)0 and  their relevant  derivatives into (4.26a) we can 
find O 1. 

We can cont inue with this process to find expressions for the higher order  
terms, but  the expressions become algebraically cumbersome.  Besides, the 
addi t ional  correct ion provided  by, say, the O(e 2) term, is too small to be 
significant. 

Biologically it is very difficult to measure  the di lat ion 0, of  the epithelial 
layer. However ,  since the relat ionship between the dilation and the displace- 
men t  u for the case of  small  strains is 

tu(x, t) 
- -  - O ( x ,  t ) ,  

gx 
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we can find the perturbation solution in terms of the displacement u by 
integrating the dilation function. In terms of the variable 4, we have that 

du(4) "r 
- -  = - - o ( 4 )  . 

d4 pc 

The constant of integration can be set to zero if we assume that the displace- 
ment at infinity is zero. Assuming that we can integrate the perturbation 
solution for 0(4)  we find that 

72 (~ 1/2U0(4) ~- /~ 3/2 Ul (4) "~- ) (4.28) u(4) p 

where 

e ~ 
Uo(4) = 

(1 + V)(I + e¢) 2 ' 

,[~ vOon'o(4) u1(4) = - ~ o ; '  + Oo + vno(4) ~ + n'1(4) + _ _ .  
p (1 + v ) 2 J  1 + v  ( l + v )  2 

From these expressions we see that u( - oe ) = 0, at least to 0(53/2). Extensive 
numerical simulation suggests that u is zero as z tends to - oo. 

Hence we have found a regular perturbation solution for the system of 
ordinary differential equations (2.5) when all the parameters are 0(1). The 
solution, however, changes if the parameter values do not satisfy this condi- 
tion. We discuss this in the following two sections. 

5 Numerical solutions 

Here we solve the ordinary differential equation system (2.5) numerically and 
compare the results with the perturbation solutions obtained in the previous 
section. We solved (2.5) with NAG FORTRAN routine D02RAF which uses 
a finite difference technique for solving boundary value problems. An initial 
estimate is corrected using Newton iteration and deferred correction. We 
specified as initial condition the first order perturbation solutions (4.24) and 
(4.25) as obtained in the previous section. 

The equations were solved on  the spatial domain [ -  20, 20], which is 
large in comparison with the part of the domain where the solution rapidly 
changes shape. So as to satisfy the uniqueness criteria used in the previous 
section, the numerical solutions were shifted so that n(0) = 1/2. 

Our numerical simulations showed that biologically realistic waves occur 
only when the wavespeed satisfied c > 2.0. In all the cases we computed with 
c < 2, the dermal cell density dropped below zero in the region of the boundary 
z = - 20. This confirms the predictions of the linear analysis of Sect. 3. 

To find the displacement u(z), we numerically solved u'(z) = O(z) by using 
NAG FORTRAN routine D02CBF which integrates a first order, variable 
step, Adams routine. Since we require the displacement to be zero at _+ oe we 
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assume as initial condition that u( - 20) = 0.0 and integrated to z = 20. The 
numerical solution of O(z) was calculated at discrete mesh points by the finite 
difference routine. Since the Adams routine requires the value for O(z) at 
intermediate points we used NAG FORTRAN routine E01AAF to interpo- 
late the value of O(z) at the z-values required by the Adams routine, using the 
four closest mesh values of 0. This routine uses Aitken's technique of success- 
ive linear interpolations. 

We illustrate our numerical results with two examples for different values 
of the wavespeed c. 

Example 1. We assumed that all our parameters are O(1) so that we can 
compare our numerical solution with the regular perturbation solution. We 
therefore set/~, fl, z, v, p, ~ and 7 all equal to 1.0. It was further assumed that 
the wave travels at minimum speed, c = 2.0, as predicted by the linear analysis 
of Sect. 3. For  such a low value of the wavespeed c, the value of the small 
parameter e in our perturbation expansions (4.21) is relatively large. 

The numerical solution is compared with the zero and first order analyti- 
cal approximations in Fig. 2. We see that the approximation for 0 improves 

a 

-i0 

b 
-~0 -is 

n i. 0 ~  
0.8 
0.6 

, --°~ 
-i5 -10 -5 g 1'0 1'5 2'0 

Z 

"" ,,0 @ 

-00101 \ ' ~  

1'5 2'0 
Z 

-~0 -i5 -10 -5 5 ~0 f5 2'o 
Z 

I I 
Numerical Solution 

................... 0th Order Approximation 
ist Order Approximation 

Fig. 2. A comparison of the numerical solution with the regular perturbat ion solutions to 
O(1) and O(e) when c = 2 and thus e = 1/4. The parameters are as in Example 1 
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slightly by adding the 0(5) term. The bend appearing in the solution at z = 0 is 
due to the O" and O'" terms in our perturbation solution which are relatively 
large at the origin, see Fig. 3. 

Example 2. Here we used the same parameter set as in Example 1, but we 
increased the wavespeed to c = 3 so that e = 1/9. With the first order terms 
included the perturbation solution and numerical solution are almost iden- 
tical, see Fig. 4. 

In both examples considered above, the linear non-oscillatory conditions on 
0 in the vicinity of the steady states, (3.11) and (3.14), were satisfied. As 
expected the dilation solution approached the steady states smoothly. How- 
ever, we also considered some examples with parameter sets so that conditions 
(3.11) and (3.14) were violated. In these cases the dilation solution 0 changed 
sign as it approached the steady states, suggesting a possible oscillatory 
behaviour. 

The full partial differential equation system (2.4) was solved numerically 
using NAG FORTRAN routine D03PGF, which discretises the spatial deriv- 
atives and solves the resulting system of ordinary differential equations using 
Gear's Method. We imposed zero flux boundary conditions. For  the initial 
conditions we refer again to the Fisher case. The velocity of the travelling 
wavefront for the classical Fisher equation depends on the initial conditions. 
Kolgomoroff  et al. (1937) proved that if the initial conditions satisfy 

{loi fX>x2 (5.29, 
n(x, O) = i f x < x l '  

where xl < x2 and n(x, 0) is continuous in the domain (xl, x2), then the 
solution of the Fisher equation evolves to a travelling wavefront solution with 
minimum speed c = 2.0. We conjecture that this result also holds for our 
system. 

°'18~ °"11 eo OolOo,1/  eo 

°'°'l / \  , °'°l] 
-~0 -i5 -i0 ~ 15 2"o -i0 -is -z0 

Z 

- o . ~ ] a  -o. le 

"-"~015 20 

Z 

b 

Fig. 3a, b. The contributions of the O~; (a) and O~' (b) terms in the regular perturbation 
solution when parameters are as in Example 1 
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................... Numerical Solution [ 
0th Order Approximation 

I Ist Order Approximation 

Fig. 4a-c. A comparison of the numerical solution with the regular perturbation solutions 
to O(l) and O(~) when c : 3 and thus e = ]/9. The parameters are as in Example 2 

It is also known that for initial data other than the above, the wavespeed of 
the Fisher equation depends critically on the behaviour of n(x, 0) as 
x ~ _+ oo. To find the dependence of the wavespeed of our system on the 
initial conditions at infinity, analysis similar to that proposed by Mollison 
(1977) for the Fisher equation is used. 

We consider the leading edge of the evolving wave. Here, since n and 0 are 
small, we linearize the dermal cell equation to 

On ~32n 
& c3x2 + n ,  (5.30) 

which is similar to the linearized version of the Fisher equation at the leading 
edge. Assume that the initial condition in dermal cell density is 

n ( x , O ) = A e  "x as x--,  - o o  , 

where A and a are positive arbitrary constants. We look for travelling wave 
solutions satisfying (5.30) and of the form 

n ( x ,  t) = A e  a~x +c') , 
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which represents the leading edge of the wavefront solution of the nonlinear 
equation. Substituting this expression into the linear equation (5.30) gives the 
dispersion relation 

1 
c = a + - .  (5.31) 

G 

So, for a = 1, the wavespeed c takes the minimum value 2. For  all other 
positive values of a, c is larger than 2. 

Now consider min[e  "x, e x] for x large and negative. I f a  < 1 then e "x > e x 
for x < 0 and therefore the velocity of propagat ion will depend on the leading 
edge of the wave and the value of c is given by (5.31). On the other hand if 
a > 1 then e ax is bounded from above by e x and thus the wavefront with speed 
c = 2 .  So 

a + l / a  i f 0 < a < l  (5.32) 
c =  2 i f a > l  . 
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Fig. 5a-c. Time evolution of the travelling front at intervals of unit time when parameters 
are as in Example 3 and initial conditions as in (5.29). The wave velocity, c = 2.0, is as 
predicted by the linear analysis 
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We now use this result to construct initial conditions for the numerical 
simulations. 

Solving the partial differential equation system with parameter values as in 
Example 1 and initial conditions (5.29), excellent agreement was obtained with 
the solution of the system of ordinary differential equations (2.5). As expected, 
we found that the wave solution did indeed travel at minimum speed c = 2.0. 

Example 3. Here we solve the partial differential equation system with the 
most realistic parameter set 

1 1 
# = 0.1, fl = 0.01, z = 1.0, v = g, p = 15.0, ~ = 1.0, 7 = g • 

We have chosen fl to be very small since we expect the long range elastic forces 
in the mechanical balance equation to be small. As before we assumed that 
n(x, 0) satisfies (5.29). As expected, a wavespeed c = 2.0, was obtained (see 
Fig. 5). This confirms the predictions made from the analysis of Sect. 3. 

Example 4. We use the same parameter set as in the previous example, but set 
our initial conditions so that a wavespeed c = 5.2 is expected. According to 
(5.32) this means that the initial conditions at the leading edge must be of the 
form n(x, 0) = e sx. To simulate this numerically the dermal leading edge was 
perturbed accordingly after each numerical iteration. (We assumed the lead- 
ing edge to be the region where the dermal cell density is less than 0.1). 
A wavespeed c = 5.2 was indeed obtained. 

6 Discussion 

From a biological point of view it is important to examine the roles which the 
various parameters play in determining the shape and size of the respective 
waves. The regular perturbation solution obtained in the previous section 
lends itself particularly well to such an exercise as it is possible to predict the 
qualitative role of some of the model parameters from the perturbation 
solution. It is also relatively easy to confirm these predictions by numerical 
studies. 

We begin by investigating how the epidermal contraction wave is in- 
fluenced by the adhesion tethers with which the epidermal sheet is connected 
through the basal lamina to the dermal layer. For  large values of p, the sheet is 
firmly attached and the dermal travelling wave causes a very small disturb- 
ance in the epithelial layer. This is apparent from the scaling (4.16) we used, 
since by increasing p the value of Z decreases. On the other hand, decreasing 
the value of p has the opposite effect - the amplitude of the epithelial 
contraction wave increases. 

It is interesting to note that when we do not have epithelial tethering, 
that is, p is zero, two constants appear when we integrate the epidermal 
equation, (2.4a), 

60 
~ - ~  + 0 + 1 + v(1 - 0 ) -  ko(t)x + k~(t). 
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This equation does not possess travelling wavefront solutions with constant 
speed and shape. Due to the terms on the right hand side, the equation does 
not convert into an ordinary differential equation in terms of z after the usual 
substitution z = x + yr.  

Changing the traction parameter, z, has a similar effect as changing p. For  
example, by decreasing the epithelial traction parameter z, the value of the 
scaling parameter r in (4.16) decreases and so does the size of the epithelial 
contraction wave. 

The value of the viscosity parameter, p, similarly influences the amplitude 
of the epithelial contraction wave. When /~ is very large, say O(1/e2), the 
viscous nature of the epithelial sheet dominates the elastic properties. The size 
of the contraction wave decreases accordingly, since now our 0(1) perturba- 
tion solution is Oo = 0. On the other hand, by decreasing the viscous para- 
meter, #, to say 0(~), the #O~' term, see Fig. 3b, in our 0(~) solution (4.26) 
disappears. The disturbance in the leading edge of the dilation wave therefore 
increases while that in the trailing edge decreases. The change in the solution, 
however, would be very small, since decreasing p only effects the first and 
higher order terms in our perturbation solution. 

Hence the results obtained here lead to several biological predictions. To 
summarize: a change in epithelial viscosity, traction and/or  adhesion influen- 
ces the amplitude of the contraction wave. 

These predictions could be tested experimentally. For  example, by induc- 
ing a travelling wave in the dermal layer one could then examine the epider- 
mal layer for a disturbance wave as seen in the solutions considered above. 
A dermal cell density wave could, for example, be initiated by injecting 
a mitotic promoter at one end of the developing skin. One could then 
investigate whether the amplitude of the epithelial wave increases if, say, the 
tethers, with which the epithelial layer is attached to the dermal layer, are 
severed. Such an experiment could also indicate whether the dermal- 
epidermal interaction is chemical or mechanical. 

Biologically it is believed that the whole pattern formation process in 
morphogenesis is the result of a few simple mechanisms. In Cruywagen et al. 
(1992) we showed that this tissue interaction mechanism could generate 
synchronous and sequential spatial patterns in one- and two-dimensional 
domains. (See also Cruywagen et al. 1993, where the pattern is shown to 
depend on initial conditions.) Here, we have illustrated that tissue interaction 
models can exhibit travelling wave solutions in one-dimension. Our simula- 
tions also show that the model can exhibit travelling wave solutions which 
leave behind a spatial pattern (Cruywagen et al. 1994). The versatility of this 
mechanism thus lends additional support to the key role of tissue interaction 
in morphogenesis. 
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