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Abstract
Living species, ranging from bacteria to animals, exist in environmental conditions
that exhibit spatial and temporal heterogeneity which requires them to adapt. Risk-
spreading through spontaneous phenotypic variations is a known concept in ecology,
which is used to explain how species may survive when faced with the evolutionary
risks associated with temporally varying environments. In order to support a deeper
understanding of the adaptive role of spontaneous phenotypic variations in fluctuating
environments, we consider a system of non-local partial differential equations mod-
elling the evolutionary dynamics of two competing phenotype-structured populations
in the presence of periodically oscillating nutrient levels. The two populations undergo
heritable, spontaneous phenotypic variations at different rates. The phenotypic state of
each individual is represented by a continuous variable, and the phenotypic landscape
of the populations evolves in time due to variations in the nutrient level. Exploiting
the analytical tractability of our model, we study the long-time behaviour of the solu-
tions to obtain a detailed mathematical depiction of the evolutionary dynamics. The
results suggest that when nutrient levels undergo small and slow oscillations, it is
evolutionarily more convenient to rarely undergo spontaneous phenotypic variations.
Conversely, under relatively large and fast periodic oscillations in the nutrient levels,
which bring about alternating cycles of starvation and nutrient abundance, higher rates
of spontaneous phenotypic variations confer a competitive advantage. We discuss the
implications of our results in the context of cancer metabolism.
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1 Introduction

Organisms of various scales, ranging from bacteria to animals, exist in fluctuating
environments. For example, in order to cope with changes in nutrient availability,
they are required to adapt. When the fluctuations are regular and the populations
have sufficient time to sense the changes and react, a highly plastic phenotype, which
allows individuals in the population to acquire different traits based on environmental
cues, is an optimal strategy (Xue and Leibler 2018). An alternative strategy that is
more suitable for dealing with irregular and unpredictable changes in the environ-
ment is risk spreading, which is also known as bet-hedging (Cohen 1966). Here, the
population diversifies its phenotypes such that each sub-population is adapted to a
specific environment. This ensures that at least some fraction of the population will
survive in the face of sudden environmental changes (Philippi and Seger 1989). Phe-
notypic heterogeneity, a characteristic feature of a risk spreading strategy, is observed
in many systems, including bacterial populations (Kussell and Leibler 2005) and solid
tumours (Marusyk et al. 2012).

Bet-hedging is typically proposed to occur within the context of bacterial pop-
ulations, where experimental support for stochastic phenotype switching is avail-
able (Kussell and Leibler 2005; Smits et al. 2006; Veening et al. 2008; Beaumont
et al. 2009; Acar et al. 2008). The classic example of bet-hedging is bacterial persis-
tence. During antibiotic treatment a small fraction of slowly growing bacteria, that are
resistant to the antibiotic, is able to survive. After the treatment is over, the original
population is restored, resulting in resistance to the antibiotic (Balaban et al. 2004).
Schreiber et al. (2016) showed that fluctuations in nutrient levels alter the metabolism
of bacteria and promote phenotypic heterogeneity. Risk spreading strategies have been
observed in other organisms, such as fungi and slime moulds (Kussell and Leibler
2005). It is also hypothesized to be present in cancer where irregular vasculature
can cause significant fluctuations within the tumour microenvironment (Gillies et al.
2018). Experimental and theoretical work suggest that intermittent lack of oxygen, i.e.
cycling hypoxia, leads to clonal diversity, promotes metastasis and selects for more
aggressive phenotypes (Cairns et al. 2001; Robertson-Tessi et al. 2015; Chen et al.
2018; Nichol et al. 2016).

Mathematically, competition between populations evolving in fluctuating environ-
ments has been studied using different modelling approaches, including deterministic
predator-prey models and stochastic models (Cushing 1980; Chesson 1994; Roxburgh
et al. 2004; Anderies and Beisner 2000). Previous work suggests that the likeli-
hood of species coexistence is increased by temporal variations in the environment.
More recent models have looked at adaptive strategies, including stochastic phenotype
switching, emerging in stochastic environments (Fudenberg and Imhof 2012; Müller
et al. 2013; Ashcroft et al. 2014; Wienand et al. 2017; Gravenmier et al. 2018). Müller
et al. (2013) theoretically investigated the environmental conditions that would lead
to the emergence of bet-hedging, noting the importance of the fluctuation timescales
on the success of the adaptation strategy. A rapidly fluctuating environment selects
the phenotype that is adapted to averaged conditions, whereas in a slowly varying
environment, having two distinct specialists is beneficial. The bet-hedging population
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was shown to be most successful in an environment that fluctuates on an intermediate
timescale.

Most of the experimental and theoreticalmodels that have been developed to explore
the dynamics of phenotypic changes in fluctuating environments consider the state of
the environment and the phenotypic state of the individuals to be binary—i.e. the
environment switches between two extreme conditions and individuals are allowed
to jump between two antithetical phenotypic states that are each adapted to opposing
environmental conditions (Acar et al. 2008; Müller et al. 2013; Wienand et al. 2017).
However, in many cases of biological and ecological interest Natura non facit saltus,
and it might therefore be relevant to consider the occurrence of intermediate environ-
mental conditions and the existence of a spectrum of possible phenotypic states.

In light of these considerations, we present here a novel mathematical model for the
evolutionary dynamics of two competing phenotype-structured populations in periodi-
cally fluctuating environments. The phenotypic state of each individual is represented
by a continuous variable, and the phenotypic fitness landscape of the populations
evolves in time due to variations in the concentration of a nutrient. In order to assess
the evolutionary role that heritable, spontaneous phenotypic variations play in envi-
ronmental adaptation, we focus on the case where the two populations undergo such
phenotypic variations with different probabilities.

In our model, the phenotype distribution of the individuals within each population
is described by a population density function that is governed by a parabolic partial
differential equation (PDE), whereby a linear diffusion operator models the occur-
rence of spontaneous phenotypic variations, while a non-local reaction term takes into
account the effects of asexual reproduction and intrapopulation competition. The two
non-local parabolic PDEs for the population density functions are coupled through
an additional non-local term modelling the effects of interpopulation competition. In
such a mathematical framework, the fact that the two populations undergo phenotypic
variations with different probabilities translates into the assumption that the two PDEs
have different diffusion coefficients.

Mathematical models formulated in terms of integrodifferential equations and non-
local parabolic PDEs like those considered here have been increasingly used to achieve
a more in-depth theoretical understanding of the mechanisms underlying phenotypic
adaptation in a variety of biological contexts (Alfaro and Veruete 2018; Alfaro et al.
2017; Almeida et al. 2019; Bouin and Calvez 2014; Bouin et al. 2012; Busse et al.
2016; Calsina and Cuadrado 2004, 2007; Calsina et al. 2013; Chisholm et al. 2016,
2015; Cuadrado 2009; Delitala and Lorenzi 2012a, b; Delitala et al. 2013; Desvil-
lettes et al. 2008; Diekmann et al. 2005; Domschke et al. 2017; Iglesias andMirrahimi
2018; Lam 2017a, b; Lorenzi et al. 2014, 2016, 2015a, b, 2018; Lorz et al. 2013, 2015;
Mirrahimi et al. 2015; Nordmann et al. 2018; Perthame 2006; Pouchol et al. 2018;
Turanova 2015). In particular, our work follows earlier papers on non-local parabolic
PDEs modelling the evolutionary dynamics of populations structured by continuous
traits in periodically-fluctuating environments (Iglesias and Mirrahimi 2018; Lorenzi
et al. 2015a). Compared to these previous studies, which considered scalar equations
modelling the dynamics of single population, our model comprises a system of cou-
pled equations modelling the dynamics of competing populations. This requires a
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novel extension of the methods developed in Lorenzi et al. (2015a) to characterise the
qualitative and quantitative properties of the solutions.

Exploiting the analytical tractability of ourmodel, we study the long-time behaviour
of the solutions in order to obtain a detailedmathematical depiction of the evolutionary
dynamics. Moreover, the asymptotic results are compared to numerical solutions of
the model equations. Our analytical and numerical results clarify the role of heritable,
spontaneous phenotypic variations as drivers of adaptation in periodically fluctuating
environments.

The paper is organised as follows. In Sect. 2 we introduce the mathematical model.
In Sect. 3 we carry out an analytical study of evolutionary dynamics. In Sect. 4 we
integrate the analytical results with numerical simulations. In Sect. 5 we discuss the
biological relevance of our theoretical findings in the context of cancer cell metabolism
and tumour–microenvironment interactions. Section 6 concludes the paper and pro-
vides a brief overview of possible research perspectives.

2 Model description

We study the evolutionary dynamics of two competing phenotype-structured pop-
ulations in a well-mixed system. Individuals within the two populations reproduce
asexually, die and undergo heritable, spontaneous phenotypic variations. We assume
the two populations differ only in the rate at which they undergo phenotypic variations.
We label the population undergoing phenotypic variations at a higher rate by the letter
H , while the other population is labelled by the letter L .

We represent the phenotypic state of each individual by a continuous variable x ∈ R,
and we describe the phenotype distributions of the two populations at time t ∈ [0,∞)

by means of the population density functions nH (x, t) ≥ 0 and nL(x, t) ≥ 0.
We define the size of population H , the size of population L and the total number of
individuals inside the system at time t , respectively, as

ρH (t) =
∫
R

nH (x, t) dx, ρL(t) =
∫
R

nL(x, t) dx, ρ(t) = ρH (t) + ρL(t).

(1)
Moreover, we define, respectively, the mean phenotypic state and the related variance
of each population i ∈ {H , L} at time t as

μi (t) = 1

ρi (t)

∫
R

x ni (x, t) dx, σ 2
i (t) = 1

ρi (t)

∫
R

x2 ni (x, t) dx − μ2
i (t). (2)

In the mathematical framework of our model, the function σ 2
i (t) provides a measure

of the level of phenotypic heterogeneity in the i th population. Finally, we introduce a
function S(t) ≥ 0 to model the concentration of a nutrient that is equally available to
the two populations at time t , which we assume is given.

The evolution of the population density functions is governed by the following
system of non-local parabolic PDEs
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⎧⎪⎨
⎪⎩

∂nH

∂t
= βH

∂2nH

∂x2
+ R

(
x, S(t), ρ(t)

)
nH ,

∂nL
∂t

= βL
∂2nL
∂x2

+ R
(
x, S(t), ρ(t)

)
nL ,

for (x, t) ∈ R × (0,∞). (3)

In the system of PDEs (3), the diffusion terms model the effects of spontaneous
phenotypic variations, which occur at rates βH > 0 and βL > 0, with

βH > βL . (4)

The functional R
(
x, S(t), ρ(t)

)
models the fitness of individuals in the phenotypic

state x at time t under the environmental conditions given by the nutrient concentration
S(t) and the total number of individuals ρ(t)—i.e. the functional R

(
x, S(t), ρ(t)

)
can

be seen as the phenotypic fitness landscape of the twopopulations at time t . Throughout
the paper, we define this fitness functional as

R
(
x, S, ρ

) = p(x, S) − dρ. (5)

Definition (5) translates into mathematical terms the following biological ideas: (i) all
else being equal, individuals die due to interpopulation and intrapopulation compe-
tition at rate dρ(t), with the parameter d > 0 being related to the carrying capacity
of the system in which the two populations are contained; (ii) individuals in the phe-
notypic state x proliferate and die under natural selection at rate p(x, S(t)) (i.e. the
function p(x, S) is a net proliferation rate). We focus on a scenario corresponding to
the biological assumptions given hereafter.

Assumption 1 Phenotypic variants with x → 0 have a competitive advantage over the
other phenotypic variants when the nutrient concentration is high (i.e. if S(t) � 1).

Assumption 2 Phenotypic variantswith x → 1are favoured over the other phenotypic
variants when the nutrient concentration is low (i.e. if S(t) � 1).

Under Assumptions 1 and 2, we define the net proliferation rate as

p
(
x, S(t)

) = γ
S(t)

1 + S(t)

(
1 − x2

)
+ ζ

(
1 − S(t)

1 + S(t)

) [
1 − (1 − x)2

]
, (6)

with 0 < ζ ≤ γ . The parameters γ and ζ model, respectively, the maximum prolifer-
ation rate of the phenotypic variants best adapted to nutrient-rich and nutrient-scarce
environments.

Definition (6) ensures analytical tractability of the model and leads to a fitness
functional that is close to the approximate fitness landscapes which can be inferred
from experimental data through regression techniques—see, for instance, equation (1)
in Otwinowski and Plotkin (2014). In fact, after a little algebra, definition (6) can be
rewritten as

p
(
x, S

) = γ g(S) − h(S) (x − ϕ(S))2 (7)
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Fig. 1 a Plot of the net proliferation rate p(S, x) defined by (6) [or equivalently by (7)] with γ = 100 and
ζ = 50. b The rescaled maximum fitness g(S) and the fittest phenotypic state ϕ(S) defined by (8), along
with the selection gradient h(S) defined by (9), are plotted against the nutrient concentration S, for γ = 100
and different values of the parameter ζ . In this paper we consider the case ζ = γ

with

g(S) = 1

1 + S

(
S + ζ

γ

ζ

ζ + γ S

)
, ϕ(S) = ζ

ζ + γ S
(8)

and

h(S) = ζ + (γ − ζ )
S

1 + S
. (9)

Under the environmental conditions defined by the nutrient concentration S, the func-
tion 0 ≤ ϕ(S) ≤ 1 represents the fittest phenotypic state, γ g(S) > 0 is the maximum
fitness, and h(S) can be seen as a nonlinear selection gradient that quantifies the inten-
sity of natural selection. Throughout the paper we will refer to g(S) as the rescaled
maximum fitness.

In accordance with Assumptions 1 and 2, Eq. (7) shows that definition (6) is such
that the fittest phenotypic state ϕ(S) belongs to the interval [0, 1] for any nutrient
concentration S ≥ 0, i.e. ϕ : R≥0 → [0, 1]. In particular, under starvation conditions
(i.e. if S = 0) the fittest phenotypic state is ϕ(0) = 1, while increasing nutrient
concentrations correspond to values of the fittest phenotypic state closer to 0, i.e.
ϕ′(S) < 0 for all S ≥ 0 and ϕ(S) → 0 as S → ∞. Furthermore, the fact that the
function p(x, S) is negative for values of x sufficiently far from the fittest phenotypic
state ϕ(S) captures the idea that less fit variants are driven to extinction by natural
selection. These observations are illustrated by the plots in Fig. 1.

Henceforth for simplicity we assume

ζ = γ. (10)

123



Evolutionary dynamics of competing phenotype-structured… 781

Under assumption (10), definitions (8) and (9) become, respectively,

g(S) = 1

1 + S

(
S + 1

1 + S

)
, ϕ(S) = 1

1 + S
and h(S) ≡ γ. (11)

Moreover, since we assume the function S(t) to be given, we use the notation

g(t) ≡ g(S(t)) and ϕ(t) ≡ ϕ(S(t)).

3 Analysis of evolutionary dynamics

To obtain an analytical description of the evolutionary dynamics, we focus on a bio-
logical scenario whereby the initial phenotype distributions of the two populations are
Gaussians, that is, we study the behaviour of the solution to the system of non-local
parabolic equations (3) subject to the initial condition given by the pair nH (x, 0) and
nL(x, 0) with

ni (x, 0) = ρ0
i

√
v0i

2π
exp

[
−v0i

2

(
x − μ0

i

)2]
for i ∈ {H , L}, (12)

where ρ0
i ∈ R>0, v0i ∈ R>0 and μ0

i ∈ R.

Remark 1 The choice of initial condition (12) is consistent with much of the previ-
ous work on the mathematical analysis of the evolutionary dynamics of continuous
traits, which relies on the prima facie assumption that population densities are Gaus-
sians (Rice 2004).

Before turning to the case of periodically fluctuating environments in Sect. 3.2,
we consider the case of constant environments in Sect. 3.1. The proofs of the results
presented in Sect. 3.1 and Sect. 3.2 rely on the results established by Proposition 1.

Proposition 1 Under assumptions (5), (7) and (11), the system of non-local PDEs (3)
subject to the initial condition (12) admits the exact solution

ni (x, t) = ρi (t)

√
vi (t)

2π
exp

[
−vi (t)

2
(x − μi (t))

2
]

for i ∈ {H , L} , (13)

with the population size, ρi (t), the mean phenotypic state, μi (t), and the inverse of
the related variance, vi (t) = 1/σ 2

i (t), being solutions of the Cauchy problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v′
i (t) = 2

(
γ − βiv

2
i (t)

)
,

μ′
i (t) = 2γ

vi (t)
(ϕ(t) − μi (t)),

ρ′
i (t) = (Fi (t) − dρ(t)) ρi (t),

vi (0) = v0i , μi (0) = μ0
i , ρi (0) = ρ0

i ,

ρ(t) = ρH (t) + ρL(t),

for i ∈ {H , L} , (14)
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where

Fi (t) ≡ Fi (t, vi (t), μi (t)) = γ g(t) − γ

vi (t)
− γ (μi (t) − ϕ(t))2 . (15)

Proof Substituting definitions (5), (7) and (11) into the non-local PDE (3) for ni (x, t)
yields

∂ni
∂t

= βi
∂2ni
∂x2

+
[
γ g(t) − γ (x − ϕ(t))2 − dρ(t)

]
ni , ni ≡ ni (x, t). (16)

Building upon the results presented in Almeida et al. (2019), Chisholm et al. (2016)
and Lorenzi et al. (2015a), we make the ansatz (13) and substituting this ansatz into
Eq. (16) we find

ρ′
i

ρi
+ v′

i

2vi
= v′

i

2
(x − μi )

2 − μ′
i vi (x − μi ) + βi

[
v2i (x − μi )

2 − vi

]

+ γ g(t) − γ (x − ϕ(t))2 − dρ. (17)

Equating the coefficients of the zero-order, first-order and second-order terms in x
in (17) produces a system of differential equations. Namely, the second-order terms
in x yield the following differential equation for vi alone

v′
i + 2βiv

2
i = 2γ. (18)

Moreover, equating the coefficients of the first-order terms in x , and eliminating v′
i

from the resulting equation, yields

μ′
i = 2γ (ϕ − μi )

vi
. (19)

Lastly, choosing x = μi in Eq. (17) gives

ρ′
i

ρi
+ v′

i

2vi
= −βivi + γ g − γ (μi − ϕ)2 − dρ (20)

and eliminating v′
i from Eq. (20) we find

ρ′
i = (Fi − dρ) ρi , (21)

with the function Fi (t)beingdefined according to (15).Under the initial condition (12),
we have

vi (0) = v0i , μi (0) = μ0
i and ρi (0) = ρ0

i .

Imposing these initial conditions on the system of differential equations (18)–(21), we
arrive at the Cauchy problem (14) for the functions vi (t), μi (t) and ρi (t). ��
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3.1 Evolutionary dynamics in constant environments

Focussing on the case of constant environments, we let the nutrient concentration be
constant and thus we make the assumption

S(t) ≡ S ≥ 0, (22)

which implies that
g(t) ≡ g and ϕ(t) ≡ ϕ. (23)

In this case, our main results are summarised by Theorem 3.

Theorem 3 Under assumptions (4), (5), (7), (11) and the additional assumption (22),
the solution of the system of PDEs (3) subject to the initial condition (12) is of the
Gaussian form (13) and satisfies the following:

(i) if √
βL ≥ √

γ g (24)

then
lim
t→∞ ρH (t) = 0 and lim

t→∞ ρL(t) = 0; (25)

(ii) if √
βL <

√
γ g (26)

then

lim
t→∞ ρH (t) = 0, lim

t→∞ ρL(t) =
√

γ

d

(√
γ g − √

βL

)
(27)

and

lim
t→∞ μL(t) = ϕ, lim

t→∞ σ 2
L(t) =

√
βL

γ
. (28)

Proof Under the additional assumption (22), Proposition 1 ensures that the population
density functionni (x, t) is of theGaussian form (13)with the population size,ρi (t), the
mean phenotypic state,μi (t), and the inverse of the related variance, vi (t) = 1/σ 2

i (t),
being governed by the Cauchy problem (14) with g(t) ≡ g and ϕ(t) ≡ ϕ.

In this framework, we divide the proof of Theorem 3 into four steps. We study the
asymptotic behaviour of vi (t), μi (t) and Fi (t) for t → ∞ (Step 1). We show that
ρi (t) is non-negative and uniformly bounded (Step 2). Finally, we prove claim (25)
(Step 3), and we conclude with the proof of claims (27) and (28) (Step 4).
Step 1: asymptotic behaviour of vi (t), μi (t) and Fi (t) for t → ∞. Solving the
separable first-order differential equation (14)1 for vi (t) and imposing the initial con-
dition (14)4 gives

vi (t) =
√

γ

βi

√
γ /βi + v0i − (√

γ /βi − v0i

)
exp

(−4
√

γ βi t
)

√
γ /βi + v0i + (√

γ /βi − v0i

)
exp

(−4
√

γβi t
) , (29)
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which implies that

vi (t) →
√

γ

βi
exponentially fast as t → ∞. (30)

Moreover, solving the differential equation (14)2 for μi (t) by the integrating factor
method and imposing the initial condition (14)4 yields

μi (t) = μ0
i exp

(
−2γ

∫ t

0

ds

vi (s)

)
+ ϕ

[
1 − exp

(
−2γ

∫ t

0

ds

vi (s)

)]
, (31)

from which, using the positivity of vi (t), we find that

μi (t) → ϕ exponentially fast as t → ∞. (32)

Lastly, noting that, under the additional assumption (22), the function Fi (t) defined
by (15) reads as

Fi (t) = γ g − γ

vi (t)
− γ (μi (t) − ϕ)2 , (33)

the asymptotic results (30) and (32) allow us to conclude that

Fi (t) → γ g − √
γ βi exponentially fast as t → ∞. (34)

Step 2: non-negativity and boundedness of ρi (t). Solving the differential equa-
tion (14)3 for ρi and imposing the initial condition (14)4 yields

ρi (t) = ρ0
i exp

[∫ t

0
(Fi (s) − dρ(s)) ds

]
. (35)

This result, along with the positivity of ρ0
i , implies that

ρi (t) ≥ 0 for all t ≥ 0. (36)

Moreover, substituting (33) into the differential equation (14)3 for ρi yields

ρ′
i (t) =

[
γ g − γ

vi (t)
− γ (μi (t) − ϕ)2

]
ρi (t) − d

(
ρi (t) + ρ j (t)

)
ρi (t),

with j = L if i = H and j = H if i = L . Estimating from above the right-hand side
of the latter differential equation by using the non-negativity of ρ j (t) [cf. the uniform
lower bound (36)], the positivity of vi (t) [cf. expression (29)] and the fact that g < 2
[cf. definition (11)], we obtain the differential inequality

ρ′
i (t) ≤ (2γ − d ρi (t)) ρi (t),
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which gives the uniform upper bound

ρi (t) ≤ max

{
ρ0
i ,

2 γ

d

}
for all t ≥ 0. (37)

Step 3: proof of claim (25). Combining the asymptotic result (34) with the expres-
sion (35) for ρi we find that

ρi (t) ∼ Cρ0
i exp

[(
γ g − √

γ βi

)
t − d

∫ t

0
ρ(s) ds

]
as t → ∞, (38)

for some positive constant C . Since the function ρ(t) is non-negative [cf. the uniform
lower bound (36)], the asymptotic relation (38) ensures that

if
√

βi ≥ √
γ g then lim

t→∞ ρi (t) = 0. (39)

Under assumption (4) and the additional assumption (24), claim (25) follows from the
asymptotic result (39).
Step 4: proof of claims (27) and (28). As long as ρH (t) > 0, we can compute the
quotient of ρL(t) and ρH (t) through (35). In so doing we find

ρL(t)

ρH (t)
= ρ0

L

ρ0
H

exp

[∫ t

0
(FL(s) − FH (s)) ds

]
. (40)

Using the limit (34) for Fi , we then have

ρL(t)

ρH (t)
∼ C exp

[√
γ

(√
βH − √

βL

)
t
]

as t → ∞, (41)

for some positive constantC . Under assumption (4), the asymptotic relation (41) gives

lim
t→∞

ρL(t)

ρH (t)
= ∞

and, since ρL is uniformly bounded from above [cf. the uniform upper bound (37)],
from (41) we conclude that

ρH (t) → 0 exponentially fast as t → ∞. (42)

We can rewrite the differential equation (14)3 for ρL as

ρ′
L(t) =

[(
γ g − √

γ βL + η(t)
)

− dρL(t)
]
ρL(t), (43)

where the function η(t) is defined as

η(t) =
(√

γ βL − γ

vL(t)

)
− γ (μL(t) − ϕ)2 − dρH (t).

123



786 A. Ardaševa et al.

Using the asymptotic results (30), (32) and (42), we see that

η(t) → 0 exponentially fast as t → ∞. (44)

Solving the differential equation (43) complementedwith the initial conditionρL (0) =
ρ0
L yields (Chisholm et al. 2016)

ρL(t) =
ρ0
L exp

[∫ t

0

(
γ g − √

γ βL + η(s)
)
ds

]

1 + d ρ0
L

∫ t

0
exp

[∫ s

0

(
γ g − √

γ βL + η(z)
)
dz

]
ds

. (45)

The result (44) ensures that in the asymptotic regime t → ∞ we have

exp

[∫ t

0

(
γ g − √

γ βL + η(s)
)
ds

]
∼ C exp

[(
γ g − √

γ βL

)
t
]

and, under the additional assumption (26), we also have

∫ t

0
exp

[ ∫ s

0

(
γ g − √

γ βL + η(z)

)
dz

]
ds ∼ C

exp
[(

γ g − √
γ βL

)
t
]

γ g − √
γ βL

,

for some positive constant C . These asymptotic relations, along with the expres-
sion (45) for ρL , allow us to conclude that

lim
t→∞ ρL(t) = γ g − √

γ βL

d
. (46)

Claims (27) and (28) follow from the asymptotic results (42) and (46), and the asymp-
totic results (32) and (30) with i = L . ��

The asymptotic results established by Theorem 3 provide a mathematical formali-
sation of the idea that in constant environments:

1. populations undergoing spontaneous phenotypic variation at a rate that is too large
compared to the maximum fitness will ultimately go extinct [cf. point (i)];

2. ceteris paribus, if at least one population undergoes spontaneous phenotypic vari-
ation at a rate sufficiently small compared to the maximum fitness [cf. point (ii)]
then:

2(a). the population with the lower rate of phenotypic variation will outcompete the
other population;

2(b). the equilibrium phenotype distribution of the surviving population will be
unimodalwith themean phenotype corresponding to the fittest phenotypic state
and the related variance being directly proportional to the rate of phenotypic
variations.
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3.2 Evolutionary dynamics in periodically fluctuating environments

Wenow focus on the case of environments that undergofluctuationswith period T > 0,
and we assume the nutrient concentration to be Lipschitz continuous and T -periodic,
i.e. we let S : [0,∞) → R≥0 satisfy the assumptions

S ∈ Lip([0,∞)) and S(t + T ) = S(t) for all t ≥ 0, (47)

which implies that the functions g(t) and ϕ(t) satisfy the assumptions

g, ϕ ∈ Lip([0,∞)), g(t + T ) = g(T ) and ϕ(t + T ) = ϕ(T ) for all t ≥ 0.
(48)

Ourmain results are summarised by Theorem 4, the proof of which relies on the results
established by Lemmas 1 and 2.

Lemma 1 Under assumptions (5), (7), (11) and (47), the unique real T -periodic solu-
tion of the problem

{
u′
i (t) = 2

√
γ βi (ϕ(t) − ui (t)) , for t ∈ (0, T ),

ui (0) = ui (T ),
(49)

is

ui (t) = 2
√

γβi exp
(−2

√
γβi t

)
exp

(
2

√
γβi T

) − 1

∫ T

0
exp

(
2

√
γβi s

)
ϕ(s) ds

+ 2
√

γβi exp
(
−2

√
γβi t

) ∫ t

0
exp

(
2
√

γβi s
)

ϕ(s) ds, (50)

and satisfies the integral identity

1

T

∫ T

0
ui (t) dt = 1

T

∫ T

0
ϕ(t) dt . (51)

Lemma 2 Let

Λi = √
βi +

√
γ

T

∫ T

0
(ui (s) − ϕ(s))2 ds for i ∈ {H , L} , (52)

and
Qi (t) = γ g(t) − √

γβi − γ (ui (t) − ϕ(t))2 (53)

with ui (t) given by (50). Under assumptions (5), (7), (11), (47) and the additional
assumption

Λi <

√
γ

T

∫ T

0
g(t) dt,
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the unique real non-negative T -periodic solution of the problem

{
w′
i (t) = (Qi (t) − d wi (t)) wi (t), for t ∈ (0, T ),

wi (0) = wi (T ),
(54)

is

wi (t) =
d−1 exp

(∫ t

0
Qi (s) ds

)

∫ T

0
exp

(∫ s

0
Qi (z) dz

)
ds

exp

(∫ T

0
Qi (s) ds

)
− 1

+
∫ t

0
exp

(∫ s

0
Qi (z) dz

)
ds

(55)

and satisfies the integral identity

1

T

∫ T

0
wi (t) dt =

√
γ

d

(√
γ

T

∫ T

0
g(t) dt − Λi

)
. (56)

We refer the interested reader to Lorenzi et al. (2015a) for the proofs of Lemmas 1
and 2.

Theorem 4 Under assumptions (4), (5), (7), (11) and the additional assumptions (47),
the solution of the system of PDEs (3) subject to the initial condition (12) is of the
Gaussian form (13) and satisfies the following:

(i) if

min {ΛH ,ΛL} ≥
√

γ

T

∫ T

0
g(t) dt (57)

then
lim
t→∞ ρH (t) = 0 and lim

t→∞ ρL(t) = 0; (58)

(ii) if

min {ΛH ,ΛL} <

√
γ

T

∫ T

0
g(t) dt, (59)

and

i = arg min
k∈{H ,L}

Λk, j = arg max
k∈{H ,L}

Λk,

then
ρi (t) → wi (t), ρ j (t) → 0 as t → ∞, (60)

and

μi (t) → ui (t), σ 2
i (t) →

√
βi

γ
as t → ∞, (61)

with wi (t) and ui (t) given by (55) and (50), respectively.
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Proof Proposition 1 ensures that the population density function ni (x, t) is of the
Gaussian form (13) with the population size, ρi (t), the mean phenotypic state, μi (t),
and the inverse of the related variance, vi (t) = 1/σ 2

i (t), being governed by the Cauchy
problem (14). In this framework, we prove Theorem 4 in 4 steps. In Step 1, we study
the asymptotic behaviour of vi (t),μi (t) and Fi (t) for t → ∞. In Step 2, we show that
ρi (t) is non-negative and uniformly bounded. In Step 3, we prove claim (58). Finally,
we prove claims (60) and (61) in Step 4.
Step 1: asymptotic behaviour of vi (t), μi (t) and Fi (t) for t → ∞. Since the differ-
ential equation (14)1 does not depend on S(t), the expression (29) of vi (t) obtained
in the proof of Theorem 3 still holds and

vi →
√

γ

βi
exponentially fast as t → ∞. (62)

Moreover, using the asymptotic result (62) along with the linear differential equa-
tion (14)2 for μi (t) one can easily show that

μi (t) → ui (t) exponentially fast as t → ∞ (63)

where ui (t) is a T -periodic solution of the differential equation (49). Lemma 1 ensures
that ui (t) is given by (50). Lastly, for Fi (t) defined according to (15), the asymptotic
results (62) and (63) allow us to conclude that

Fi (t) → γ g(t) − √
γ βi − γ (ui (t) − ϕ(t))2 exponentially fast as t → ∞. (64)

Step 2: non-negativity and boundedness of ρi (t). Proceeding in a similar way as in
the proof of Theorem 3 (cf. Step 2 in the proof of Theorem 3), one can prove that

0 ≤ ρi (t) ≤ max

{
ρ0
i ,

2 γ

d

}
for all t ≥ 0. (65)

Step 3: proof of claim (58). Solving the differential equation (14)3 for ρi and imposing
the initial condition (14)4 yields

ρi (t) = ρ0
i exp

[∫ t

0
(Fi (s) − dρ(s)) ds

]
, (66)

with Fi (t) defined according to (15). Combining the asymptotic result (64) with the
expression (66) for ρi (t) gives

ρi (t) ∼ C ρ0
i exp

[
γ

∫ t

0
g(s) ds − √

γ βi t − γ

∫ t

0
(ui (s) − ϕ(s))2 ds

−d
∫ t

0
ρ(s) ds

]
as t → ∞, (67)
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for some positive constant C . Hence, using the fact that the functions g(t), ϕ(t) and
ui (t) are T -periodic and considering m → ∞, we find

ρi (t) ∼ C exp

[
γ m

∫ T

0
g(t) dt − m T

√
γ βi − γ m

∫ T

0
(ui (t) − ϕ(t))2 dt

−d
∫ t

0
ρ(s) ds

]
as t → ∞, (68)

for some positive constant C . Since the function ρ(t) is non-negative [cf. the uniform
lower bound (65)], the asymptotic relation (68) ensures that if

√
βi +

√
γ

T

∫ T

0
(ui (t) − ϕ(t))2 dt ≥

√
γ

T

∫ T

0
g(t) dt

then
lim
t→∞ ρi (t) = 0. (69)

This proves that if assumption (57) is satisfied then claim (58) is verified.

Step 4: proof of claims (60) and (61). Let

i = arg min
k∈{H ,L}

Λk and j = arg max
k∈{H ,L}

Λk . (70)

As long as ρ j (t) > 0, we can compute the quotient of ρi (t) and ρ j (t) through (66).
In so doing, using the asymptotic relation (67) for ρi (t) and ρ j (t) and considering
m → ∞ we obtain

ρi (t)

ρ j (t)
∼ C exp

[
m T

√
γ

(
Λ j − Λi

)]
as t → ∞, (71)

for somepositive constantC ,withΛi andΛ j defined according to (52). The asymptotic
relation (71) allows us to conclude that

lim
t→∞

ρi (t)

ρ j (t)
= ∞. (72)

Since ρi is uniformly bounded from above [cf. the uniform upper bound (65)], the
asymptotic result (72) implies that

ρ j (t) → 0 exponentially fast as t → ∞. (73)

We can rewrite the differential equation (14)3 for ρi as

ρ′
i (t) =

[
γ g(t) − √

γ βi − γ (ui (t) − ϕ(t))2 + η(t) − dρi (t)
]
ρi (t), (74)
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where the function η(t) is defined as

η(t) =
(√

γ βi − γ

vi (t)

)
+ γ

[
(ui (t) − ϕ(t))2 − (μi (t) − ϕ(t))2

]
− dρ j (t).

Using the asymptotic results (62), (63) and (73) we see that η(t) → 0 exponentially
fast as t → ∞. Hence, ρi (t) → ρ̃i (t) as t → ∞, with ρ̃i (t) being the solution of the
differential equation

ρ̃′
i = f (ρ̃i , t), (75)

with

f (ρ̃i , t) =
[
γ g(t) − √

γ βi − γ (ui (t) − ϕ(t))2 − dρ̃i

]
ρ̃i ,

subject to an initial condition 0 < ρ̃i (0) < ∞. We note that: (i) the function ρ̃i (t) is
uniformly bounded as it satisfies the upper and lower bounds

0 ≤ ρ̃i (t) ≤ max

{
ρ̃i (0),

2 γ

d

}
for all t ≥ 0;

(ii) the function f is Lipschitz continuous in the first variable; (iii) the function f is
Lipschitz continuous and T -periodic in the second variable, since g, ϕ and ui are T -
periodicLipschitz continuous functions of t [cf. assumptions (48) and expression (50)].
Therefore, the conditions of Massera’s Convergence Theorem (Massera et al. 1950;
Smith 1986) are satisfied and this allows us to conclude that

ρ̃i (t) −→ wi (t) as t → ∞, (76)

with wi (t) being a non-negative T -periodic solution of the differential equation (54).
Under the additional assumption (59), that is,

Λi <

√
γ

T

∫ T

0
g(t) dt,

Lemma 2 ensures that wi (t) is given by (55). Claims (60) and (61) follow from the
asymptotic results (73) and (76) along with the asymptotic result (63) and (62) with
i = arg min

k∈{H ,L}
Λk . ��

In summary, Theorem 4 gives an explicit characterisation of the long-term limit of
vi (t), μi (t) and ρi (t) for the surviving population i and shows that the surviving
population is the one characterised by the larger positive value of the quantity

1

T

∫ T

0
F∞
i (t) dt = γ

T

∫ T

0
g(t) dt − √

γ Λi
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where

F∞
i (t) = lim

t→∞ Fi (t) = γ g(t) − √
γβi − γ (ui (t) − ϕ(t))2 .

Remark 2 Since the functions ui (t) and wi (t) are T -periodic and satisfy the integral
identities (51) and (56), respectively, the results established byTheorem4 show that the
long-term limits of the size and the mean phenotypic state of the surviving population
are periodic functions of time with period T and mean values given by (51) and (56),
respectively.

Remark 3 Using the differential equation (49) for ui (t) one can easily obtain

d

dt
(ui − ϕ)2 = 4 γ

√
γ βi

[
1

2

1√
γ βi

(ϕ − ui ) ϕ′ − (ui − ϕ)2
]

.

Integrating both sides of the above equation with respect to t between 0 and T , and
using the fact that ui (T ) − ϕ(T ) = ui (0) − ϕ(0), yields

1

T

∫ T

0
(ui (t) − ϕ(t))2 dt = 1

2
√

γ βi

1

T

∫ T

0
(ϕ(t) − ui (t)) ϕ′(t) dt . (77)

Therefore, definition (52) can be rewritten as

Λi = √
βi + 1

2
√

βi

1

T

∫ T

0
(ϕ(t) − ui (t)) ϕ′(t) dt . (78)

If S ≡ S̄ then g(t) ≡ g and ϕ(t) ≡ ϕ (i.e. ϕ′ ≡ 0). In this case,

√
γ

T

∫ T

0
g(t) dt = g

and (78) allows one to see that Λi = √
βi . Hence, if S is constant then the results

of Theorem 4 reduce to the results of Theorem 3. Moreover, the first term in the
expression (78) for Λi is clearly a monotonically increasing function of βi , whereas
the factor in front of the integral in the second term is a monotonically decreasing
function of βi . Hence, if themean value of the T -periodic function (ϕ(t) − ui (t)) ϕ′(t)
is sufficiently small then ΛH > ΛL , while if such a mean value is sufficiently large
then ΛH < ΛL . We expect the latter scenario to occur when the variability and the
rate of change of S(t) are sufficiently high so as to cause substantial and sufficiently
fast variations in the value of ϕ(t).

The asymptotic results established by Theorem 4 formalise mathematically the idea
that in periodically fluctuating environments:

1. populations undergoing spontaneous phenotypic variations at a rate too large com-
pared to themean value of themaximumfitness will ultimately go extinct [cf. point
(i)];
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2. ceteris paribus, if at least one population undergoes spontaneous phenotypic vari-
ations at a rate sufficiently small compared to the mean value of the maximum
fitness, then the following behaviours are possible:

2(a). when environmental conditions are relatively stable, the population with the
lower rate of phenotypic variations will outcompete the other population [cf.
point (ii) and Remark 3];

2(b). when environmental conditions undergo drastic changes, either both popula-
tions go extinct [cf. point (i) and Remark 3] or the population with the higher
rate of phenotypic variations will outcompete the other population [cf. point
(ii) and Remark 3];

2(c). the phenotype distribution of the surviving population will be unimodal, and
both the population size and the mean phenotype will become periodic [cf.
point (ii) and Remark 2];

2(d). ultimately, the population size and the mean phenotype will both oscillate
with the same period as the fluctuating environment, and the mean value (with
respect to time) of the mean phenotype will be the same as the mean value of
the fittest phenotypic state with the related variance being directly proportional
to the rate of phenotypic variations [cf. point (ii) and Remark 2].

These biological implications are reinforced by the numerical solutions presented in
the next section.

4 Numerical simulations

In this section, we construct numerical solutions to the system of non-local parabolic
PDEs (3) subject to the initial condition (12). In Sect. 4.1, we describe the numerical
methods employed and the set-up of numerical simulations. In Sect. 4.2, we present a
sample of numerical solutions that confirm the results of our analysis of evolutionary
dynamics, both in the casewhere S(t) is constant andwhen S(t) oscillates periodically.

4.1 Numerical methods and set-up of numerical simulations

We select a uniform discretisation consisting of 2000 points on the interval [− 5, 5] as
the computational domain of the independent variable x and impose no flux boundary
conditions. Moreover, we assume t ∈ [0, t f ], with t f > 0 being the final time of
simulations, and we discretise the interval [0, t f ] with the uniform step Δt = 0.0001.
The method for constructing numerical solutions to the system of non-local parabolic
PDEs (3) is based on an explicit finite difference scheme in which a three-point stencil
is used to approximate the diffusion terms and an explicit finite difference scheme is
used for the reaction term (LeVeque 2007). On the other hand, we use the Matlab
built-in solver ode45 to solve numerically the Cauchy problem (14) for vi (t), μi (t)
and ρi (t).

The parameter values used to carry out numerical simulations are listed in Table 1.
In summary, to capture the fact that rates of spontaneous phenotypic variation are
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Table 1 Parameter values used to carry out numerical simulations

Parameter Description Value/value range

γ Maximum proliferation rate 100

d Death rate due to competition 0.01

βL Rate of phenotypic variation of population L 0.01

βH Rate of phenotypic variation of population H [0.01, 0.1]

small, in general, and much smaller than maximum proliferation rates, in particular,
we assume βi � γ for i ∈ {H , L}. Furthermore, given the values of γ and βi , we
fix the value of d to be such that the long-term limit (27) of the size of the population
L is approximatively 104, which is consistent with biological data from the existing
literature regarding in vitro cell populations (Voorde et al. 2019).

We remark that the value of the parameter βL and the range of values of the param-
eter βH reported in Table 1 are such that neither condition (24) nor condition (57) are
met in all cases on which we report here. This ensures that the two populations do not
simultaneously go extinct.

We consider both populations to have the same initial phenotypic distribution (12)
with v0i = 20, μ0

i = 0 and ρ0
i ≈ 800 for i ∈ {H , L}.

4.2 Main results

We consider the following definition of the nutrient concentration

S(t) = M + A sin

(
2π t

T

)
. (79)

In definition (79), the parameter M > 0 represents the mean nutrient concentration,
while the parameter A ≥ 0 models the semi-amplitude of the oscillations of the
nutrient concentration, which have period T > 0. Clearly, we consider only values of
M and A such that S(t) ≥ 0, i.e. 0 ≤ A ≤ M .

We start by exploring three prototypical scenarios exemplified by different values
of the parameter A. In particular, we choose M = 1 and compare the numerical
solutions obtained for A = 0 (i.e. constant nutrient concentration), A = 0.5 (i.e.
lower nutrient variability) and A = 1 (i.e. higher nutrient variability). Figure 2 displays
plots of the nutrient concentration S(t), the rescaled maximum fitness g(t) and the
fittest phenotypic state ϕ(t) corresponding to such choices of the parameter A. These
plots show that, as one would expect, higher nutrient variability brings about more
pronounced variations in the rescaledmaximumfitness and the fittest phenotypic state.

Figure 3 shows a comparison between the exact solutions (13)—with vi (t), μi (t)
and ρi (t) obtained by solving numerically the Cauchy problem (14)—and the numer-
ical solutions of the system of non-local parabolic PDEs (3) subject to the initial
condition (12). In agreement with the results established by Proposition 1, for all val-
ues of A considered, there is a perfect match between the population sizes obtained by
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Fig. 2 a Plots of the nutrient concentration S(t) (left panel) defined according to (79) with M = 1 and
A = 0, and the corresponding rescaled maximum fitness g(t) (central panel) and fittest phenotypic state
ϕ(t) (right panel) defined according to (11). b Same as row a but with A = 0.5 and T = 5. c Same as row
a but with A = 1 and T = 5

computing numerically the integrals of the components of the numerical solution of
the system of PDEs (3) (cf. solid lines in the left column of Fig. 3) and the population
sizes obtained by solving numerically the Cauchy problem (14) (cf. dashed and dotted
lines in the left column of Fig. 3). Similarly, there is excellent agreement between the
population density functions obtained by solving numerically the system of PDEs (3)
(cf. solid lines in the right column of Fig. 3) and the population density functions (13)
with vi (t),μi (t) andρi (t) given by the numerical solutions of theCauchy problem (14)
(cf. dashed and dotted lines in the right column of Fig. 3).

In accord with the results of Theorem 3, when the nutrient concentration is constant
(i.e. S(t) ≡ M), the population with the lower rate of phenotypic variations (i.e.
population L) outcompetes the other population (vid. Fig. 3a). The size of the surviving
population ρL(t) reaches the asymptotic value (27) and the phenotype distribution at
the end of the simulations nL(x, t f ) is Gaussian with mean and variance equal to the
asymptotic values (28).

In agreement with the results established by Theorem 4 (vid. Remark 3), a similar
outcome is observed in the presence of a low nutrient variability (vid. Fig. 3b). In
fact, in this case ΛL < ΛH . On the contrary, the population with the higher rate of
phenotypic variations (i.e. population H ) outcompetes the other population when the
nutrient variability is sufficiently high (vid. Fig. 3c). This is due to the fact that in this
case the condition ΛH < ΛL is met. As expected (cf. Remark 2), since A > 0 both
the size and the mean phenotype of the surviving population become T -periodic, with
mean values given by (51) and (56), respectively.Moreover, the phenotype distribution
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Fig. 3 Left column. Plots of the population sizes ρH (t) (red line) and ρL (t) (blue line) obtained by
computing numerically the integrals of the components of the numerical solution of the system of PDEs (3)
subject to the initial condition (12). The dotted and dashed lines highlight, respectively, ρH (t) and ρL (t)
obtained by solving numerically the Cauchy problem (14). The nutrient concentration S(t) is defined
according to (79) with M = 1 and A = 0 (row a), M = 1, A = 0.5 and T = 5 (row b), or M = 1,
A = 1 and T = 5 (row c)—cf. the plots displayed in Fig. 2. The values of the model parameters are those
reported in Table 1 with βH = 0.025. Right column. Plots of the corresponding phenotype distribution
of the surviving population obtained by solving numerically the system of PDEs (3) subject to the initial
condition (12). In particular, the plot of nL (x, t f ) is shown in row a, while the plots in rows b and c are,
respectively, those of nL (x, t) and nH (x, t) at t = t1 and t = t2, with t1 and t2 being highlighted in the
corresponding plots in the left column. The dotted and dashed lines correspond to the exact phenotype
distributions (13) with vi (t), μi (t) and ρi (t) given by the numerical solutions of the Cauchy problem (14)
(color figure online)

of the surviving population remainsGaussianwith variance given by (61). This implies
that if population H outcompetes population L then the variance of the phenotype
distribution (i.e. the level of phenotypic heterogeneity) will be ultimately larger than
in the case where population L is selected.

Taken together, these results demonstrate that when the nutrient concentration is
constant, or in the presence of a low level of nutrient variability, it is evolutionarilymore
desirable to rarely undergo spontaneous phenotypic variations, since environmental
conditions are stable. Conversely, when nutrient variability is high (i.e. alternating
cycles of starvation and nutrient abundance occur), higher rates of spontaneous phe-
notypic variations constitute a competitive advantage, as they allow for a quicker
adaptation to changeable environmental conditions, and higher level of phenotypic
heterogeneity emerge.

Exploiting the results of the analysis of evolutionary dynamics developed in Sect. 3,
we can further assess the range of environmental conditions under which higher rates
of spontaneous phenotypic variations will represent a source of competitive advan-
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Fig. 4 a Qualitative dynamics of the nutrient concentration S(t) defined according to (79) with M = 60
and A = 10, and corresponding plot of sgn (ΛH − ΛL ) as a function of βH ∈ (βL , 0.1], with βL = 0.01,
and T ∈ [1, 20]. The quantities ΛH and ΛL are computed using (52) and the values of the other model
parameters reported in Table 1. The blue points in the βH − T plane correspond to sgn (ΛH − ΛL ) = 1
(i.e. ΛL < ΛH ), whereas the red points correspond to sgn (ΛH − ΛL ) = −1 (i.e. ΛH < ΛL ). b Same
as panel a but with M = 1 and A = 0.5. c Same as panel b but with M = A and A ∈ {0.5, 1, 10, 25, 50}
(color figure online)

tage. In more detail, as shown by the asymptotic results established by Theorem 4,
provided that condition (57) is not satisfied (i.e. at least one population survives),
the outcome of competition between population H and population L in periodically
fluctuating environments can be predicted by computing the value of the quantities
ΛH and ΛL given by (52). In particular, the population characterised by the lower
value of this quantity will ultimately be selected. Therefore, we computed ΛH and
ΛL for different values of the period of the nutrient oscillations T and different val-
ues of the rate of spontaneous phenotypic variations βH . We used the values of the
other evolutionary parameters reported in Table 1 and considered possible values of
the environmental parameters M and A corresponding to three different scenarios: an
environment whereby the nutrient is abundant and undergoes small-amplitude peri-
odic oscillations, i.e. M is relatively large and A is relatively small (vid. Fig. 4a); an
environment whereby the nutrient is scarce and undergoes small-amplitude periodic
oscillations, i.e. M and A are both relatively small (vid. Fig. 4b); and an environment
whereby periodic oscillations can induce a sufficiently high variability of nutrient
concentration, i.e. M = A and different values of A are allowed (vid. Fig. 4c).

The results obtained are summarised by the plots in Fig. 4. As we would expect (cf.
Remark 3), if the nutrient concentration undergoes low-amplitude periodic oscillations
then ΛL < ΛH for all values of T and βH considered (vid. Fig. 4a, b). On the other
hand, when periodic oscillations can bring about sufficiently high levels of nutrient
variability, there is a region of the βH − T plane where ΛH < ΛL (vid. Fig. 4c).
When the value of A is either low or high, this region is small and concentrated in
the bottom left corner of the plane. For intermediate values of A the region where
ΛH < ΛL is wider and such that the smaller the value T (i.e. the higher the frequency
of the nutrient oscillations) the wider the range of values of βH that belong to it.
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Fig. 5 a Plots of the nutrient concentration S(t) (first row), the phenotype distributions nH (x, t) (second
row) and nL (x, t) (third row), and the population sizes ρH (t) (fourth row, red line) and ρL (t) (fourth row,
blue line) obtained by solving numerically the system of PDEs (3), where S(t) is defined according to (79)
with T = 5, A = 20 and M = 70. The values of the model parameters are defined as in Table 1 with
βH = 0.025. b–d Same as column a but for A = M = 50 (column b), A = M = 10 (column c), and
A = M = 0.1 (column d) (color figure online)

Furthermore, we can investigate how the fluctuations in the nutrient level affect
the phenotypic distribution of each population at any given time point by constructing
numerical solutions to the systemof non-local PDEs (1) subject to initial condition (12)
with S(t) defined according to (79). This is demonstrated by the plots in Fig. 5, which
show sample dynamics of the nutrient concentration S(t), the phenotype distributions
nH (x, t) and nL(x, t), and the population sizes ρH (x, t) and ρL(x, t), for different
values of semi-amplitude A and mean M of the fluctuations.

When the nutrient is abundant and experiences fluctuations of relatively low level
(vid. Fig. 5a) population L outcompetes population H . This is due to the fact that, as
shown by Fig. 8a in “Appendix”, the fittest phenotypic state ϕ(t) undergoes very small
periodic oscillations and its value remains close to 0 (i.e. the value of the phenotypic
variable x corresponding to the fittest phenotypic state when nutrient is abundant).
Moreover, the rescaled maximum fitness g(t) undergoes very small periodic oscilla-
tions and its value remains close to 1.

When the nutrient level is uniformly low and undergoes relatively small oscilla-
tions (vid. Fig. 5d) population L is selected against population H . This is due to the
fact that, as shown by Fig. 8d in “Appendix”, both the fittest phenotypic state ϕ(t)
and the rescaled maximum fitness g(t) undergo small periodic oscillations and their
values remain close to 1. We recall that x = 1 is the value of the phenotypic variable
corresponding to the fittest phenotypic state when nutrient is scarce.
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For the cases when the populations experience fluctuations of relatively high level
(vid. Fig. 5b, c) population H outcompetes population L . This is due to the fact
that, as shown by Fig. 8b, c in “Appendix”, the fittest phenotypic state ϕ(t) fluctuates
periodically between1 and apositive value close to 0.Moreover, the rescaledmaximum
fitness g(t) undergoes small periodic oscillations and its value remains close to 1.

Note that in all cases the phenotype distribution of the surviving population remains
unimodalwithmaximumat themeanphenotypic state.Ultimately, both the size and the
mean phenotypic state of the surviving population oscillate periodically with the same
period as the nutrient concentration S(t). Furthermore, when the populations experi-
ence fluctuations of relatively high level (i.e. Figure 5b, c), the mean phenotypic state
of the surviving population (i.e. population H ) undergoes rapid transitions between 1
and a positive value close to 0. This can be biologically seen as the emergence of a
bet-hedging behaviour.

5 Interpretation of the results in the context of cancer metabolism

The generality of the model and the robustness of the results make our conclu-
sions applicable to a broad range of asexual populations evolving in fluctuating
environments. As an example, in this section we discuss the biological implications
of our mathematical results in the context of cancer cell metabolism and tumour–
microenvironment interactions.

Cancers begin from single cells that grow to form organ-like masses within mul-
ticellular organisms. A fundamental property of cancer cells is a self-defined fitness
function such that their proliferation is determined by their heritable phenotypic prop-
erties and the local environmental selection forces. That is, individual cancer cells have
the capacity to evolve novel phenotypes and to adapt to the often harsh intratumoural
environment. In contrast, while normal epithelial cells have the capacity to change
their phenotype to some degree, e.g. they can only do so within normal physiological
constraints in response to stress. In other words, because the proliferation of normal
cells is entirely governed by local tissue constraints, they cannot, unlike cancer cells,
evolve adaptations to many non-physiological conditions.

This difference in evolutionary capacity (or reaction norm) can confer a significant
adaptive advantage to cancer cells. For example, cancer cells often metabolise glucose
using glycolytic (converting glucose to lactic acid) pathways even when the oxygen
concentration is sufficient for the aerobic mechanism (converting glucose to H2O
and CO2). Known as the Warburg effect (Warburg 1925), this can be understood in a
Darwinian context as a form of niche construction because inefficiency of ATP (energy
currency of cells) production is offset by the evolutionary advantage of generating a
locally acidic environment. Cancer cells can evolve adaptive strategies to survive and
proliferate in such an environment but normal cells cannot.

Angiogenesis is another form of niche construction as cancer cells, acting as a
loosely organised group, produce and excrete pro-vascular proteins such as VEGF.
Importantly, angiogenesis in cancerswill occur entirely through these local interactions
so that new vascular sprouts will emerge from the nearest vessel regardless of its flow
capacity. Furthermore, cancer cells, once receiving blood flow, have no evolutionary
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Fig. 6 Schematic interpretation of the phenotypic fitness landscape of our model in the context of cancer
metabolism

imperative to invest resources in vascular maturation that permits blood flow to other
regions of the tumour (Gillies et al. 2018). Such an unregulated vascular network will
be highly unstable with cycles of growth and regression and blood flow dynamics that
are inevitably disordered.

A number of studies have demonstrated that this disordered process of angiogenesis
produces stochastic variations in blood flow leading to cycles of perfusion, cessation
of flow, and then re-perfusion (Kimura et al. 1996). This produces corresponding fluc-
tuations in local environmental conditions that are dependent on blood flow, including
oxygen and glucose, retention of metabolites such as acid, and important signalling
molecules such as testosterone or oestrogen. Particularly, regions of normoxia (nor-
mal levels of oxygen), chronic hypoxia (low oxygen level) and cycling hypoxia have
been distinguished in experimental and clinical studies (Michiels et al. 2016). If we
assume that S(t) in our model represents the oxygen level at time t , then the pheno-
typic variants best adapted to oxygen-rich environments, and thus displaying a regular
metabolism, are those with x → 0, while the phenotypic variants best adapted to
oxygen-low environments—i.e. the phenotypic variants that proliferate through the
consumption of glucose, which is usually abundant—correspond to x → 1. For sim-
plicity, we ignore any costs associated with the choice of metabolic preference, so that
assumption (10) is satisfied. This is illustrated by the schemes in Fig. 6.

Regions of normoxia and chronic hypoxia are analogous to cases a and b in Fig. 4
where low levels of environmental variability are observed. Our results support the
idea that these regions will be mainly populated by phenotypic variants best adapted to
either oxygen-rich or oxygen-low environments. Moreover, since our results indicate
that a higher rate of phenotypic variation does not constitute a competitive advantage
in the presence of small environmental fluctuations, we expect relatively low levels
of phenotypic heterogeneity to be observed in regions of either normoxia or chronic
hypoxia.

On the contrary, regions of cyclic hypoxia are characterised by high variability in the
oxygen levels. This can be related to case c in Fig. 4 where, under nutrient fluctuations
leading to drastic environmental changes, having a higher rate of phenotypic variation
represents a competitive advantage, and themean phenotype switches between the two
extreme phenotypic states (i.e. x = 0 and x = 1). Thus, in these regions we would
expect to have higher levels of phenotypic heterogeneity, consistent with previous
experimental findings (Chen et al. 2018), and to observe cells adopting bet-hedging as
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Fig. 7 Summary of the biological interpretation of our results in the context of cancer metabolism

a survival strategy in response to drastic variation in oxygen levels. These conclusions
are summarised in the table provided in Fig. 7.

6 Conclusions

Wehave presented amathematicalmodel for the evolutionary dynamics of two asexual
phenotype-structured populations competing in periodically oscillating environments.
The two populations undergo heritable, spontaneous phenotypic variations at differ-
ent rates and their fitness landscape is dynamically sculpted by the occurrence of
fluctuations in the concentration of a nutrient.

Our analytical results formalise the idea that when nutrient levels experience small
and slow periodic oscillations, and thus environmental conditions are relatively stable,
it is evolutionarily more efficient to rarely undergo spontaneous phenotypic variations.
Conversely, under relatively large and fast periodic oscillations in the nutrient levels,
which lead to alternating cycles of starvation and nutrient abundance, higher rates of
spontaneous phenotypic variations can confer a competitive advantage, as they may
allow for a quicker adaptation to changeable environmental conditions. In the lat-
ter case, our results indicate that higher levels of phenotypic heterogeneity are to be
expected compared to those observed in slowly fluctuating environments. Finally, our
results suggest that bet-hedging evolutionary strategies, whereby individuals switch
between antithetical phenotypic states, can naturally emerge in the presence of rela-
tively large and fast nutrient fluctuations leading to drastic environmental changes.

We conclude with an outlook on possible extensions of the present work. The focus
of this paper has been on the case where the maximum proliferation rate of the pheno-
typic variants best adapted to nutrient-rich environments (i.e. the parameter γ ) and the
maximum proliferation rate of the phenotypic variants best adapted to nutrient-scarce
environments (i.e. the parameter ζ ) are the same. However, there are biological scenar-
ios whereby the ability to survive in harsh environments comes with a fitness cost. For

123



802 A. Ardaševa et al.

instance, cells are known to turn to glucose for their energy production when oxygen is
in short supply, i.e. they produce energy through anaerobic glycolysis instead of using
oxidative phosphorylation that requires aerobic conditions. Since anaerobic glycolysis
is far less efficient in terms of produced energy than oxidative phosphorylation (Vander
Heiden et al. 2009), the proliferation rate of glucose-dependent phenotypic variants
might be lower than that of phenotypic variants best adapted to oxygenated environ-
ments. Therefore, it would be interesting to extend our analytical results to the case
where ζ < γ . It would also be interesting to consider cases where an integral operator
is used, in place of a differential operator, to describe the effect of phenotypic vari-
ations. In this case, we expect the qualitative behaviour of the results presented here
to remain unchanged when the transition between phenotypic states is modelled via
Gaussian kernels of sufficiently small variance. From a mathematical point of view,
this would require further development of the methods of proof presented here in order
to carry out a similar asymptotic analysis of evolutionary dynamics.

Another natural extension of the model is consideration of the feedback from the
populations on the nutrient level. In fact, most existing models of evolutionary dynam-
ics in a fluctuating environment do not account for this feedback and potentially
nonlinear dynamical interactions between individuals and the surrounding environ-
ment. However, changes in the population dynamics are known to affect the outcome
of interspecies competition in the presence of time variations in the availability of
nutrients (Okuyama 2015). For instance, in the context of solid tumours, one could
consider both negative feedback mechanisms that regulate population growth, such
as nutrient consumption, and positive feedback mechanisms that promote the supply
of nutrient, such as angiogenesis, i.e. hypoxia-induced formation of blood vessels.
Consideration of these mechanisms is expected to affect the advantages gained by
each population, and therefore the phenotypic composition of the tumour, in a given
environment.

An additional development of our study would be to incorporate into the model
a spatial structure, as done for instance in Bouin and Calvez (2014), Lorenzi et al.
(2018), Lorz et al. (2015), Alfaro et al. (2013), Mirrahimi and Perthame (2015) and
Lam and Lou (2014), and let multiple nutrient sources with different inflows be dis-
tributed across the spatial domain. This would lead individuals to experience nutrient
fluctuations of variable amplitudes and frequencies depending on their spatial position,
thus leading to the emergence of multiple local niches whereby different phenotypic
variants could be selected. Such an extension of our study would be relevant in several
biological contexts. In fact, spatial niche partitioning is known to have an important
impact on interspecies competition, as it promotes the coexistence between species best
adapted to different local environmental conditions (Hassell et al. 1994; Kneitel and
Chase 2004). Moreover, in the context of cancer research, clinical images and histo-
logical data have revealed the existence of considerable levels of spatial heterogeneity
in oxygen distribution within tumours (Tomaszewski et al. 2017;Michiels et al. 2016),
and localised regions of cycling hypoxia and chronic hypoxia have been identified in
tumour xenografts (Matsuo et al. 2014). In this regard, a spatially-stuctured version
of our model could shed new light on the ways in which the interplay between spatial
and temporal variability of oxygen levels may dictate the phenotypic composition and
the level of phenotypic heterogeneity of malignant tumours.
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Appendix: Supplementary figure

See Fig. 8.
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