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Stochastic growth pattern of 
untreated human glioblastomas 
predicts the survival time for 
patients
Ziwei Ma1,5,8, Ben niu1,4,8, Tuan Anh phan1, Anne Line Stensjøen6, Chibawanye ene2, 
Timothy Woodiwiss2, Tonghui Wang1, Philip K. Maini7, Eric C. Holland  2,3* & 
Jianjun paul tian1*

Glioblastomas are highly malignant brain tumors. Knowledge of growth rates and growth patterns is 
useful for understanding tumor biology and planning treatment logistics. Based on untreated human 
glioblastoma data collected in Trondheim, Norway, we first fit the average growth to a Gompertz curve, 
then find a best fitted white noise term for the growth rate variance. Combining these two fits, we 
obtain a new type of Gompertz diffusion dynamics, which is a stochastic differential equation (SDE). 
Newly collected untreated human glioblastoma data in Seattle, US, re-verify our model. Instead of 
growth curves predicted by deterministic models, our SDE model predicts a band with a center curve as 
the tumor size average and its width as the tumor size variance over time. Given the glioblastoma size 
in a patient, our model can predict the patient survival time with a prescribed probability. The survival 
time is approximately a normal random variable with simple formulas for its mean and variance in 
terms of tumor sizes. Our model can be applied to studies of tumor treatments. As a demonstration, we 
numerically investigate different protocols of surgical resection using our model and provide possible 
theoretical strategies.

Glioblastomas are highly aggressive primary malignant brain tumors. They have a very poor prognosis. For most 
types of glioblastomas, there has been minimal improvement in survival in the past decades1,2. Knowledge of gli-
oma growth rates and underlying growth dynamics is important for understanding basic tumor biology, develop-
ing realistic tumor models, and planning treatment logistics. However, the growth dynamics of human untreated 
glioblastomas in vivo has not been studied in detail3. The main reason is that we do not have relevant data that can 
be used to calculate tumor growth rates and to discover tumor growth patterns in vivo for humans, although we 
have a large data pool from experiments with animal models.

Tumor growth is the outcome of the complex interactions among tumor cells and their microenvironment, 
where cell proliferation, blood and nutrition supply, and cell death (i.e., apoptosis and necrosis) are also influ-
enced by many environmental features4. In spite of a large set of potential parameters, some tumors have a par-
ticular growth pattern that can be described by a Gompertzian curve5, which often is considered as a purely 
phenomenological growth curve. Namely, there is an initial exponential growth, and then it is followed by a 
saturation phase6. The Gompertz growth model seems to have some predictive power since it characterizes a 
common growth pattern of fast growth in the beginning and slowdown to a maximum size. The Gompertz model 
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has been applied to several types of solid tumors7. However, the Gompertz growth model often exhibits discrep-
ancies between clinical or experimental data and theoretical predictions8. These discrepancies may be due to 
internal environmental fluctuations and variation among patients. To consider such environmental fluctuations 
and variation in individual patients, some tumor growth models incorporate stochastic processes. For example, 
Albano & Giorno9 and Lo10 considered some stochastic models for tumor growth.

In a recent clinical study, Stensjøen et al. reported a data set of untreated human glioblastoma in vivo3. They 
calculated the tumor growth rates for each patient, and found considerable variation among individual patients.

In this study, we propose a Gompertz diffusion growth model that is the best fit to the data set of 94 untreated 
glioblastoma patients collected in the aforementioned study conducted by Stensjøen et al.3 in Trondheim, 
Norway. Our model is a stochastic differential equation, where white noise captures the variants of glioblastoma 
growth among patients. Our model is re-verified by newly collected data sets from Seattle, US. By computer 
simulations, we find that the patient survival time is a normally distributed random variable and its mean and 
variance are explicit functions of current tumor volumes. Using our model, we can predict the survival time for 
each patient based on a magnetic resonance imaging (MRI) scan with a prescribed probability before treatments.

As proof of principle, we conduct a theoretical study of surgical resection using our mathematical model. 
The extent of resection11–15 and repeated resections16,17 have been important subjects in neurosurgery clinics and 
research. We will study a variety of resection protocols including extent and repeated resections. In particular, 
we will study the following questions. (1) How long could a patient survive without treatment given the initial 
diagnosed tumor size? (2) How long could a patient survive if the patient accepts surgical resection immediately 
after diagnosis of glioblastoma? (3) How long could a patient survive if the patient accepts surgical resection after 
some period of time after diagnosis of glioblastoma? (4) If a second surgical resection is performed, how long 
could a patient survive? Our computational study will answer these questions in detail and provide some sug-
gestions which may help surgeons to determine optimal treatment strategies. Computationally, we confirm three 
established conclusions: patients with small glioblastomas have a longer survival time while large glioblastomas 
have a short survival time11,12; the patient will have survival benefits even for 50% of the extent of resection13,14; 
repeated resections will increase patient survival time16,17. Quantifying the extent of resection, we obtain the fol-
lowing theoretical conclusions. For large glioblastomas, the more a surgical resection can cut off from the tumor, 
the longer the survival time for the patient. For small glioblastomas, if we wait until the glioblastoma grows to a 
large tumor and then perform surgical resection, the patient survival time will increase; furthermore, if we wait 
again until the glioblastoma grows to an even larger tumor and then perform a second surgical resection, the 
patient survival time will increase further. However, these conclusions are purely theoretical outcomes which do 
not consider many medical factors, and therefore may not be immediately applicable in the clinics as many other 
aspects of the tumor need to be taken into account.

Methods
In the study conducted by Stensjøen et al.3, 106 untreated human glioblastoma data sets were collected. In that 
study, there are tumor volumes from two MRI scans for each patient, and the time between the two MRIs. These 
measurements were taken before surgery. Specifically, for the i-th patient, we have the record ∆(V , t , V )1

i i
2
i , where 

V , and V1
i

2
i  represent the tumor size of the first and second MRI scan, respectively, and ∆ti represents the time 

between the two MRI scans, = i 1, , 94. We choose to work on 94 glioblastoma data sets because these tumor 
sizes increase over the measured time period. The unit of tumor size is mL. The unit of time is day.

Growth estimations. The growth rate of individual tumors was calculated by using the specific growth 
rate18 (SGR) formula = −

∆
SGRi

logV logV
t

2
i

1
i

i
, for = …i 1, , 94. The scatter plot of SGR against the tumor size of first 

MRI scan is presented in Fig. 1.

Model set up. From Fig. 1, there are two key observations on the growth dynamics:

Figure 1. Scatter plot of SGR against tumor sizes of the first MRI scan: The horizontal axis presents the tumor 
size in the first MRI scan and the vertical axis presents the specific growth rate (SGR). The plot shows there is 
a negative correlation between the first scanned tumor volume and SGR; the variation of SGR decreases with 
respect to tumor size before the tumor volume reaches 100 mL.
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 1. There is a significant negative correlation between the first scanned tumor volume and SGR. Stensjøen et 
al. also pointed this out. They carried out a statistical analysis on the distribution of SGR with different 
tumor sizes3.

 2. The variation of SGR decreases with respect to tumor size before the tumor size reaches 100 mL.

Our model will incorporate these two characteristics. Let =V V(t) be the tumor size at time t. In most cases, 
phenomenological tumor growth laws are described by a single deterministic differential equation

=
dV
dt

g V( ) (1)

with =V v(0) 0, where g V( ) describes the tumor growth dynamics and v0 is the initial tumor volume. Typically, 
the model (1) has the following simplifying assumptions9,10:

 1. The tumor has one cell population, and there is no cell heterogeneity;
 2. Tumor growth is spatially independent;
 3. Tumor growth does not show explicit dependence on nutrients, host vasculature, or age.

The function g V( ) can be expressed as the product of V  and the intrinsic net growth rate r V( ), thus

=
dV
dt

r V V( ) (2)

with =V v(0) 0. It is well known that glioblastomas are composed of many cell types and are heterogeneous19. The 
heterogeneity in cell types and space may contribute to variation of intrinsic growth rate. We employ a stochastic 
process to express the tumor intrinsic growth rate. Let α σ ξ= +r V V V t( ) ( ) ( ) ( ) where α V( ) represents the deter-
ministic intrinsic growth rate, which will be a decreasing function since growth rate decreases with tumor size, 
ξ t( ) represents white noise, and σ V( ) represents the strength of the white noise, and is a decreasing positive func-
tion. To parameterize the model, we need to undertake two steps of data fitting to determine α V( ) and σ V( ) from 
our data, separately.

Model fitting. In the literature, many studies report that Gompertz curve fits for tumor growth are better 
than others20–22. Therefore, we use a Gompertz curve to fit the deterministic intrinsic growth rate, i.e., 
α =V a( ) log b

V
 where >a b, 0 are parameters. More concretely, a represents the intrinsic growth rate and b 

represents the carrying capacity. The individual conditions including nutrients, host vasculature, and age may 
contribute to the carrying capacity. Using pairs V SGR( , )

i
i1  for = …i 1, , 94, we obtain = .a 0 009916 and 

= .b 121 6. The fitted curve for α V( ) is shown in Fig. 2.
Secondly, we fit the strength of the white noise σ V( ). Since there is no commonly accepted functional form 

for that, we will find a function that is simple and fits our data well. To fit σ V( ), we need pairs σV( , )i i . For the sake 
of simplicity, we partition the tumor size of the first MRI scans, V i

1, into 7 subgroups, Dj, for = j 1, , 7 based on 
the tumor size. To be concrete, let 10, 20, 30, 40, 50, 60 be volume separators for tumor size at the first MRI scan, 
and = ≤D V V{ : 10}

k k
1 1 1 , = < ≤ … = < ≤D V V D V V{ : 10 20}, , { : 60 70}k k k k

2 1 1 7 1 1 . Then for each subgroup 
Dj, we can compute the variance σ = ∑ −

− ∈ V V( )j D V D
k j2 1

1 1 1
2

j
k

j1
, where V j

1  is the average value of Dj, and Dj  is 

the total number of elements in Dj. We dropped the group D7 since it only has 7 data points in the range from 
61.7 to 146.5. Thus, we have six ordered pairs of the form σV( , ). Using these six ordered pairs, we find 
σ =

+
V( ) c

h V
 with = .c 0 0769 and = .h 0 2241. The fit is shown in Fig. 3.

Figure 2. Gompertz curve fitting: The Gompertz curve, =V a( ) log b
V

, is used to fit the deterministic intrinsic 
growth rate, where a represents the intrinsic growth rate and b represents the carrying capacity. The best fitted 
values for = .a 0 009916 and = .b 121 6.
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Therefore, we obtain the following Langevin equation23

ξ= +
+

dV
dt

aV b
V

cV
h V

tlog ( )
(3)

with =V v(0) 0, where = .a 0 009916, = .b 121 6, = .c 0 0769 and = .h 0 2241. Rewriting (3) in the usual form of a 
stochastic differential equation (SDE), we have

= +
+

dV aV b
V

dt cV
h V

dW tlog ( ),
(4)

where W t( ) represents the standard Wiener process24. This is a stochastic differential equation, and is our mathe-
matical model for glioblastoma growth.

Model verification with the original 94 data sets from trondheim, norway. Theoretically, for a 
given SDE and its initial condition, we can provide a confidence region of a given probability for the tumor size at 
any specific future time t. For our Gompertz type diffusion model (4), since there is no closed form solution, we 
do not have the exact transition probability distribution for predicting tumor sizes. However, we can numerically 
predict the tumor size with bounds given by a prescribed probability. For example, we can predict the tumor size 
at future time t after the first MRI scan with upper bound and lower bound given by a probability. Here we resort 
to numerical methods to verify our model as follows. Based on the data of the i-th patient, ∆(V , t , V )1

i i
2
i , we use 

V1
i as an initial condition for the SDE (4) and then we simulate 500 solution sample paths on the time interval 

∆t(0, )
i . From these 500 solution sample paths, we obtain an empirical distribution at time = ∆t t i which pro-

vides the mean tumor size, µi, and standard deviation, σi. We will check if µ σ− ≤V 3i
i i2  for = i 1, , 94, which 

means we give a 99% confidence interval. The results are shown in Fig. 4 and Table 1. Figure 4 shows our model 

Figure 3. Variance fitting: White noise is used to fit the variance or standard deviation in the data set. Since 
there is no commonly accepted functional form for the strength of white noise, \The best fitted function is 
σ =

+
V( ) c

h V
 with = .c 0 0769 and = .h 0 2241.

Figure 4. Model verification: The horizontal axis represents the second scanned tumor volume, and the 
vertical axis represents the tumor size predicted by our stochastic differential model. The second scanned tumor 
volumes were taken from the original data set from Trondheim, Norway; the first scanned tumor volumes were 
used to parametrize our mathematical model.
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predictions of the tumor sizes at the time the second MRI scan was done against the real tumor sizes. Table 1 

shows how the real tumor sizes will fall in the region of our model prediction if we give a 99% confidence interval. 
As the table shows, about 60+ percent of real tumor sizes fall into our prediction intervals.

In addition, Table 1 summarizes the results of predictions of the tumor size of the second MRI scan to a 99% 
confidence level.

Model re-verification with 3 data sets from Seattle, US. Our research group recently collected 3 
untreated human glioblastoma data sets of tumor volumes at two different time points. The tumor volume was 
computed from three measurements in three directions that are perpendicular to each other as an ellipsoid. If we 
use our mathematical model with exact parameter values estimated from the original 94 data sets, two of three 
tumor volumes are in our model prediction range with probability 0.99 as shown in Table 2.

If we change the growth rate from the estimated value = .a 0 009916 to = .a 0 015, all three tumor volumes 
are in our prediction range with 0.99 confidence level as shown in Table 3.

We do not have age records attached to the data sets. We also notice that the methods of measurements are 
different. The contrast-enhanced T1-weighted MRI scan was used in the data sets collected in Trondheim, while 
three-dimensional measurements with ellipsoid computation was used in the data sets collected in Seattle. Those 
methods may contribute some systematical differences in data sets25. In either case above, we consider our math-
ematical model is re-verified by these newly collected data sets.

Ethical approval. All procedures performed in studies involving human participants were in accordance 
with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki 
declaration and its later amendments or comparable ethical standards. They were approved by the Institutional 
Review Board of Fred Hutchinson Cancer Research Center. The data privacy regulations were followed.

Informed consent. Informed consent was obtained from all individual participants included in the study.

Results
Empirical distribution of survival times obtained by using numerical simulations. Since SDE (4) 
can predict the tumor size at future time t after the first MRI scan, we can obtain more insight on the glioblastoma 
growth dynamics based on this model. It is natural to explore the survival time for each patient. If we make the 
simplifying assumption that tumor size is the only reason for patient death, then the survival time for each patient 
can be expressed as the first time the tumor size reaches a specific value. We can use the first passage time random 

Number of data
Predicted with 
3 σ error

Correct prediction 
percentage

Second MRI scan V2 94 58 61.70%

Second MRI scan <V 502 74 50 67.57%

Table 1. Prediction of the tumor size of second MRI scan from the fitted model. Prediction of the tumor size 
comparing with the original data from Trondheim: Taking the initial value as the first scanned tumor size, our 
model predicts the tumor size after the time period from the first scan to the scan. Within 3 standard deviation 
or 99% confidence level, the correct prediction percentages are shown. For small tumors, the percentage of 
correct predictions is higher.

MRN
Path 
report Date 1

Volume 
(mL) Date 2

Volume 
(mL) Prediction

U3863224 GB 8/21/2015 1.592 9/3/2015 2.715 [1.54, 3.84]

U2223925 GB 8/6/2006 20.83 8/22/2006 34.77 [22.3, 31.8]

U4348415 GB 6/19/2017 17.27 7/19/2017 29.76 [21.7, 34.9]

Table 2. Predictions and observations from US. Prediction of the tumor size interval comparing with the data 
from Seattle: Using exact parameter values estimated from data sets of Trondheim, 2 observed tumor sizes from 
Seattle are within the predicted interval of the tumor size with probability 0.99.

MRN
Path 
report Date 1

Volume 
(mL) Date 2

Volume 
(mL) Prediction

U3863224 GB 8/21/2015 1.592 9/3/2015 2.715 [1.96, 4.75]

U2223925 GB 8/6/2006 20.83 8/22/2006 34.77 [25.5, 34.9]

U4348415 GB 6/19/2017 17.27 7/19/2017 29.76 [28.2, 41.6]

Table 3. Observations and predictions by adjusted growth rate. Prediction of the tumor size interval comparing 
with the data from Seattle: Changing the intrinsic deterministic growth rate from a = 0.009916 to a =0.015, all 
three tumor volumes from Seattle are in our prediction range with 0.99 confidence level.
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variable associated with SDE (4) to model the survival time. Since the solution of SDE (4) ≥V t t{ ( ): 0} is a diffu-
sion process, we define the first passage time (waiting time) random variable,

= ≥
≥

T t V t vinf{ : ( ) },v v
t

c,
0c0

where = <V v v(0) c0 , v0 is the tumor size for which we start our observations, vc is the tumor size for which we 
stop our observations. Since there is no closed form solution to SDE (4), we study the first passage time random 
variable numerically. For initial tumor size =v 100 , and = v 20, 30, , 100c , we simulate each Tv v, c0

 for 500 sam-
ple paths. Then, we obtain a simulated empirical distribution of Tv v, c0

. The histograms and fitted density curves 
are presented in Fig. 5.

From the histograms of simulated data shown in Fig. 5, the distributions of Tv v, c0
 are close to normal distribu-

tions. So, we assume that the distribution of the first passage time follows

µ σ~T Normal v v v v( ( , ), ( , )),v v c c, 0 0c0

where µ σv v v v( , ), ( , )c c0 0  are functions of v and vc0 . Based on SDE (4), we consider combinations of v v( , )c0  such 
that ≥ +v v 10c 0  with = v 10, 20, , 600  and = v 20, 30, , 100c . That is, we consider the tumor grows from 
volume v0 to vc. In total, there are 39 combinations. For each combination v v( , )c0 , we simulated 500 sample paths, 
thus we obtain 39 triples µv v v v( , , ( , ))c c0 0  and σv v v v( , , ( , ))c c0 0 . Table 4 shows triple of µv v v v( , , ( , ))c c0 0  and 

σv v v v( , , ( , ))c c0 0  simulated from our model.

Figure 5. Empirical distributions of the first passage time (waiting time): Tv v, c0
, v0 is the tumor size for which we 

start our observations, and vc the tumor size for which we stop our observations. Starting with =v 100 , =v 20,c  
=v 30,c  … =v 100c , for each pair v v( , ),c0  we simulate 500 sample paths which are plotted as histograms. The 

fitted probability density curves are plotted. Tv v, c0
 is approximately normally distributed.

v0 10 20 30 40 50 60

vc µ σ µ σ µ σ µ σ µ σ µ σ

20 33.69 4.98 — — — — — — — — — —

30 59.80 7.25 26.20 4.95 — — — — — — — —

40 83.28 8.55 50.33 6.94 24.12 4.99 — — — — — —

50 104.77 10.04 72.64 9.19 46.88 7.11 24.03 5.56 — — — —

60 129.02 11.61 95.99 11.02 69.35 10.07 47.46 8.32 23.64 6.04 — —

70 153.48 12.96 120.95 12.44 94.82 11.98 71.54 10.95 48.13 9.12 25.77 7.46

80 180.18 16.15 149.72 16.23 124.13 15.83 99.57 14.64 76.71 14.77 54.70 12.85

90 215.12 20.88 183.13 21.97 154.76 20.17 131.79 19.80 108.89 18.16 86.83 17.49

100 258.89 30.68 224.22 29.84 196.72 25.73 173.17 27.81 153.79 26.23 127.88 26.77

Table 4. Triples of µv v v v( , , ( , ))c c0 0  and σv v v v( , , ( , ))c c0 0  from simulations. Computing the average waiting time 
and standard deviation of the waiting time for different initial tumor sizes and expected tumor sizes.

https://doi.org/10.1038/s41598-020-63394-w


7Scientific RepoRtS |         (2020) 10:6642  | https://doi.org/10.1038/s41598-020-63394-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

Using the values in Table 4, Triples of µv v v v( , , ( , ))c c0 0  and σv v v v( , , ( , ))c c0 0  from simulations. we obtain the 
following fitted function for µ σv v v v( , ), ( , )c c0 0 :

µ = − . + . − .v v v v( , ) 2 643 2 803 10 98 (5)c c0 0

σ = . − . − . + . + . .v v v v v v v( , ) 15 28 0 1914 0 3376 0 001166 0 004797 (6)c c c c0 0 0
2

Figure 6 shows the fitted surface µ v v( , )o c  for the average waiting time, which depends on initial tumor size, vo, 
and stopping tumor size, vc, based on the simulated data in Table 4. Figure 7 shows the fitted surface σ v v( , )c0  for 
the standard deviation of the waiting time, which depends on initial tumor size, vo, and tumor stopping size (stop-
ping observation), vc, based on the simulated data in Table 4.

Application of our model: theoretical surgery strategies. The extent of resection has been an impor-
tant subject in neurosurgery research and practice. It has only recently been established that there is a statistical 
correlation between the extent of resection and survival11–15,26. However, almost all of the studies are retrospec-
tive and thus subject to numerous sources of bias and variation. Furthermore, there are only three categories 
for the extent of resection: stereotactic biopsy, subtotal resection, and gross total resection (radical or complete 
resection). In clinics, tumors in some locations may not be amenable to gross total resection due to proximity to 

Figure 6. Fitted surface of the average waiting time: To find the relation between the average waiting time and 
tumor sizes, the initial tumor size, expected tumor size, and computed average waiting time are plotted. 
Estimated surface, µ(v , v ),o c  is obtained by the best fit.

Figure 7. Fitted surface of standard deviation of the waiting time: To find the relation between the standard 
deviation of the waiting time and tumor sizes, the initial tumor size, expected tumor size, and computed 
standard deviation of the average waiting time are plotted. Estimated surface, σ(v , v ),o c  is obtained by the best fit.

https://doi.org/10.1038/s41598-020-63394-w
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functional tissue. For example, the relation of the tumor to eloquent cortex (i.e. primary motor cortex or speech 
centers) is important since it directly corresponds to the proportion of the tumor that can be resected without 
permanent morbidity11. For elderly patients, the optimal extent of resection remains uncertain because of poten-
tial higher rates of mortality and morbidity associated with more extensive degrees of resection12. The choice of 
optimal extent of resection may depend on the tumor size and location, the patient’s general and neurological 
status, and the neurosurgeon’s experience13. Although there are some prospective studies15,27,28, a prospective 
study with quantifying extent of resection is necessary.

Our SDE model is a good tool to study extent of resection prospectively. We can explore the survival time 
after surgical resection and may help surgeons to choose a best protocol for the treatment based on an individ-
ual patient’s conditions, such as tumor size and location and possible resection proportion (quantified extent of 
resection). In the following, we will explore how various combinations of different diagnosed tumor sizes, tumor 
sizes when surgery is performed, different resection proportion, and repeated resections, will affect the patient 
survival time.

We assume that the glioblastoma growth pattern after resection is the same as before the resection. Specifically, 
the waiting time =T Tv v1 , c0

 of tumor growing from the size v0 to size vc and the waiting time =
′

T Tv v2 ,c T
 of tumor 

growing from the size ′vc  after resection to the death size vT  follow the normal distribution with the mean 
µ v v( , )c0  and µ ′v v( , )c T , and the standard deviation σ v v( , )c0  and σ ′v v( , )c T , respectively. That is, 

µ σ~T N v v v v( ( , ), ( , ))c c1 0 0  and µ σ′ ′~T N v v v v( ( , ), ( , ))c T c T2 .
Now, we can address the following four questions

 1. How long could a patient survive without treatment when the initial diagnosed tumor size is v0?
 2. Long could a patient survive if the patient accepts surgical resection immediately when the initial diag-

nosed tumor size is v0 with the resection proportion c%?
 3. How long could a patient survive if the patient accepts surgical resection when the tumor reaches a size vc

for which < <v v vc T0 ?
 4. Under some conditions, if a second surgical resection is needed, how long could a patient survive?

The first question. Let the random variable =T Tv v1 , T0
 be the survival time when the tumor grows from the 

initial diagnosed size v0 to the death size .vT It is assumed to follow the normal distribution 
µ σN v v v v( ( , ), ( , ))T T0 0 . In Table 5, we present the expectation and standard deviation (SD) of the survival time 

for a patient without treatment with an initial diagnosed tumor size v0, where we take the initial diagnosed tumor 
size from 1 mL to 50 mL for demonstration, and the unit of the survival time is days. It is easy and obvious to 
conclude that small glioblastomas have longer survival times.

The second question. For the second question, we use the random variable µ σ= ′ ′′ ~T T N v v v v( ( , ), ( , ))v v T T2 , T
, 

where ′ = −v v c(100 )%0  and c% is cut-off percentage. In Table 6, we present our computation results for the 

v0 1 2 5 10 20 30 50

Expectation 
(Standard Deviation) 267(29) 264(29) 256(29) 242(29) 216(28) 190(27) 137(26)

Table 5. Expected survival time (SD) without treatment (days). Expected survival time and standard deviation: 
100 mL is taken to be a death size of the tumor in order to compute the expectation of the survival time. For 
example, if a tumor of 1 mL is observed, our model predicts the average survival time is 267 days, and its 
standard deviation is 29 days. Notice that the estimated death size is 121.6 mL.

1 2 5 10 20 30 50

0% 267(29) 264(29) 256(29) 242(29) 216(28) 190(27) 137(26)

50% 268(29) 267(29) 263(29) 256(29) 243(29) 230(28) 203(28)

60% 268(29) 267(29) 264(29) 259(29) 248(29) 238(29) 216(28)

70% 269(29) 268(29) 265(29) 261(29) 253(29) 246(29) 230(28)

80% 269(29) 268(29) 267(29) 264(29) 259(29) 253(29) 243(29)

90% 269(29) 269(29) 268(29) 267(29) 264(29) 261(29) 256(29)

98% 269(29) 269(29) 269(29) 269(29) 268(29) 268(29) 267(29)

Table 6. Expected survival time (SD) with immediate resection (days). Expected survival time under 
immediate resection: Our computation provides average survival times under different resection percentage. 
For example, for a tumor of 50 mL, if no resection is performed, the patient has an average survival of 137 days 
with standard deviation 26 days; if the resection with 50 percent is performed, the average survival is 203 days 
with standard deviation 28 days; if the resection with 90 percent is performed, the average survival is 256 days 
with standard deviation 29 days.
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expectation and standard deviation of the survival time =
′

T Tv v2 , T
 for a patient who accepts the surgical resec-

tion immediately after tumor diagnosis and the resection proportion is c%. We only present the cases where the 
diagnosed tumor size has volume from 1 mL to 50 mL and the resection proportions are percentages from 50 to 
98. From our computation, we learn that a surgical resection does not increase survival times much for small 
tumors no matter what percentage of the tumor can be cut off, while for large tumors the more a surgical resection 
can cut off from the tumor, the longer will be the survival time for the patient. In the clinical study14, the authors 
reported that a high extent of resection improves overall survival, and even for 78% of resection extent, it also 
gives survival benefits, which agrees with our conclusions.

The third question. For the third question, the tumor grows for some period of time from the initial diag-
nosed size v0 to size vc and then a surgical resection is performed. The survival time is +T T1 2 where 

µ σ~T N v v v v( ( , ), ( , ))c c1 0 0  and µ σ ′′~T N v v v v( ( , ), ( , ))c T c T2  with ′ = −v v c(100 )%c c . Since the survival time is a 
sum of two random variables, we need to consider how these two random variables affect each other and their 
impact on the survival time. To include the relation between these two random variables, we use the correlation 
coefficient ρ. From the property that the sum of normally distributed random variables is still a normally distrib-
uted random variable, we know that

µ σ+ ′ ′~T T N( , ),1 2

where, σ σ σ ρσ σ′ = + ′ + ′v v v v v v v v( , ) ( , ) 2 ( , ) ( , )c c T c c T
2

0
2

0  and µ µ µ′ = + ′v v v v( , ) ( , )c c T0 .
In this computation, there are four parameters: the initial diagnosed tumor size v0, the tumor size vc when 

surgical resection is performed (after random time T1), the resection proportion c%, and the correlation coeffi-
cient ρ. To demonstrate, we choose the initial diagnosed tumor size to be =v 1 mL0 , then let the tumor grow to 
size vc for surgical resection with cut-off percentage c%. To compute the survival time, we choose three values for 
the correlation coefficient ρ for each theoretical treatment. Table 7 shows the expectation and standard deviation 
of the survival time for the parameter values we choose.

From our computation, we can conclude that for a small tumor, if we wait until the tumor grew to a big tumor 
and then perform surgical resection, the survival time would increase. If two survival times are positive linear 
related, the variance of the survival time will increase; if they are negative linear related, then the variance of the 
survival time will decrease. It may be reasonable to assume the survival times are positive linear related. However, 
the mean survival time keeps the same.

The fourth question. We consider a second surgical resection. Based on the procedure in the third question, 
after the first surgical resection for some period of time the tumor will grow to size vc2

, then a second surgical 
resection is performed. After the second resection, if the random time for the tumor growth to death size is T3, 
the survival time for the patient is as follows

ρ 2 5 10 20 30 50

0 50%  259(33) 263(32) 271(32) 285(31) 300(30) 330(29)

0.5 50% 259(39) 263(38) 271(37) 285(35) 300(34) 330(34)

0.8  50% 259(42) 263(41) 271(40) 285(37) 300(36) 330(35)

0  60% 259(33) 264(32) 273(32) 291(31) 308(30) 343(30)

0.5 60% 259(39) 264(38) 273(37) 291(35) 308(34) 343(34)

0.8  60% 259(42) 264(41) 273(40) 291(38) 308(36) 343(35)

0  70% 260(33) 266(32) 276(32) 296(31) 316(30) 356(30)

0.5 70% 260(39) 266(38) 273(37) 296(35) 316(34) 356(35)

0.8 70%  260(42) 266(41) 273(40) 296(38) 316(37) 356(36)

0  80% 260(33) 267(32) 278(32) 301(31) 328(30) 369(31)

0.5 80% 260(39) 267(38) 278(37) 301(35) 328(35) 369(35)

0.8  80% 260(42) 267(41) 278(40) 301(38) 328(37) 369(36)

0  90% 261(33) 268(32) 281(32) 306(31) 332(30) 383(31)

0.5 90% 261(39) 268(38) 281(37) 306(35) 332(35) 383(35)

0.8  90% 261(42) 268(41) 281(40) 306(38) 332(37) 383(37)

0  98% 261(33) 269(32) 283(32) 311(31) 338(31) 393(31)

0.5 98% 261(39) 269(38) 283(37) 311(35) 338(35) 393(36)

0.8  98% 261(42) 269(41) 283(40) 311(38) 338(37) 393(37)

Table 7. Expected survival time (SD) after tumor growth then resection (days). Expected survival time 
after tumor growth then resection: Assume tumor initial size is 1 mL. If resection is immediately performed, 
the average survival is 268 days with SD 29 days. Letting it grow to 50 mL, then resection is performed with 
different percentages, the average survival is from 330 days to 393 days; the standard deviations vary according 
to the correlation coefficient ρ between the growth time T1 and survival time T2.
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+ + .T T T1 2 3

This  i s  a  normal ly  d is t r ibuted  random var iable  with  d is t r ibut ion µ σ″ ′′N( , ),  where 

µ µ µ µ″ = + +′ ′v v v v v v( , ) ( , ) ( , )c c c c T0 1 1 2 2
 and σ σσ″ = RT  with σ
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In this computation, there are eight parameters: the initial diagnosed tumor size v0, the tumor size vc1
 when 

the first surgical resection is performed (after random time T1), the first resection proportion c %1 , the tumor size 
vc2

when the second surgical resection is performed (after random time T2), the second resection proportion 
c %2 , and three correlation coefficients ρ ρ ρ, ,12 13 23 within T1, T2 and T3. To demonstrate and simplify presenta-

tion, we choose the initial diagnosed tumor size v0=1 mL, the first and second resection proportion =c % 80%1  
and =c % 50%2 , and give the triple ρ ρ ρ( , , )12 13 23  three choices. For the tumor sizes vc1

and vc2
, we choose some 

volume from 2 mL to 50 mL and 15 ml to 90 mL respectively. Table 8 shows the expectation and standard devia-
tion of the survival time for these parameter values.

From our computation, we may conclude that for a small tumor, if we wait until it grows to a large tumor and 
then perform a surgical resection with a high cut-off percentage, and wait again until the tumor grows to an even 
larger tumor then perform a second surgical resection, the patient survival time will significantly increase. We 
also conclude that correlation coefficients within waiting times for tumor growth do not have effect much on the 
survival time. This confirms the results reported in the studies16,17.

Our computational investigation first confirms the intuitively expected result that small glioblastomas have 
a longer survival time while large glioblastomas have a short survival time. We also confirm that the patient will 
have survival benefits even if the extent of resection is 70%. Our computation thirdly confirms that a second 
resection will increase patient survival time. In addition, we obtain the following conclusions. For large glioblas-
tomas, the more a surgical resection can cut off from the tumor, the longer will be the patient survival time. For 
small glioblastomas, if we wait until the glioblastoma grows to a large tumor and then perform surgical resection, 
the patient survival time will increase; furthermore, if we wait again until the glioblastoma grows to an even larger 
tumor and then perform a second surgical resection, the patient survival time will increase further.

ρ ρ ρ( , , )12 13 23 2 5 10 20 40 50

(0, 0, 0) 15 271(34) 278(34) 290(33) 312(32) 358(32) 381(32)

. .(0 5, 0, 0 5) 15  271(41) 278(40) 290(39) 312(38) 358(37) 381(38)

. .(0 8, 0, 0 8)  15 271(44) 278(44) 290(43) 312(41) 358(40) 381(40)

(0, 0, 0) 20 279(34) 286(33) 297(33) 320(32) 365(32) 388(32)

. .(0 5, 0, 0 5)  20 279(41) 286(40) 297(39) 320(38) 365(37) 388(38)

. .(0 8, 0, 0 8) 20  279(43) 286(43) 297(42) 320(40) 365(39) 388(39)

(0, 0, 0) 40 309(33) 315(32) 327(32) 349(31) 395(31) 418(31)

. .(0 5, 0, 0 5)  40 309(38) 315(38) 327(37) 349(36) 395(35) 418(35)

. .(0 8, 0, 0 8)  40 309(41) 315(41) 327(40) 349(39) 395(38) 418(38)

(0, 0, 0) 50 323(33) 330(32) 342(32) 364(31) 410(31) 433(31)

. .(0 5, 0, 0 5)  50 323(39) 330(38) 342(38) 364(37) 410(36) 433(36)

. .(0 8, 0, 0 8)  50 323(42) 330(42) 342(41) 364(40) 410(39) 433(39)

(0, 0, 0) 70 353(34) 360(34) 371(33) 394(32) 439(32) 462(32)

. .(0 5, 0, 0 5)  70 353(42) 360(42) 371(41) 394(40) 439(39) 462(39)

. .(0 8, 0, 0 8)  70 353(46) 360(46) 371(45) 394(44) 439(43) 462(43)

(0, 0, 0) 80 368(36) 375(35) 386(35) 409(34) 454(33) 477(34)

. .(0 5, 0, 0 5)  80 368(45) 375(45) 386(44) 409(43) 454(42) 477(42)

. .(0 8, 0, 0 8)  80 368(50) 375(49) 386(49) 409(47) 454(46) 477(47)

(0, 0, 0) 90 383(38) 389(38) 401(37) 424(37) 469(36) 492(36)

. .(0 5, 0, 0 5)  90 383(49) 389(49) 401(48) 424(47) 469(46) 492(46)

. .(0 8, 0, 0 8)  90 383(55) 389(54) 401(53) 424(52) 469(51) 492(51)

Table 8. Expected survival time (SD) for two resections (days). Expected survival time after two resections: 
Assume tumor initial size is v0. After random time T1, the tumor reaches size vc1, then resection with c1%; 
then after another random time T2, the tumor reaches size vc2, the second resection with c2%; then the patient 
survives with some period of time T3. To demonstration, taking v0 = 1 mL, c1% = 80%, c2% = 50%, and 
correlation coefficients ρ12, ρ13, ρ23 among T1, T2 and T3. For example, the total survival time will be 492 days if 
the first resection with 80% is perform ed when the tumor reaches 50 mL and the second resection with 50% is 
performed when the tumor reaches 90 mL.
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It is clear that our theoretical study provides ample sources of thought for the surgical management of glio-
blastomas, and while our predictions provide results that are intuitively obvious, they quantify the possible ben-
efits of resections. There are many factors in clinical practice which should be taken into consideration when we 
make decisions. For example, waiting for a glioblastoma in the brain to get bigger is not only dangerous in terms 
of letting cells penetrate deep into the tissue but also dangerous in terms of acute symptoms due to increased brain 
pressure. This requires us to consider parameters such as metastasis, extent of spatial heterogeneity, and invasive-
ness. Most importantly, the genetics of the tumors should be considered29,30.

Discussion
The clinical data on the growth rate of untreated glioblastomas show a large variability among different patients3. 
Several deterministic mathematical models have been proposed to describe glioma growth patterns. However, 
these mathematical models are unable to describe and predict the variance among patients (or experimental 
animals). Based on a data set of 94 glioblastoma patients, we find the best fitted mathematical model based on 
Gompertz growth with white noise. We use white noise to model the variability among patients and random 
factors in tumor cell environment. The strength coefficient of the white noise we fitted is of fraction form. Instead 
of growth curves predicted by deterministic models, we predict a band where the center curve is the mean of 
the solution (the tumor size), and its width is given by a prescribed probability that describes the variance of the 
tumor size deviating from the average over time. As mentioned in the Materials and Methods section, almost 
2/3 of glioblastoma growth in the data set from Trondheim, Norway, falls into our predicted band. Newly col-
lected human glioblastoma data from Seattle, US, also fall into our model prediction band after the growth rate is 
increased. Although our stochastic differential equation model captures some variability of the growth dynamics 
of glioblastomas, we cannot expect a model as simple as the one we propose to hold for all human glioblastomas, 
which have great heterogeneity among individual patients.

Since there is no closed form solution of our stochastic differential equation model, we numerically simulate 
our model for a large number of solution paths, and obtain some empirical results. One result is the empirical 
distribution of the survival time. We find it to be a normally distributed random variable, with mean and vari-
ance dependent on the tumor sizes. From our computational simulations, we numerically fit simple formulas to 
calculate the mean and variance in terms of tumor sizes. If the tumor size of a glioblastoma patient is found from 
an MRI scan, our empirical distribution of the survival time can predict how long this patient can live without 
treatment under a given probability, and can also calculate their average survival time and variance. This may give 
physicians and patients some information to prepare for a better life in recovery.

One interesting question is: what is the best time for surgical resection when a patient is diagnosed with a glio-
blastoma? This problem involves several parameters including tumor size, tumor location in the brain, physician’s 
experience, possible extent of surgical resection estimated, etc. For example, for a patient with a glioblastoma, 
each physician has their own judgment of how much they can cut the tumor based on their experience. As a 
theoretical study, we consider the percentage of the tumor to be removed which is quantified extent of resection, 
the timing of surgical resections, and times of surgical resections. We confirm an obvious conclusion that small 
glioblastomas have a longer survival time while large glioblastomas have a short survival time. We also confirm 
that the patient will have survival benefits even if the extent of resection is low. Our computation shows that for 
large glioblastomas, the higher the percentage a surgical resection can cut off from the tumor, the longer will be 
the patient survival time. However, for small glioblastomas, a surgical resection does not increase survival time 
much no matter what percentage of the tumor can be cut off. If we wait until a small glioblastoma grows to a 
large tumor and then perform surgical resection, the patient can attain a longer survival time; furthermore, if we 
wait again until the glioblastoma grows to an even larger tumor and then perform a second surgical resection, 
the patient will get a significant longer survival time. We may conclude that repeated surgical resections will give 
more benefits to patients theoretically. In fact, the reoperation has been done in some clinics and experiments16,17. 
A recent systematic review and meta-analysis of contemporary literature suggests that repeated surgery at glio-
blastoma recurrence in select patients confers a significant, prognostic overall survival advantage independent 
of other prognostic factors31. These newer studies are significantly more likely to suggest greater benefit than are 
older studies, while larger prospective randomized controlled studies are needed to validate these findings31.

It is clear that our results are based on our simple mathematical model and its assumptions. These assumptions 
do not take all necessary factors into account and so our model predictions must be treated with great caution. 
For instance, we assume the tumor size determines patient survival. However, in many cases, the real driver of 
survival is the genetics of the tumors29,30 which may outweigh the tumor size at diagnosis. In the theoretical resec-
tion, we also assume that resection does not alter growth dynamics. This may not be true in some cases since the 
neurological conditions may change after resection. The result that the patient can attain a longer survival time 
when a small glioblastoma grows to a large tumor and then a surgical resection is performed, may be explained 
by observing that the time for a small tumor to grow to a large tumor added to the time that the patient survives 
after the resection is longer than the time taken for a small tumor to grow to a small or medium tumor plus the 
time that the patient survives after the resection. However, glioblastomas are known to be spatially diffuse, so 
that by allowing a tumor to grow, we risk potentially fatal spread to other parts of the brain. It is clear that, in 
neurosurgery, the aim of resection is always total resection, but without impacting on patient’s neurological func-
tion, and to minimize the risk of new postoperative deficits such as brain mapping/stimulation, navigation with 
diffusion tensor imaging. The next step in the type of analysis presented here would be to link the tumor growth 
rate with the genetic information and to develop a spatially extended model or adapt some of the models in the 
literature32–35 so that one could apply some of the ideas from the present paper. However, that would involve a 
significant extension and is beyond the scope of the present paper.

In addition, we did not consider other treatments which can be easily incorporated into our model. Surgery 
is usually combined with other treatments, such as radiotherapy and chemotherapy. When relevant clinical or 
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experimental data are available, we should be able to incorporate other treatments into our stochastic differential 
equation model or into a spatially extended stochastic differential equation model, and provide more insight into 
glioblastoma growth and treatments.

conclusion
Human untreated glioblastoma growth in vivo may follow a new type of Gompertz diffusion dynamics, which is 
described by a stochastic differential equation. Our mathematical model not only captures the average growth 
pattern and the variance among individual patients, but also can predict, in many cases, individual glioblastoma 
growth paths. The empirical distribution of survival times simulated from our mathematical model can be used 
to calculate a patient’s survival time with a prescribed probability. We obtain empirical formulas to easily calculate 
the average survival time and its variance. As proof of principle, our mathematical model can be used to provide 
different protocols for performing surgical resections according to tumor sizes which will give patients long sur-
vival times. The conclusion should be interpreted with caution, owing to the number of simplifications of the 
mathematical modeling and small size of the data set.
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