
1 Mathematical model

We use a computational hybrid model based on that presented in McLennan et al. (2012, 2015a,b,

2017). The model is a two-dimensional approximation of the system and consists of a discrete, off-lattice

model for the dynamics of neural crest cells, coupled to a continuum, reaction-diffusion model for the

dynamics of the chemoattractant VEGF. We implement the model using Aboria (Robinson and Bruna,

2017, https://martinjrobins.github.io/Aboria/), a C++ library for particle-based numerical methods.

1.1 Dynamics of cells

We describe briefly how we incorporate the dynamics of cells. We assume that there are two types of

cells, namely “leaders” and “followers”. Leaders undertake a fixed-jump-length biased random walk up a

cell-induced gradient of chemoattractant. To model cells extending filopodia to sense the concentration

of chemoattractant at their tips we sample the chemoattractant concentration at a certain number of

points a fixed distance away from the center of a cell in randomly chosen directions. The cells move

in the direction of the highest concentration sensed, provided it is sufficiently higher (regulated by the

sensing accuracy parameter µ) than the chemoattractant concentration at the position of the center of

the cell. If this is not the case, then we move the cell in a random direction. On the other hand, followers

are either in chains or they move randomly. A chain consists of a group of followers that are close to

each other, with at least one of them close to a leader. All the followers in a chain move in the same

direction as the leader that is at the front of that chain. If a follower is able to follow more than one cell,

i.e. it could join multiple chains, it randomly chooses one to join.

We include phenotype switching based on the position of a cell within the migratory stream. We make

a simplification from the previous model by McLennan et al. (2015a) and assume that the phenotype

is determined based on cell position rather than VEGF concentration. This simplification is consistent

with the experimental observation that gene expression profiles depend on the position of a cell within a

migratory stream, with a small number of leaders at the very front of the stream where the concentration

of VEGF is the highest (McLennan et al., 2015a). A constant number of leaders is a reasonable as-

sumption in our model because we do not model the system with experimental perturbations in VEGF

distribution that have been shown to alter the number of leaders (McLennan et al., 2015b).

1.2 Model assumptions

We now list the key assumptions used in the model. Firstly, we use a fixed time-step model (∆t =

1min) during which a cell senses its environment and updates its position. Secondly, we model volume

exclusion by considering cells as hard-discs that are not allowed to overlap (in reality, cells will deform

when they come into contact with each other, so this is a model simplification). If a cell cannot make a
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movement due to volume exclusion, i.e. the target destination is occupied by other cells, then it remains

in the same position. Thirdly, we assume that the entire cell body has to be inside the rectangular

domain. We allow a cell to extend filopodia outside the domain but, in our model, this never leads to a

movement in that direction. If all the filopodia of a cell are extended outside the domain, and the random

direction sampled leads to a movement outside the domain, then the cell does not move. These rules

provide the boundary conditions for cells everywhere apart from the neural tube (x = 0) where there is

an influx of cells. There is an attempt to insert a new cell at every time step with its center at a random

position along the y-axis and x = cell radius (that is, the cell is placed fully inside the domain).

1.3 Domain

We use a rectangular two-dimensional domain (x, y) ∈ [0, Lx(t)]×[0, Ly] as a simplification of the narrow

(in height) curved three-dimensional migratory path (Figure 1). Initially, we consider uniform in space

domain growth in the x-direction, then we split the domain into two parts, which we call Part 1 and Part

2, respectively (Figure 1), that grow at different rates. Based on experimental results, we assume that

for 0 < t < 18hrs Part 1 elongates twice as fast as Part 2 and for 18 ≤ t < 24hrs Part 2 elongates twice

as fast as Part 1 (Figure 3). We assume that growth is exponential. We use experimental data on the

initial and final lengths of the domain to estimate growth parameters. To find the two different growth

rates we solve equation (1)

P1exp(A1αtfinal) + P2exp(A2αtfinal) = Lfinal, (1)

for α, where P1 is the initial length of Part 1, P2 is the initial length of Part 2, Lfinal is the final total length

of the domain and factors A1 and A2 determine which part of the domain grows faster, for example, if

Part 1 grows twice as fast as Part 2, then A1 = 2 and A2 = 1. The growth rates are A1α and A2α for

Part 1 and Part 2, respectively.

Figure 1: Domain divided into two parts, Part 1 and Part 2. We will consider different percentage of

Part 1 and Part 2, see figure below.
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Figure 2

Figure 3: Growth profiles: different parts of the domain grow. Darker part grows twice as fast as the

lighter part. U1 represents uniform growth. D2-5 represent distal part of the domain growing twice faster

than the proximal part. P5-7 represent proximal part of the domain growing twice faster than the distal

part. The total length of the domain increases to the same value in all cases.

1.4 Chemoattractant dynamics

We use a reaction-diffusion equation to model the dynamics of the chemoattractant VEGF but, whereas

the model by McLennan et al. (2012, 2015a,b, 2017) was restricted to uniform domain growth, our model

can incorporate any domain growth function (Crampin et al., 1999, 2002). We scale the concentration

of VEGF, c(x, y, t), to c ∈ [0, 1] and define the equation on the growing domain with x ∈ [0, Lx(t)] and

y ∈ [0, Ly] (parameter values in Table 1):

∂c

∂t
+
∂(ac)

∂x︸ ︷︷ ︸
(i)

= D

(
∂2c

∂x2
+
∂2c

∂y2

)
︸ ︷︷ ︸

(ii)

− c
N(t)∑
i=1

λ

2πR2
exp

[
− (x− xi)2 + (y − yi)2

2R2

]
︸ ︷︷ ︸

(iii)

+κc(1− c)︸ ︷︷ ︸
(iv)

, (2)

where D is the diffusion coefficient of the chemoattractant, R is the cell radius, λ is the internalization

rate, κ is the production rate of the chemoattractant, a is the flow due to domain growth, N(t) is the

number of cells at time t and (xi, yi), i = 1, . . . , N(t) is the position of the center of cell i. We assume

zero flux boundary conditions and initial conditions c(x, y, 0) ≡ 1. We assume a uniform initial condition

based on the observations that prior to NC migration VEGF is spatially uniform in the tissue up to the

entrance to ba2 (McLennan et al., 2010).

We briefly explain the reasoning behind the terms of equation (2). Term (i) corresponds to the effect of

domain growth. It consists of an advection term, a × ∂c/∂x, corresponding to elemental areas moving

with the flow due to local growth, and a dilution term, c × ∂a/∂x, due to local area change. Term (ii)
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corresponds to diffusion of chemoattractant with diffusion coefficient D. Term (iii) is the internalization

of chemoattractant by cells. We use a simple Gaussian kernel because it takes into account the size

of cells, and we assume that the cells consume or degrade the chemical with a continually decreasing

intensity moving away from the cell center. Term (iv) is the production of chemoattractant. We assume

logistic production, however, since the production rate, κ, is relatively small in comparison with the

internalization rate, λ (see McLennan et al., 2010), the dynamics do not change significantly when other

forms of production, such as linear or constant, are considered. Assuming that the flow can be specified

using a growth function Γ, the Lagrangian description is

x = Γ(X, t), x ∈ [0, Lx(t)], (3)

where X ∈ [0, X0] is an initial position marker with X0 = Lx(0), and Γ(X, 0) = X. The local flow is

determined by

a(x, t) =
∂x

∂t
=
∂Γ

∂t
. (4)

The term that specifies growth is ∂a/∂x. Let us assume that it can be expressed as

∂a

∂x
= S(X, t), (5)

where S(X, t) is the strain rate. Our Lagrangian form gives the description of the flow

a(x, t) = a(Γ(X, t), t) =
∂Γ

∂t
. (6)

Combining equations (5) and (6) gives

∂2Γ

∂t∂X
=

∂a

∂X
= S(X, t)

∂Γ

∂X
(7)

with initial condition Γ(X, 0) = X and boundary conditions Γ(0, t) = 0 and Γ(1, t) = Lx(t). The solution

to equation (7) is

Γ(X, t) =

∫ X

0

[
exp

∫ t

0

S(z, τ)dτ

]
dz (8)

It sometimes can be difficult to evaluate Γ(X, t) for a given strain rate S(X, t). Therefore, it is useful to

switch to Lagrangian coordinates. Writing variables as functions of initial position X and time t (setting

C(X, t) = c(x, t)) in equation (2) and using equations (3)-(7) gives

∂C

∂t
+ CS(X, t) = D

(
1

ΓX

∂

∂X

(
1

ΓX

∂C

∂X

)
+
∂2C

∂y2

)
+ f(C). (9)

where

f(C) = κC(1− C)− C
N(t)∑
i=1

λ

2πR2
exp

[
− (Γ(X)− xi)2 + (y − yi)2

2R2

]
. (10)

Equation (9) only requires us to determine ΓX , which can be done using equation (7). We use this

form because we want our framework to be flexible enough to incorporate for any strain rate S(X, t),

which we estimate from experimental data. We solve equation (9) using an explicit finite difference

method (second-order midpoint rule in space, and forward Euler in time) with ∆x = 1µm, ∆y = 1µm

and ∆tc = 12s. Note that a time step of 12s is equivalent to the discrete simulation time step for the
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cell motility model (see Table 1). These choices are sufficient for the algorithm to converge and resolve

accurately the gradient of VEGF. We validate our solution using the manufactured solution method

(Roache, 2002), verify convergence by reducing space and time steps by a factor of ten and tracking

the average relative error (which is less than 10−3), and ensure stability using the von Neumann stability

condition.

1.5 Pseudocode

We provide a pseudocode that explains in detail how we numerically simulate the model. The text in blue

corresponds to the steps that are only applicable for the model with a tunneling mechanism included.

The full code is available at https://github.com/rginiunaite/NC-cells-non-uniform-domain-growth. Note

that a user first needs to install the Aboria library (https://martinjrobins.github.io/Aboria/).

Main steps

1. Initialise model parameters and insert Nleader leader cells at x = R and equal distance apart in

the y-direction, set t = 0.

2. Choose a random position in y with x = R. If there is no overlap with other cells, then insert a new

follower cell at this position.

3. Solve chemoattractant profile.

4. Grow domain (update Γ(X, t))) and update cell positions due to advection by the growth.

5. Move cells.

6. Implement any phenotype switching.

Internal steps

cell advection due to domain growth

1. for i = 1 to number of cells do

2. for a cell with its center at (xi, yi), find Z, a point on the space grid in the x-direction, such

that Γ(Z, t−∆t) < xi < Γ(Z + ∆x, t−∆t)

3. update the cell position to (xi + Γ(Z, t)− Γ(Z, t−∆t), yi))

4. end for

move cells (Note that if a cell cannot move due to volume exclusion then the attempted movement is

aborted)

1. for i = 1 to number of cells do

2. pick a cell at random without replacement

3. if the cell is a leader, then
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4. pick nfilo random directions and measure chemoattractant concentration in those

random direction(s) at distance lfilo away from the center of the cell, pick the highest

concentration and set it to cnew, measure chemoattractant concentration at the center

of the cell and set it to cold

5. if cnew−cold√
cold

≥ µ (sensing accuracy), then

6. move in chosen direction a distance ∆t× ν

7. end if

8. else

9. move in random direction a distance ∆t× ν

10. end if

11. end if

12. end if

13. else (the cell is a follower)

14. if the cell is in a chain, then

15. move a distance ∆t× ratio× ν in the same direction as the leader at the front of the

chain

16. if the cell is further away than lmax
filo from the cell which it was following, then

17. detach it, and all the cells that were following it, from the chain

18. end if

19. end if

20. if the cell is not in a chain, then

21. if there is a leader or a follower in a chain less than lfilo distance away, then

join that chain (if there are multiple possibilities, pick one randomly) and move

a distance ∆t× ratio× ν in the same direction as the cell ahead in the chain

22. end if

23. else move a distance ∆t× ratio× ν in a random direction

24. end if

25. end for

phenotype switching

1. for i = 1 to number of cells do

2. if a cell is a follower then

3. if the cell is further ahead by ε in the x-direction than one of the leaders and it is sufficiently

close to that leader, then swap their phenotype end if

4. end if

5. end for
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Description Value Reference

Nleader number of leaders 5 comments

nfilo directions sampled per time step, filopdia number 1-3 results section

∆t simulation time step, s 12 n/a

R cell radius (nuclear), µm 7.5 McLennan and

Kulesa (2010)

ν input leader cell speed, µm/min 0.7 comments

ratio ratio of follower to leader speed 1.3 comments

Ly width of migratory domain, µm 120 experimental data

Lx(t) length of migratory domain, µm 342 to 1100 experimental data

lfilo sensing radius, µm 27.5 comments

σ maximum cell separation before contact is lost, µm 45 comments

µ sensing accuracy 0.05 comments

D diffusion coefficient of chemoattractant, µm2/min 10.0 comments

κ production rate of chemoattractant, /min 5.0 comments

λ chemoattractant internalization rate, µm2/min 5.0 comments

ε distance a follower has to be ahead of a leader to

swap phenotypes, µm

10 comments

Table 1: Model parameters used in the simulations provided in the results section.

1.6 Ablation experiments

For physical ablation of cells, we delayed the influx of cells by two hours and then changed the attempt

to insert new cells from every step to every ten steps (step two in the Pseudocode).

For chemical inhibition of domain growth, we specified new final domain length based on experimental

data and obtained new model parameters. Domain growth was reduced uniformly.

1.7 Model parameters

We choose most of our parameters based on those from McLennan et al. (2015a,b, 2017). Table 1

contains the values we used for the computational results of this paper.

Comments

• We use a fixed-jump-length process where the length of the jump is ∆t × ν for leaders and ∆t ×

ratio× ν for followers.
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• Nleader - number of leaders. We choose a fixed number of five leaders because we find that this

is the smallest number of cells that can guide the rest of the population successfully (either by

contact or tunnels, results not shown). A higher number of leader cells could be chosen provided

that we adjust the internalization rate, the sensing accuracy and the diffusion coefficient to avoid

some leaders getting stuck due to the lack of a gradient of chemoattractant.

• ratio - ratio of follower to leader speed. Kulesa et al. (2008) demonstrated that the speed of the

followers is higher than that of the leaders. We chose a ratio value sufficiently high to ensure that

the stream does not break in the control case.

• lfilo - sensing radius. We use the value calculated by McLennan et al. (2015) as the sum of the

cell radius and the mean filopodial length.

• lmax
filo - maximum cell separation before contact is lost. We use the value calculated by McLennan

et al. (2015), obtained from half of the maximum cell size including filopodium.

• µ - sensing accuracy. We use the same argument for the accuracy with which the cells can sense

a chemical gradient as McLennan et al. (2012, 2015, 2015, 2017). They base their work on the

biophysical limit for sensing accuracy derived by Berg and Purcell (1977). Briefly, they assume that

fluctuations in molecule number are proportional to
√
N , where N is molecule number. Since we

use a continuum variable for the chemoattractant, fluctuations can be expressed as
√
Ac where

A is some area of interest, and c is the average concentration in that area. The inaccuracy of

concentration measurements is inversely proportional to fluctuations, which gives

∆c

c
≈ 1√

N
=

1√
Ac

. (11)

Rearranging gives
∆c√
c
≈ µ, (12)

where we define µ as the sensing accuracy, and ∆c = cnew − cold. ∆c/
√
cold has to be greater

than or equal to µ for the cell to respond. We choose µ sufficiently high to ensure that movement

does not occur in response to very small changes in VEGF concentration. The results are robust

if we change this parameter together with the internalization rate λ.

• D - diffusion coefficient of chemoattractant. The exact value of the diffusion coefficient is unknown

for the system. We use a relatively small value because it has been shown that only around 1% of

VEGF freely diffuses, whilst the rest binds to the ECM (Mac Gabhann et al. 2006). The results are

robust to changes in this parameter because it only affects the sharpness of the gradient of VEGF.

Changes in the internalization rate, λ, and the sensing accuracy, µ, also influence the choice of

the diffusion coefficient.

• κ - production rate of chemoattractant. The exact VEGF production rate in the tissue is unknown,

but since experimental results show that there is almost no VEGF produced where the cells have

already internalized it (McLennan et al. 2010), we assume that the production rate is small.
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• λ - chemoattractant internalization rate. As the internalization rate is also unknown, we choose this

parameter based on the distance traveled by cells in 24h. The results are robust to simultaneous

changes in the sensing accuracy, µ, and the internalization rate, λ, therefore we adapted the

internalization rate to our chosen sensing accuracy, µ.

• ε - distance a follower has to be ahead of a leader to swap phenotypes. As discussed in Section

1.4, we use a simplified version of the switching mechanism based on the position in the stream.

We assume that a follower has to be ε = 10µm ahead of a leader for their phenotypes to swap.

The results are robust to changes in this parameter because we have a fixed number of leaders.

• We measure effective NC cell speed by recording cell positions every seven minutes and measur-

ing the change in cell position in those seven minutes.
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