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Abstract
Thedisorderednetworkof bloodvessels that arises from tumour angiogenesis results in
variations in the delivery of oxygen into the tumour tissue. This brings about regions of
chronic hypoxia (i.e. sustained low oxygen levels) and regions with alternating periods
of low and relatively higher oxygen levels, and makes it necessary for cancer cells to
adapt to fluctuating environmental conditions. We use a phenotype-structured model
to dissect the evolutionary dynamics of cell populations exposed to fluctuating oxygen
levels. In this model, the phenotypic state of every cell is described by a continuous
variable that provides a simple representation of its metabolic phenotype, ranging
from fully oxidative to fully glycolytic, and cells are grouped into two competing
populations that undergo heritable, spontaneous phenotypic variations at different
rates. Model simulations indicate that, depending on the rate at which oxygen is
consumed by the cells, dynamic nonlinear interactions between cells and oxygen
can stimulate chronic hypoxia and cycling hypoxia. Moreover, the model supports
the idea that under chronic-hypoxic conditions lower rates of phenotypic variation
lead to a competitive advantage, whereas higher rates of phenotypic variation can
confer a competitive advantage under cycling-hypoxic conditions. In the latter case,
the numerical results obtained show that bet-hedging evolutionary strategies, whereby
cells switch between oxidative and glycolytic phenotypes, can spontaneously emerge.
We explain how these results can shed light on the evolutionary process that may
underpin the emergence of phenotypic heterogeneity in vascularised tumours.
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1 Introduction

Pronounced spatial variations in the molecular properties of clinical cancers have
been well recognised and are often ascribed to evolution driven by genetic mutations
(‘branching clonal evolution’). An alternative hypothesis is that the cancer cells are
simply evolving to adapt to spatial and temporal variations in microenvironmental
conditions that result fromheterogeneous bloodflow.The vascular structure in tumours
is highly disordered and is constantly re-modelled via processes such as sprouting
angiogenesis (i.e. formation of new blood vessels from pre-existing ones) and vascular
regression and dilation (Carmeliet and Jain 2000; Welter and Rieger 2012). As a
consequence, there can be spatial and temporal variations in the delivery of oxygen
to tumour regions, leading to oscillations between periods of oxygen-deprivation and
re-oxygenation (Kimura et al. 1996).

Experimental and clinical studies have shown that these oscillations can occur on
a variety of timescales, ranging from minutes to weeks (Carmeliet and Jain 2000;
Dewhirst 2009), and may lead to the emergence of regions of normoxia (i.e. high
oxygen levels), chronic hypoxia (i.e. sustained low oxygen levels) and regions with
fluctuating levels of oxygen (i.e. transient periods of low and relatively higher oxygen
levels) (Matsumoto et al. 2010; Michiels and Tellier 1866; Ron et al. 2019).

The evolutionary consequences of these spatial and temporal variations can be
profound. Clearly, cancer cells in a poorly perfused region that is hypoxic, acidic
and lacks growth factors require a different phenotype compared to cancer cells in a
well-perfused, physiological environment. Furthermore, rapid, stochastic changes in
environmental conditions apply additional selection forces.Here, cellsmust be capable
of rapidly adapting to unpredictable and potentially lethal environmental conditions.
Furthermore, hypoxic and acidic environments generate genotoxic environments and
the transition from hypoxic to normoxic conditions can generate bursts of oxygen free
radicals that can induce widespread tissue and cellular damage (Liou and Storz 2010).

Previous empirical and theoretical work has suggested that temporal variations in
oxygen levels may drive cancer cells to adapt (Gillies et al. 2018; Amend et al. 2018).
Further, such adaptation can substantially impact the evolutionary dynamics of can-
cer by increasing clonal diversity, promoting metastasis and supporting more plastic
phenotypic variants (Cairns et al. 2001; Cairns and Hill 2004; Louie et al. 2010; Ver-
duzco et al. 2015; Chen et al. 2018; Saxena and Jolly 2019). In particular, it has been
hypothesised that—by analogy with bacterial populations facing unpredictable envi-
ronmental changes (Kussell and Leibler 2005; Smits et al. 2006; Veening et al. 2008;
Acar et al. 2008; Beaumont et al. 2009; Nichol et al. 2016)—cancer cell populations
could utilise risk spreading through stochastic phenotype switching, which is also
known as bet-hedging (Philippi and Seger 1989), as an adaptive strategy to survive in
the harsh, constantly changing environmental conditions associated with intermittent
hypoxia (Gravenmier et al. 2018; Gillies et al. 2018).
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In this paper, we use a phenotype-structured model of evolutionary dynamics in
time-varying but spatially homogeneous environments to elucidate the mechanisms
that underpin the adaptation of cell populations to fluctuating oxygen inflow. Building
upon themodelling framework thatwe presented inArdaševa et al. (2020), themodel is
defined in terms of a systemof non-local parabolic partial differential equations (PDEs)
for the evolution of the phenotype distributions of two competing cell populations that
undergo heritable, spontaneous phenotypic variations at different rates. Similar PDEs
modelling the evolutionary dynamics of populations structured by continuous traits
in periodically-fluctuating environments have recently received increasing attention
from themathematical community (Lorenzi et al. 2015;Mirrahimi et al. 2015; Iglesias
and Mirrahimi 2018; Carrere and Nadin 2019).

In the model considered here, the phenotypic state of every cell is modelled by a
continuous variable that provides a simple representation of its metabolic phenotype,
ranging from oxidative to glycolytic. The phenotypic fitness landscape of the two
cell populations evolves in time due to variations in the concentration of oxygen. The
oxygen concentration is governed by an ordinary differential equation (ODE) with a
time-dependent source term that models the effect of variations in the oxygen supply.
The fact that oxygen is consumed by the cells is taken into account by a negative term
coupling the ODE with the system of PDEs.

The paper is organised as follows. In Sect. 2, we introduce the equations of the
model and the underlying modelling assumptions. In Sect. 3, we present the main
numerical results of our study complemented by analytical results obtained for a
model corresponding to a simplified scenario, and discuss their biological relevance. In
Sect. 4, we explain how these mathematical results can shed light on the evolutionary
process that underpins the emergence of phenotypic heterogeneity in vascularised
tumours. Section 5 concludes the paper and provides a brief overview of possible
research perspectives.

2 Description of theModel

We study the evolutionary dynamics of two competing cell populations in a well-
mixed system.Cells proliferate (i.e. divide and die) and undergo spontaneous, heritable
phenotypic variations. We assume the two populations differ only in their rate of
phenotypic variation. The population undergoing phenotypic variations at a higher
rate is labelled by the letter H , while the other population is labelled by the letter L .

As summarised by the schematic in Fig. 1a, we represent the phenotypic state of
every cell by a continuous variable x ∈ [0, 1]. In particular, we assume that: cells in
the phenotypic state x = 0 have a fully oxidative metabolism and produce energy
through aerobic respiration only; cells in the phenotypic state x = 1 express a fully
glycolytic metabolism and produce energy through anaerobic glycolysis only; cells
in other phenotypic states x ∈ (0, 1) produce energy via aerobic respiration and
anaerobic glycolysis, and higher values of x correlate with a less oxidative and more
glycolytic metabolism.

The oxygen concentration in the system at time t ∈ [0,∞) is denoted by S(t).
Based on the observation that glucose levels in biological tissues are usually high
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enough not to represent a limiting factor for the proliferation of cells (Gravenmier
et al. 2018), for the sake of simplicity, we do not model the dynamics of the glucose
concentration.

We describe the phenotype distributions of the two cell populations at time t by
means of the population density functions nH (x, t) and nL(x, t). We define the size
of populations H and L , and the total number of cells inside the system at time t ,
respectively, as

ρH (t) :=
∫ 1

0
nH (x, t) dx, ρL(t) :=

∫ 1

0
nL(x, t) dx (1)

and
ρ(t) := ρH (t) + ρL(t). (2)

Moreover, we define the mean phenotype and the phenotypic variance of population
i ∈ {H , L} at time t , respectively, as

μi (t) := 1

ρi (t)

∫ 1

0
x ni (x, t) dx, σ 2

i (t) := 1

ρi (t)

∫ 1

0
x2 ni (x, t) dx − μ2

i (t). (3)

2.1 Cell Dynamics

Building upon the modelling framework that we presented in Ardaševa et al. (2020),
we describe the evolution of the two cell populations through the following system of
conservation equations for the population density functions

⎧⎪⎪⎨
⎪⎪⎩

∂nH

∂t
= βH

∂2nH

∂x2
+ R

(
x, S(t), ρ(t)

)
nH ,

∂nL

∂t
= βL

∂2nL

∂x2
+ R

(
x, S(t), ρ(t)

)
nL ,

(x, t) ∈ (0, 1) × (0,∞) (4)

subject to no-flux boundary conditions, i.e.

∂ni (0, t)

∂x
= 0 and

∂ni (1, t)

∂x
= 0 for all t ∈ (0,∞), i ∈ {H , L}.

In the non-local parabolic PDEs (4), the diffusion terms model the effect of heritable,
spontaneous phenotypic variations, which occur at rates βH and βL with

βH > βL > 0. (5)

The function R
(
x, S(t), ρ(t)

)
represents the fitness of cells in the phenotypic state x

at time t under the environmental conditions given by the oxygen concentration S(t)
and the total number of cells ρ(t). This function can be seen as the phenotypic fitness
landscape of the two cell populations at time t . We use the following definition

R
(
x, S, ρ

) := p(x, S) − dρ, (6)
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where p(x, S) is the division rate of cells in the phenotypic state x under the oxygen
concentration S, while the term dρ, with d > 0, models the rate of cell death due to
intrapopulation and interpopulation competition. In order to model the fact that fully
oxidative phenotypic variants (i.e. cells in the phenotypic state x = 0) have the highest
fitness if oxygen is abundant (i.e. when S → ∞), whereas fully glycolytic phenotypic
variants (i.e. cells in the phenotypic state x = 1) are the fittest in hypoxic conditions
(i.e. when S → 0), we define the cell division rate as

p
(
x, S

) := γ
S

1 + S

(
1 − x2

)
+ ζ

(
1 − S

1 + S

) [
1 − (1 − x)2

]
. (7)

Here, the parameters γ and ζ are the maximum cell division rates of fully oxida-
tive and fully glycolytic phenotypic variants, respectively. As we noted in Ardaševa
et al. (2020), definition (7) leads to a fitness function that is close to the approximate
fitness landscapes which can be inferred from experimental data through regression
techniques—see, for instance, equation (1) in Otwinowski and Plotkin (2014). In fact,
definition (7) can be rewritten as

p(x, S) = γ g(S) − h(S)(x − ϕ(S))2, (8)

where

g(S) := 1

1 + S

⎡
⎣S + 1

γ
ζ

(
1 + γ

ζ
S
)
⎤
⎦ , ϕ(S) := 1

1 + γ
ζ

S
(9)

and

h(S) := ζ

[
1 +

(
γ

ζ
− 1

)
S

1 + S

]
. (10)

Since

max
x∈[0,1] p(x, S) = γ g(S), arg max

x∈[0,1]
p
(
x, S

) = ϕ(S) and
∂2 p(x, S)

∂x2
= −2h(S),

γ g(S) is the maximum fitness, ϕ(S) is the fittest phenotypic state and h(S) is a
nonlinear selection gradient. Notice that, consistent with our modelling assumptions,
ϕ : [0,∞) → [0, 1] and ϕ′ < 0, so that

lim
S→0

ϕ(S) = 1 and lim
S→∞ ϕ(S) = 0.

To incorporate into the model the fitness cost associated with a less efficient gly-
colytic metabolism (Basanta et al. 2008), we assume that

γ ≥ ζ > 0. (11)

A sample of plots of the function p
(
x, S

)
for different values of the oxygen concen-

tration S and of the quotient γ /ζ is displayed in Fig. 1b. If γ /ζ = 1 then there is
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A

B

Fig. 1 a Schematic diagram illustrating the relationship between the variable x ∈ [0, 1], the cell phenotype
and the dependence on oxygen and glucose of energy production for different phenotypic variants. b Plot of
the cell division rate p(x, S) defined according to Eq. (7) in the case of a relatively high oxygen level (i.e.
S = 10) and a relatively low oxygen level (i.e. S = 0.1), for increasing values of the fitness cost associated
with glycolytic metabolism (i.e. increasing values of the quotient γ /ζ ≥ 1) (Color figure online)

no fitness cost associated with glycolytic metabolism, whereas increasing values of
γ /ζ > 1 correspond to larger fitness costs of glycolytic metabolism.

2.2 Oxygen Dynamics

We describe the oxygen dynamics via the following conservation equation for S(t):

dS

dt
= I (t) − λ S −

∫ 1

0
q(x, S) [nH (x, t) + nL(x, t)] dx, t ∈ (0,∞) (12)

which is coupled with the non-local PDEs (4). In the ODE (12), the parameter λ > 0
represents the rate of natural decay of oxygen and the non-negative function I (t)
models the rate at which oxygen is supplied to the system. The last term on the right-
hand side of (12) models the rate of oxygen consumption by the cells. Here, the
non-negative function q(x, S) is the consumption rate of cells in phenotypic state x ,
and we take it to be

q(x, S) := θ γ
S

1 + S
(1 − x2), (13)

based on the following argument. Cells in the phenotypic state x = 1 (i.e. fully gly-
colytic phenotype) produce energy through anaerobic glycolysis only and, therefore,
they do not consume any oxygen (i.e. q(1, S) = 0 for any S). Moreover, cells in
the phenotypic state x = 0 (i.e. fully oxidative phenotype) consume oxygen at a
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rate proportional to their division rate, with constant of proportionality θ > 0 (i.e.
q(0, S) = θ p(0, S) = θ γ S

1+S ). Finally, the rate at which oxygen is consumed by
cells in phenotypic states x ∈ (0, 1) is a fraction of the consumption rate of cells
in the phenotypic state x = 0, and higher values of x correlate with lower oxygen
consumption (i.e. q(x, S) = q(0, S)(1 − x2) for x ∈ (0, 1)).

3 Main Results

In this section, we present the results of numerical simulations of the mathematical
model defined by the non-local PDEs (4) coupled with the ODE (12). We combine
these numerical results with analytical results obtained for a simplified version of the
model presented in “Appendix A”, and we discuss their biological relevance. In more
detail, Sect. 3.1 provides a description of the numerical methods employed and the
set-up of numerical simulations. In Sect. 3.2, we consider the case where the inflow
of oxygen is constant, i.e. we assume

I (t) = IS > 0 for all t ≥ 0, (14)

while in Sect. 3.3 we study the case where the oxygen inflow undergoes periodic
oscillations of period T > 0, i.e. we assume

I (t + T ) = I (t) for all t ≥ 0. (15)

In particular, to construct numerical solutions we consider the case where

I (t) = max

(
0, A sin

(
2π t

T

))
, (16)

with A > 0 modelling the amplitude of the periodic fluctuations in oxygen inflow.
Definition (16) corresponds to a biological scenario in which oxygen inflow is peri-
odically interrupted due to, for instance, the periodic blockage of a blood vessel.

3.1 Numerical Methods and Set-Up of Numerical Simulations

We use a uniform discretisation consisting of 200 points on the interval [0, 1] as the
computational domain of the independent variable x . We assume t ∈ [0, t f ], with
t f = 40 being the final time of simulations, and we discretise the time interval [0, t f ]
with the uniform step �t = 0.0001. The method for constructing numerical solutions
to the system of non-local parabolic PDEs (4) subject to no-flux boundary conditions
is based on a three-point finite difference explicit scheme for the diffusion terms and
an explicit finite difference scheme for the reaction terms (LeVeque 2007). Moreover,
numerical solutions to the ODE (12) are constructed using the explicit Euler method.

The nutrient concentration is presented in non-dimensional form and the dimen-
sionless parameter values listed in Table 1 are used to carry out numerical simulations.
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Table 1 Parameter values used in numerical simulations

Description Value range

βH Rate of phenotypic variation of cells in population H 2.5 × 10−2

βL Rate of phenotypic variation of cells in population L 10−2

γ Maximum cell division rate of fully oxidative phenotypic variants 100

ζ Maximum cell division rate of fully glycolytic phenotypic variants [25, 100]

d Death rate due to competition 10−2

θ Consumption rate of oxygen [10−5, 10−3]

λ Rate of natural decay of oxygen 10−4

In summary, we define the rates of phenotypic variationβH andβL so that they are con-
sistent with typical times required by cells to acquire a glycolytic phenotype through
epigenetic changes (Baumann et al. 2007). Moreover, we choose the value of the max-
imum cell division rate of fully oxidative phenotypic variants γ such that γ � βH , in
order to capture the fact that phenotypic variations occur on a slower time scale than
cell division. Furthermore, to explore the effect of the cost of glycolytic metabolism
on the evolutionary dynamics of the cells and on the dynamics of oxygen, we consider
different values of ζ such that γ /ζ ∈ [1, 4]. Given the values of the parameters γ , βH

and βL , we fix the value of the death rate due to competition, d, to be such that the
long-term limit of the size of population in the presence of a constant and relatively
high supply of oxygen is approximatively 104, which is consistent with biological data
on in vitro cell populations (Voorde et al. 2019). Since the rate at which cells consume
oxygen varies between cell lines and depends on a variety of environmental factors,
including the pH level (Casciari et al. 1992), we consider a range of values for the
rate of consumption of oxygen, θ , that is, θ ∈ [10−5, 10−3], to investigate also the
influence this parameter has on the cell and oxygen dynamics. Finally, we choose the
value of the rate of natural decay of oxygen, λ, to be consistent with values used by
other authors, such as Macklin et al. (2009).

We let the initial cell population density functions ni (x, 0) with i ∈ {H , L} be
Gaussian-like functions such that

ρi (0) ≈ 800, μi (0) = 0, σ 2
i (0) = 0.05

and define the initial oxygen concentration as S(0) = I (0).

3.2 Constant Oxygen Inflow

The numerical solutions presented in Fig. 2 show that when the oxygen inflow is
constant [i.e. when the function I (t) is defined according to (14)], cell population L
outcompetes cell population H , which eventually goes extinct. Moreover, the pop-
ulation density function nL(x, t) is unimodal, attaining its maximum at the mean
phenotype. Further, since the oxygen concentration S(t) converges to an equilibrium
value, the population size ρL(t) also converges to an equilibrium value. The equi-
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A

B

C

Fig. 2 a Dynamics of the oxygen concentration S(t) (first column), the population sizes ρH (t) (second
column, red line) and ρL (t) (second column, blue line), and the population density function nL (t, x)

(third column) obtained by solving numerically Eqs. (4) and (12), for the oxygen inflow I (t) defined via
Eq. (14) with IS = 10. The dotted lines in the second column highlight the asymptotic value ρ∞

L given by
definition (22) in “Appendix A”, while the yellow lines in the third column highlight the mean phenotype
μL (t). The consumption rate of oxygen is θ = 5×10−5, the maximum cell division rate of fully glycolytic
phenotypic variants is ζ = 25, and the values of the other parameters are defined as in Table 1. b, c Same
as row a but for θ = 10−4 (row b) and θ = 5 × 10−4 (row c) (Color figure online)

librium value of ρL(t) is approximately equal to the asymptotic value ρ∞
L given by

definition (22) in “AppendixA”,which is obtained by studying the long-timebehaviour
of the solutions to a simplified version of the model (vid.Theorem 1 in “Appendix A”).
This is consistent with the analytical results that we presented inArdaševa et al. (2020).

The results displayed in Fig. 2 also show that larger values of the oxygen con-
sumption rate θ lead to smaller equilibrium values of the oxygen concentration S
and, therefore, smaller final values of ρL and larger final values of μL . Moreover, the
numerical results summarised by the plots in Fig. 3 demonstrate that larger values
of the fitness cost associated with glycolytic metabolism, γ /ζ , correspond to smaller
final values of ρL and μL . The plots in Fig. 3 also show that lower values of IS , which
lead to smaller equilibrium values of S for a given value of θ (data not shown), corre-
late with a weaker impact of the value of the quotient γ /ζ on the final values of ρL

andμL . All these findings are consistent with the way in which the equilibrium values
of the population size, ρ∞

L , and the mean phenotype, μ∞
L , obtained through the anal-

ysis of the simplified model considered in “Appendix A” depend on the equilibrium
value of the oxygen concentration, S∞, and on the quotient γ /ζ (vid. Theorem 1 in
“Appendix A”).
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A B C

Fig. 3 a Values of the population size ρL (t) and the mean phenotype μL (t) at t = 40 (i.e. at the end
of numerical simulations) obtained by solving numerically Eqs. (4) and (12), for the oxygen inflow I (t)
defined via Eq. (14) with IS = 0.1 and for different values of the consumption rate of oxygen, θ , and
different values of the cost associated with glycolytic metabolism, γ /ζ , obtained by changing the value
of the maximum cell division rate of fully glycolytic phenotypic variants, ζ , and keeping the value the
maximum cell division rate of fully oxidative phenotypic variants, γ , constant (i.e. γ = 100). The values
of the other parameters are defined as in Table 1. b, c Same as column a but for IS = 1 (column b) and
IS = 10 (column c). The blue boxes in the last panel highlight the values of θ corresponding to Case 1, 2,
3 in Fig. 2 (Color figure online)

Taken together, these results indicate that lower rates of heritable, sponteneous phe-
notypic variation constitute a source of competitive advantage under constant oxygen
inflow. Furthermore, the negative feedback that regulates the growth of cell populations
through oxygen consumption shapes, in a nonlinear way, the evolutionary dynamics
of the cells. In particular, larger values of the rate of oxygen consumption, θ , lead to
the emergence of lower oxygenated environments whereby phenotypic variants that
rely to a larger extent on anaerobic glycolysis for energy production are ultimately
selected. Finally, all other things being equal, larger values of the fitness cost associated
with glycolytic metabolism, γ /ζ , are to be expected to promote the selection of less
glycolytic phenotypic variants and to reduce the equilibrium size of cell populations
exposed to constant oxygen inflow.

3.3 Periodic Oxygen Inflow

The numerical solutions presented in Fig. 4 show how the system evolves when the
oxygen inflow undergoes periodic oscillations [e.g. when the function I (t) is defined
according to (16)]: if the oxygen concentration is relatively stable (low-amplitude
oscillations), cell population L outcompetes cell population H , which eventually goes
extinct; if the oxygen concentration undergoes drastic, high-amplitude variations, then
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cell population L is outcompeted by cell population H and ultimately goes extinct.
Moreover, the population density function of the surviving cell population, ni (x, t), is
unimodal with maximum at the mean phenotype. Since the oxygen concentration S(t)
becomes T -periodic, after an initial transient, the population size ρi (t) of the surviving
population also converges to a T -periodic function. Such a T -periodic function is
approximately equal to the solution ρ̃i (t) of the problem (27) in “Appendix A”, which
is obtained by studying the long-time behaviour of the solutions to a simplified version
of the model (vid. Theorem 2 in “Appendix A”). This is in line with the analytical
results presented in Ardaševa et al. (2020).

The results displayed in Fig. 4 also show that the consumption rate of oxygen, θ ,
has a crucial impact on the dynamics of the oxygen concentration S(t) and, therefore,
on the outcome of the competition between the two cell populations. In fact, ceteris
paribus, for sufficiently small (cf. Fig. 4a) or sufficiently large (cf. Fig. 4d, e) values
of θ the function S(t) is bounded well above zero or undergoes small oscillations
while remaining close to zero, respectively. This brings about relatively stable oxygen
concentrations in the presence of which cell population L outcompetes cell popula-
tion H . On the other hand, for intermediate values of θ (cf. Fig. 4b, c) the function
S(t) oscillates between small and relatively larger values. This results in more drastic
variations of the oxygen concentration, which lead cell population L being outcom-
peted by cell population H . As we would expect, when S(t) remains away from zero
or undergoes small oscillations while remaining close to zero, the mean phenotype
of the surviving population μL(t) undergoes small oscillations and its value remains
close, respectively, either to the fully oxidative phenotypic state x = 0 (cf. Fig. 4a)
or to the fully glycolytic phenotypic state x = 1 (cf. Fig. 4d, e). By contrast, when
S(t) oscillates between small and relatively larger values, the mean phenotype of the
surviving population μH (t) undergoes rapid and large amplitude transitions between
phenotypic states closer to x = 0 and phenotypic states closer to x = 1 (cf. Fig. 4b,
c).

The numerical results in Fig. 4 refer to the case where there is no cost associated
with glycolytic metabolism (i.e. γ /ζ = 1) and both the amplitude A and the period T
of the fluctuations in oxygen inflow in definition (16) are relatively large. However, the
numerical results summarised by the plots in Fig. 5 demonstrate that similar conclu-
sions about how the oxygen consumption rate θ affects the outcome of the competition
between the two cell populations hold when different values of the parameters γ /ζ ,
A and T are considered, provided that the value of A is sufficiently large.

The results summarised in Fig. 5 also show that, for relatively large values of A,
when θ is sufficiently high (cf. second to fourth columns in Fig. 5), larger values of
γ /ζ correspond to a wider range of values of the parameters A and T under which
transient coexistence between the two cell populations is observed. Moreover, these
results show that for sufficiently large values of θ , larger values of γ /ζ increase the
likelihood that cell population H will ultimately outcompete cell population L . As
illustrated by the sample dynamics presented in Fig. 6, this gives rise to smaller cell
numbers, more pronounced variations in the mean phenotype of the surviving cell
population and higher levels of phenotypic heterogeneity. On the other hand, the plots
in the first column of Fig. 5 show that for relatively small values of A and θ the outcome
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Fig. 4 a Dynamics of the oxygen concentration S(t) (first column), the population sizes ρH (t) (second
column, red line) and ρL (t) (second column, blue line), and the population density function of the surviving
population ni (t, x) (third column) obtained by solving numerically Eqs. (4) and (12), for the oxygen inflow
I (t) defined via Eq. (16) with A = 60 and T = 10. The dotted (or dashed) lines in the second column
highlight the T -periodic solution ρ̃L (t) (or ρ̃H (t)) of the problem (27) in “Appendix A”, while the yellow
lines in the third column highlight the mean phenotype of the surviving population μi (t). The consumption
rate of oxygen is θ = 2 × 10−5, the maximum cell division rate of fully glycolytic phenotypic variants
is ζ = γ , and the values of the other parameters are defined as in Table 1. b–e Same as row a but for
θ = 5 × 10−5 (row b), θ = 10−4 (row c), θ = 5 × 10−4 (row d) and θ = 10−3 (row e) (Color figure
online)
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Fig. 5 a Summary of the results of numerical solutions of Eqs. (4) and (12), with the oxygen inflow I (t)
defined via Eq. (16) for different values of A and T . Different columns correspond to different values of
the consumption rate of oxygen θ , that is, θ = 2 × 10−5 (first column), θ = 5 × 10−5 (second column),
θ = 10−4 (third column), θ = 5 × 10−4 (fourth column) and θ = 10−3 (fifth column). The maximum
cell division rate of fully glycolytic phenotypic variants is ζ = γ and the values of the other parameters are
specified in Table 1. The blue points in the A-T plane correspond to parameter combinations for which ρ̄H
and ρ̄L (i.e. the mean values of ρH (t) and ρL (t) computed over the last period of I (t)) are, respectively,
smaller than 100 and larger than 1000 (i.e. ρH (t) will eventually converge to zero), while the red points
correspond to parameter combinations for which the same quantities are, respectively, larger than 1000 and
smaller than 100 (i.e. ρL (t) will eventually converge to zero). Moreover, the lighter regions highlight the
parameter combinations for which both ρ̄H and ρ̄L are considerably larger than 100 and ρ̄H < ρ̄L (light
blue regions), ρ̄H > ρ̄L (pink regions) or ρ̄H ≈ ρ̄L (withe regions)—i.e. for these parameter combinations,
transient coexistence occurs for longer times although only one populationwill ultimately survive. The black
stars highlight the parameter values corresponding to the numerical results displayed in Fig. 4. b–d Same
as row a but for ζ = 0.75 γ (row b), ζ = 0.5 γ (row c) and ζ = 0.25 γ (row d) (Color figure online)

of the competition between the two cell populations is only weakly affected by the
quotient γ /ζ .

Taken together, these results indicate that, when oxygen inflow undergoes peri-
odic oscillations, chronic hypoxia and cycles of hypoxia followed by re-oxygenation
can spontaneously emerge depending on the rate at which oxygen is consumed by
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A

B

Fig. 6 a The plots in the first column are the same as the plots in the fourth column of Fig. 5a (row a)
and Fig. 5d (row b), and the yellow stars highlight the parameter values corresponding to the numerical
results displayed here. Dynamics of the oxygen concentration S(t) (second column), the population sizes
ρH (t) (third column, red line) and ρL (t) (third column, blue line), and the population density function of
the surviving population ni (t, x) (fourth column) obtained by solving numerically Eqs. (4) and (12), with
oxygen inflow I (t) defined via Eq. (16) with A = 50 and T = 5. The dotted (or dashed) lines in the third
column highlight the T -periodic solution ρ̃L (t) (or ρ̃H (t)) of the problem (27) in “Appendix A”, while the
yellow lines in the fourth column highlight the mean phenotype μi (t). The consumption rate of oxygen is
θ = 5 × 10−4, the maximum cell division rate of fully glycolytic phenotypic variants is ζ = γ , and the
values of the other parameters are defined as in Table 1. b Same as row a but for ζ = 0.25γ (Color figure
online)

the cells. In this biological scenario, the evolutionary fate of cell populations that
undergo heritable, spontaneous phenotypic variations at different rates depends cru-
cially upon the rate at which cells consume oxygen, θ , and the fitness costs associated
with glycolytic metabolism, γ /ζ . Overall, cell populations undergoing phenotypic
variations at lower rates are to be expected to be selected when the oxygen concen-
tration remains, on average, relatively high or under chronic-hypoxic conditions. By
contrast, cell populations with higher rates of phenotypic variation will outcompete
other cell populations under alternating periods of hypoxia and re-oxygenation. In the
latter case, the surviving cells adopt a bet-hedging strategy switching between oxida-
tive and glycolytic metabolic phenotypes. Moreover, when oxygen levels fluctuate
between zero and sufficiently large values, higher θ and γ /ζ can favour the transient
coexistence of competing populations of cells that undergo heritable, spontaneous
phenotypic variations at different rates.

4 Application of the Results to the Emergence of Phenotypic
Heterogeneity in Vascularised Tumours

In small tumours, cancer cells receive growth factors and nutrients via diffusion from
blood vessels in adjacent normal tissue. However, this process supports limited tumour
growth, to a diameter of a few millimetres. Further expansion requires intratumoural
blood flow and, therefore, selects for cancer cells with an ‘angiogenic’ phenotype.
This results in growth of blood vessels (i.e. sprouting angiogenesis) into the tumour.
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However, unlike normal tissue, a tumour cannot perform the coordinated functions
required for vascular maturation. Thus, while intratumoural blood flow enables the
nutrient transport into the tumour (Carmeliet and Jain 2000), the tangled, uncoor-
dinated vascular structure typically results in regions of chaotic blood flow with
stochastic (but often frequent) changes in microenvironmental conditions. Thus, can-
cer cells at the tumour-host interface, which invade adjacent normal tissue and often
transiently acquire normal vessels, may have relatively stable environments, (cf. the
left region of the scheme displayed in Fig. 7). By contrast deeper regions of the tumour,
characterised by limited oxygen diffusion, bring about chronic hypoxia (cf. the right
region of the scheme displayed in Fig. 7). Moreover, regions that require angiogenesis
are often subject to variable blood flow and associatedmicroenvironmental conditions.
Nonlinear interplay between vascular remodelling associatedwith on-going angiogen-
esis and oxygen consumption by the cells brings about alternating periods of hypoxia
and re-oxygenation in vascularised regions in the tumour interior (cf. the central region
of the scheme displayed in Fig. 7).

The results of our theoretical study indicate that such an expected spatio-temporal
variability in oxygen concentration across tumour can create distinct ecological niches
in which different phenotypic variants undergoing heritable, spontaneous phenotypic
variations at different rates can be selected, and that this can also foster the emergence
of phenotypic intratumour heterogeneity (cf. the plots of the phenotype distributions
ni (x, t) in the lower part of Fig. 7). In particular, cell populations characterised by
lower rates of phenotypic variation and a more oxidative metabolism can be expected
to colonise the oxygenated regions with relatively stable vasculature at the edge of
tumour; cell populations characterised by higher rates of phenotypic variation that
switch between oxidative and glycolytic metabolism are likely to populate regions of
on-going angiogenesis at an intermediate distance from the tumour edge; cell pop-
ulations characterised by lower rates of phenotypic variation and a more glycolytic
metabolism can be expected to colonise central, avascular regions of the tumour where
chronic-hypoxia occurs.

5 Conclusions and Research Perspectives

Cancer cells, like all living systems, are subject to Darwinian dynamics that require
them to continuously adapt to environmental conditions. Within each cancer, the
micro-environmental selection forces can vary spatially due to regional variations
in blood flow. However, most cancers are highly dynamic structures so that conditions
within each region can also vary over time, due to variations in blood flow within a
disorganised intratumoural vascular network. Prior theoretical studies have suggested
temporal variations in environmental conditions may apply selection forces that result
in cellular- and population-level dynamics that have significant and highly negative
clinical consequences (Gravenmier et al. 2018; Gillies et al. 2018). In this work, we
have developed a mathematical modelling approach to investigate the optimal adap-
tive strategies for cancer cells when subject to constant and periodically-oscillating
oxygen inflow.
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Fig. 7 Application of the results to the emergence of phenotypic heterogeneity in vascularised tumours

For both cases, there is excellent agreement between numerical simulations of our
model and analytical results from a simplified model, which is based on asymptotic
analysis of evolutionary dynamics carried out in Ardaševa et al. (2020) (see “Appendix
A”). This agreement shows both the robustness of the biological conclusions drawn
from the simulation results and the idea that the key features of the analytical results
that we derived previously carry through when additional biological complexity is
incorporated into the model. Furthermore, because our results persist across a range
of values of the consumption rate of oxygen, θ , and the fitness cost associated with
glycolytic metabolism, γ /ζ , we conclude that they are applicable to a variety of
cancer cell lines under different environmental conditions, such as different levels of
acidity (Casciari et al. 1992).

In summary, the simulation results generated fromourmodel indicate that nonlinear
interactions between cells and oxygen can lead naturally to the occurrence of chronic
hypoxia and cycles of hypoxia and re-oxygenation depending on the rate at which
oxygen is consumed by the cells. Moreover, the model supports the idea that under
chronic-hypoxia lower rates of phenotypic variation constitute a source of competi-
tive advantage. On the other hand, higher rates of phenotypic variation can confer a
competitive advantage under time-varying oxygen levels, when the fitness costs asso-
ciated with glycolytic metabolism are higher. In this case, the model demonstrates that
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bet-hedging strategies, where cells switch between oxidative and glycolytic metabolic
phenotypes, can spontaneously emerge. This provides a theoretical basis for previous
experimental results, such as those presented by Verduzco et al. (2015) and Chen
et al. (2018), showing that intermittent hypoxia can trigger the emergence of different
phenotypic properties in cancer cell populations. These results support the concept
of ‘vascular normalisation’ to stabilise the cancer environment as a key strategy in
cancer treatment (Jain 2001, 2005). Furthermore, in line with previous theoretical
studies indicating that periodically fluctuating environments can promote coexistence
of competing populations (Hastings 2004), our results suggest that, when the environ-
mental conditions within the tumour switch between oxygen-poor and oxygen-rich,
higher rates of oxygen consumption by cells and higher fitness costs associated with
glycolytic metabolism can promote transient coexistence of competing cell popu-
lations that undergo heritable, spontaneous phenotypic variations at different rates.
Finally, we have discussed how our mathematical results can shed light on the evolu-
tionary process underlying the emergence of phenotypic heterogeneity in vascularised
tumours.

We conclude with an outlook on possible extensions of the present work. The first
natural extension would be to model the interplay between spontaneous and stress-
induced phenotypic variations which is likely to drive cell adaptation to faster oxygen
fluctuations, such as those underlying cycling hypoxia.Moreover, it would be useful to
describe the metabolic dynamics of the cells in greater detail. It would also be interest-
ing to model explicitly the evolution of the concentrations of glucose and lactic acid.
In the same way, it would be interesting to extend the model to account for dynamics
of reactive oxygen species that promote DNA damage and lead to mutagenesis (Liou
and Storz 2010).

Building upon previous work on the derivation of deterministic continuum mod-
els for the evolution of populations structured by phenotypic traits from stochastic
individual-based models (Champagnat et al. 2002, 2006; Chisholm et al. 2016; Stace
et al. 2019), it would also be interesting to develop a stochastic individual-basedmodel
corresponding to the continuum model presented here. This would make it possible
to explore the impact of stochastic fluctuations in single-cell phenotypic properties
on the outcome of the competition between cell populations undergoing phenotypic
variations at different rates. Such stochastic effects are expected to be relevant in the
regime of low cell numbers and cannot easily be captured by continuum models like
the one considered here.

An additional development of our study would be to incorporate into the model
spatial structure, as done for instance by Lorz et al. (2015) and Lorenzi et al. (2018),
and to distribute multiple blood vessels across the spatial domain, as done for instance
by Villa et al. (2019). We could then allow the formation of new blood vessels via
angiogenesis, which is known be triggered by hypoxia (Dong et al. 2019). This would
enable a more detailed assessment of the way in which the interplay between spatial
and temporal variability of oxygen levels may dictate the phenotypic composition
and the level of phenotypic heterogeneity of vascularised tumours. Moreover, since
experimental results suggest that cycling hypoxia increases cell motility and promotes
the formation of metastases (Liu et al. 2017; Chen et al. 2018), when including spatial
structure in the model it would also be interesting to explore the adaptive role of
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the trade-off between cell motility and cellular proliferation (Gallaher et al. 2019).
Such a model would have the potential to inform new treatment strategies aimed at
minimising the pro-metastatic effect of cycling hypoxia.

A Analysis of Evolutionary Dynamics for a SimplifiedModel

In order to obtain a detailed analytical description of the evolutionary dynamics of the
two cell populations, we can consider a simplified scenario whereby the ODE for S(t)
is decoupled from the system of non-local parabolic PDEs (4). In particular, we let
the evolution of the oxygen concentration S(t) be governed by the following Cauchy
problem { dS

dt = I (t) − 
S,

S(0) = S0 ≥ 0,
t ∈ (0,∞), (17)

where the effects of oxygen consumption and oxygen decay are both encapsulated in
the parameter 
 > 0. Moreover, to facilitate analysis, we extend the interval [0, 1] to
R and re-define the population-level quantities accordingly, i.e. we use the definitions

ρH (t) :=
∫
R

nH (x, t) dx, ρL(t) :=
∫
R

nL(x, t) dx, ρ(t) := ρH (t) + ρL(t)

and

μi (t) := 1

ρi (t)

∫
R

x ni (x, t) dx, σ 2
i (t) := 1

ρi (t)

∫
R

x2 ni (x, t) dx − μ2
i (t)

with i ∈ {H , L}. Finally, in agreement with much of the previous work on the math-
ematical analysis of the evolutionary dynamics of continuous traits, which relies on
the simplifying assumption that population densities are Gaussians (Rice 2004), we
consider initial conditions of the form

ni (x, 0) = ρ0
i

√
v0i

2π
exp

[
−v0i

2
(x − μ0

i )
2

]
, where ρ0

i , v0i ∈ R>0 and μ0
i ∈ R.

(18)
This allows us to use the result established by Proposition 1, which can be proved
through the method that we previously employed in Ardaševa et al. (2020).

Proposition 1 Under assumptions (6) and (7), the system of non-local PDEs (4) posed
on R × (0,∞) and subject to the initial condition (18) admits the exact solution

ni (x, t) = ρi (t)

√
vi (t)

2π
exp

[
−vi (t)

2
(x − μi (t))

2
]

for i ∈ {H , L} , (19)
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with the population size, ρi (t), the mean phenotype, μi (t), and the inverse of the
phenotypic variance, vi (t) = 1/σ 2

i (t), being solutions of the Cauchy problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dvi

dt
= 2

(
h(S) − βiv

2
i

)
,

dμi

dt
= 2h(S)

vi
(ϕ(S) − μi ),

dρi

dt
= (Fi (S, vi , μi ) − dρ) ρi ,

vi (0) = v0i , μi (0) = μ0
i , ρi (0) = ρ0

i ,

ρ := ρH + ρL ,

for i ∈ {H , L} , (20)

where

Fi (S, vi , μi ) := γ g(S) − h(S)

vi
− h(S) (μi − ϕ(S))2 . (21)

In the case where the inflow of oxygen is constant, i.e. the source term I (t) in the
ODE (17) satisfies assumption (14), our main results are summarised by Theorem 1,
where the functions g, ϕ and h are defined according to (9) and (10), and we use the
definitions

S∞ := IS



, ρ∞

L := γ g(S∞) − √
h(S∞) βL

d
, μ∞

L := ϕ(S∞). (22)

Theorem 1 Under assumptions (5)–(11) and the additional assumption (14), the solu-
tion of the system of non-local PDEs (4) posed on R × (0,∞), subject to the initial
condition (18) and complemented with the Cauchy problem (17) is of the Gaussian
form (19) and satisfies the following:

(i) if

√
h(S∞) βL ≥ γ g(S∞)

then

lim
t→∞ ρH (t) = 0 and lim

t→∞ ρL(t) = 0;

(ii) if

√
h(S∞) βL < γ g(S∞)

then

lim
t→∞ ρH (t) = 0, lim

t→∞ ρL(t) = ρ∞
L
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and

lim
t→∞ μL(t) = μ∞

L , lim
t→∞ σ 2

L(t) =
√

βL

h(S∞)
.

In the case where the inflow of oxygen undergoes periodic oscillations, i.e. the
source term I (t) in the ODE (17) satisfies assumption (15) along with the additional
assumption

I ∈ Lip([0,∞)), (23)

our main results are summarised by Theorem 2, where S̃(t) is the unique non-negative
T -periodic solution of the problem

⎧⎨
⎩

dS̃

dt
= I (t) − 
S̃, t ∈ (0, T ),

S̃(0) = S̃(T ),

(24)

ṽi (t) is the unique real positive T -periodic solution of the problem

⎧⎨
⎩
dṽi

dt
= 2

(
h(S̃) − βi ṽ

2
i

)
, t ∈ (0, T ),

ṽi (0) = ṽi (T ),
(25)

μ̃i (t) is the unique real T -periodic solution of the problem

⎧⎨
⎩
dμ̃i

dt
= 2h(S̃)

ṽi

(
ϕ(S̃) − μ̃i

)
, t ∈ (0, T ),

μ̃i (0) = μ̃i (T ),

(26)

ρ̃i (t) is the unique real non-negative T -periodic solution of the problem

⎧⎪⎪⎨
⎪⎪⎩

dρ̃i

dt
=

(
Fi (S̃, ṽi , μ̃i ) − dρ̃i

)
ρ̃i , t ∈ (0, T ),

ρ̃i (0) = ρ̃i (T ),

(27)

and

�i := 1

T

∫ T

0

h(S̃(z))

ṽi (z)
dz+ 1

T

∫ T

0

(
μ̃i (z) − ϕ(S̃(z))

)2
h(S̃(z)) dz for i ∈ {H , L} .

(28)
In (25)–(28), the functions g, ϕ and h are defined according to (9) and (10). Moreover,
the function Fi in (27) is defined according to (21).

Theorem 2 Under assumptions (5)–(11)and the additional assumptions (15)and (23),
the solution of the system of non-local PDEs (4) posed on R × (0,∞), subject to
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the initial condition (18) and complemented with the Cauchy problem (17) is of the
Gaussian form (19) and satisfies the following:

(i) if

min {�H ,�L} ≥ γ

T

∫ T

0
g(S̃(t)) dt

then

lim
t→∞ ρH (t) = 0 and lim

t→∞ ρL(t) = 0;

(ii) if

min {�H ,�L} <
γ

T

∫ T

0
g(S̃(t)) dt

and

i = arg min
k∈{H ,L}

�k, j = arg max
k∈{H ,L}

�k,

then

ρi (t) → ρ̃i (t), ρ j (t) → 0 as t → ∞,

and

μi (t) → μ̃i (t), σ 2
i (t) → 1

ṽi (t)
as t → ∞.

Theorems 1 and 2 can be proved throughmethods similar to those that we employed
in Ardaševa et al. (2020) and, therefore, their proofs are omitted here.
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