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Abstract. A general framework for the generation of long wavelength patterns in multi-cellular (discrete)
systems is proposed, which extends beyond conventional reaction-diffusion (continuum) paradigms. The
standard partial differential equations of reaction-diffusion framework can be considered as a mean-field
like ansatz which corresponds, in the biological setting, to sending to zero the size (or volume) of each
individual cell. By relaxing this approximation and, provided a directionality in the flux is allowed for, we
demonstrate here that instability leading to spatial pattern formation can always develop if the (discrete)
system is large enough, namely, composed of sufficiently many cells, the units of spatial patchiness. The
macroscopic patterns that follow the onset of the instability are robust and show oscillatory or steady state
behavior.

1 Introduction

Self-organization, the ability of a system of microscopi-
cally interacting entities to shape macroscopically ordered
structures, is ubiquitous in Nature. Spatio-temporal pat-
terns are observed in a plethora of applications, encom-
passing different fields and scales. Examples of emerging
patterns are the spots and stripes on the coat or skin
of animals [1,2], the spatial distribution of vegetation in
arid areas [3], the organization of colonies of insects in
host-parasitoid systems [4] and the architecture of large
complex ecosystems [5]. In the early 1950s, Alan Turing
laid down, in a seminal paper [6], the mathematical basis
of pattern formation, the discipline that aims at explain-
ing the richness and diversity of forms displayed in Nature.
Turing’s idea paved the way for a whole field of investiga-
tion and fertilized a cross-disciplinary perspective to yield
a universally accepted paradigm of self-organization [7].
The onset of pattern formation on a bounded spatial
domain originates from the loss of stability of an unpat-
terned equilibrium. To start with, Turing proposed a
minimal model composed of at least two chemicals, hereby
termed species. The species were assumed to diffuse across
an ensemble of cells, adjacent to each other and orga-
nized in a closed ring, as depicted in Figure 1a. One of
the species should trigger its own growth, acting there-
fore as a self-catalyst. This is opposed by the competing
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species, which therefore promotes an effective stabilization
of the underlying dynamics. The emergence of the ensuing
spatial order relies on these contrasting interactions and
requires, as an unavoidable constraint, a marked differ-
ence (as measured by the ratio) of the diffusion constants
associated with the interacting species [8]. This symmetry-
breaking mechanism is at the core of a general principle,
widely known as the Turing instability [9]: small inhomo-
geneous perturbations from a uniform steady state initiate
the instability and individuals, in a quest for space and
resources, organise in spatially extended, regular motifs1.
This original idea was built upon by Meinhardt [10], who
proposed the notion of activators and inhibitors, so that
the Turing patterning principle could be conceptualized
as arising through short-range activation (slow diffusion),
long-range inhibition (fast diffusion).

Pattern formation for systems evolving on cellular
arrays was further analyzed by Othmer and Scriven [11]
under the assumption of symmetric diffusion. Aggregates
of cells yield macroscopic tissues which, in general, can
be schematized, to a reasonable approximation, by regu-
lar lattices [8]. Branching architectures, or coarse-grained
models of compartimentalized units, justify invoking the
generalized notion of a spatial network. In this case, the

1 The loss of stability of a homogeneous equilibrium, as trig-
gered by an external perturbation, will be referred to as a Turing
instability, as an natural extension of the original model discussed
in [6].
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nodes stand for individual cellular units, linked via a het-
erogeneous web of intertangled connections, as exemplified
by the network structure. The study of pattern formation
for reaction-diffusion systems anchored on symmetric net-
works was developed in [12]. Diffusion instigates a spatial
segregation of species, a counterintuitive outcome of Tur-
ing analysis, which holds true both in its continuous and
discrete (lattice or network based) versions.

The standard Turing model assumes pattern arises from
a homogeneous unpatterned state. However, as he him-
self recognised this is not biologically realistic as “Most
of the organism, most of the time is developing from one
pattern into another, rather than from homogeneity to a
pattern” [6]. One such pattern is asymmetry in flows,
as displayed in real systems via chemical or electrical
gradients [13]. For example, osmosis [13,14] in the cell
membrane or chemotaxis in the motility of cells [8,15] are
examples of asymmetric transport [16]. The case of Dic-
tyostelium is also worth mentioning: this is a multi-cellular
eukaryotic bacterivore, which develops pseudopodia under
externally induced chemotaxis, so triggering a directed
biased motion [15,17]. Rovinsky and Menzinger [18,19]
proved that an imbalance in the directions of the flows
of the species can indeed destabilise the spatially homo-
geneous state of the system. The differential-flow-induced
instability yields oscillatory patterns for a sufficiently pro-
nounced degree of asymmetry. It is, however, interesting
to note that Othmer and Scriven had already intuited in
their pioneering work [11] that asymmetric diffusion can
eventually yield a richer pattern formation dynamics. Tur-
ing theory for systems evolving on directed networks was
recently cast on rigorous grounds in [20] and asymmetry
in the diffusion shown to produce a consistent enlargement
of the region of Turing-like patterning.

Starting from these developments, we here take one
important step forward with the aim of understanding
the innate drive to self-organization as displayed by natu-
ral systems. We shall prove in particular that asymmetry
in the transport across a – sufficiently large – multi-
cellular (hence inherently discrete) compartment allows
for patterns to be established, in simple reaction schemes
and over an extended region of parameter values. The
subsequent patterns display an unprecedented robust-
ness, which ultimately stems from the parcelization of
the embedding space in individual units of non-vanishing
size. To anticipate some of the technical aspects to be
addressed in the following, we will show that tuning the
diffusivity of just one species – the ratio of the two diffu-
sivities being frozen at a constant strictly different from
(but arbitrarily close to) one – amounts to performing a
homothetic transformation of the spectrum of the gen-
eralized Laplacian operator in the complex plane. The
Laplacian eigenvalues consequently move along straight
lines, the slope being set by the number, Ω, of cells that
define the multi-cellular array. By modulating these latter
quantities, one can always get the eigenvalues to pro-
trude into the region of instability. To allow for analytical
progress to be made, we shall assume periodic boundary
conditions, resulting from the rotational symmetry of the
spatial domain. The patterns that follow the onset of the
instability are either oscillatory or stationary. A pictorial

representation of the proposed scheme is provided in pan-
els (c) and (d) of Figure 1. Panels (a) and (b) refer instead
to the conventional scenario which assumes undirected
transport.

2 Theory of pattern formation
with asymmetric diffusion

Let us begin by considering a generic two species model
of reaction-diffusion type. The concentration of the two
species are, respectively, labelled ui and vi, where the
index i refers to the host cell and i runs from 1 to Ω.
The governing equations can be cast in the form:

dui
dt

= f(ui, vi) +Du

 Ω∑
j=1

Aijuj −
Ω∑
j=1

Ajiui


dvi
dt

= g(ui, vi) +Dv

 Ω∑
j=1

Aijvj −
Ω∑
j=1

Ajivi

 (1)

where Du and Dv stand for the diffusion constants and
f(·, ·), g(·, ·) are the nonlinear reaction terms that model
the local (within cell) dynamics of the species. Aij are
the binary entries of the adjacency matrix that speci-
fies the topology of the embedding spatial support. For
the case at hand we will focus on the limiting condi-
tion where species are solely allowed to jump clockwise,
from a given cell to its immediate neighbor (panel c) of
Figure 1. Hence the adjacency matrix A = {Aij} is cir-
culant (i.e. invariant under rotation) and the transport
terms in square brackets in equation (1), take the form
ui−1 − ui and vi−1 − vi, respectively. Nevertheless, the
results obtained here are valid in the general setting where
the probability of hopping in the anti-clockwise direction
is allowed for (see Appendix A.2). Although we shall be
mainly interested in lattice arrangements, we emphasise
that the transport operator introduced here represents
the straightforward generalization of standard diffusion
to the case where the spatial arrangements of the cells
is supposed heterogeneous, either in terms of physical
links, connecting individual patches of the collection, or in
terms of their associated weights. Both are viable strate-
gies for imposing the asymmetry which sits at the core
of the mechanism upon which we shall hereby elaborate.
In short, the hypothesized spatial coupling implements a
local balance of incoming and outgoing fluxes, as seen from
the observation cell i. We introduce the Laplacian opera-
tor L with entries Lij = Aij − kouti δij where δij denotes

the Kronecker function and kouti =
∑Ω
j=1Aji quantifies

the outgoing degree of cell i. The contributions that relate
to inter-cell couplings in equation (1) can be, respec-
tively, rewritten in the equivalent, more compact form,∑Ω
j=1DuLijuj and σ

∑Ω
j=1DuLijvj , where σ represents

the ratio of the diffusion constants Du and Dv. In the
following, we will denote with the symbol L the Lapla-
cian L, modulated by the multiplicative constant Du,
namely L ≡ DuL. As a key observation for what follows,
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Fig. 1. Conventional Turing instability vs. the asymmetry-driven model: a schematic representation. (a) In Turing’s original
model, the onset of pattern formation is studied for a model of two species reacting and diffusing on a collection of cells,
arranged so as to form a 1D ring. (b) Turing instability requires breaking the symmetry among the species. In particular,
feedback loops (positive for the activators and negative for the inhibitors) are proposed. Further, the inhibitor should relocate in
space faster than the activator, Dv > Du. The diffusion between neighboring cells is assumed symmetric. (c) In the asymmetry-
induced instability instead the system is made up of a larger number of cells and the diffusion is asymmetric, as schematised
by the clockwise arrow. (d) The instability is triggered by increasing the number of cells, for virtually any ratio of the diffusion
constants, provided the latter take sufficiently large values.

we emphasize that the magnitude of the eigenvalues of
L can be freely controlled by the value of Du. Changing
Du (while for instance keeping σ fixed) implies perform-
ing a homothetic transformation of the spectrum of L, as
we shall hereafter clarify. Notice that the problem is for-
mulated at the discrete level and no attempt is made to
eventually recover a continuous description of the exam-
ined dynamics. This is to reflect the fact that real tissue
is composed of a large collection of individual cells. By
increasing the number of cells in the lattice, we formally
make the system larger, since the characteristic size of the
cells cannot be contextually reduced. In practical terms,
we will argue that the transition to the patterning regime
can take place if the system reaches a critical size, as epit-
omized by the number of cells that compose its domain of
action.

Assume now that the reaction dynamics admits a stable
fixed point (u∗, v∗), namely that f(u∗, v∗) = g(u∗, v∗) =
0. Hence, the spatially extended system (1) possesses
a homogeneous equilibrium solution (u∗,v∗) which is
obtained by setting the variable on each of the Ω cells to be
(u∗, v∗). This conclusion can be readily derived by notic-

ing that, by definition, σ
∑Ω
j=1 LijK = 0, for any constant

K (recall that the system is hosted on a lattice with peri-
odic boundary conditions). The homogeneous fixed point

can, in principle, become unstable upon injection of a tiny
heterogeneous perturbation, as in the spirit of the origi-
nal Turing mechanism. The conditions for the emergence
of the instability are determined by a linear stability anal-
ysis that follows the procedure presented in [20] and that
we revisit in the following.

2.1 The dispersion relation and the conditions
for instability

Linearising the dynamics of system (1) around the fixed
point solution (u∗,v∗) we obtain:

d

dt

(
δu
δv

)
=

(
fuI +DuL fvI

guI gv +DvL

)(
δu
δv

)
=
(
J + D

)(δu
δv

)
where δu, δv stands for the perturbation vectors. J =(
fuI fvI
guI gvI

)
is the Jacobian matrix, evaluated at the

equilibrium point, stemming from the reaction terms and

D =

(
DuL O
O DvL

)
, where O and I are, respectively,
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the Ω × Ω zero-valued and identity matrices. We now

introduce the basis formed by the eigenvectors Φ
(α)
i , with

α = 1, . . . ,Ω, of the Laplacian operator L. We have∑
j LijΦ

(α)
j = Λ(α)Φ

(α)
i where Λ(α) identifies the eigen-

values of L. The latter operator is asymmetric, as is the
matrix A, and thus Λ(α) are, in principle, complex. Fur-
ther, the eigenvectors form an orthonormal basis, for the
case at hand. Hence, to solve the above linear system, we
expand the perturbation in terms of the basis of the eigen-

vectors, i.e. δui =
∑Ω
α=1 bαΦ

(α)
i and δvi =

∑Ω
α=1 cαΦ

(α)
i .

At this point it is straightforward to show that the 2Ω×2Ω
system reduces to a 2 × 2 eigenvalue problem, for each
choice of the scalar index α = 1, . . . ,Ω:

det (Jα − λαI) = det

(
fu +DuΛ(α) − λα fv

gu gv +DvΛ
(α) − λα

)
= 0

where Jα is the 2 × 2 modified Jacobian, i.e. Jα ≡ J +
DΛ(α) with D = diag(Du, Dv), Λ(α) = diag(Λ(α),Λ(α)),
and I the 2 × 2 identity matrix. The steady state is
unstable to small heterogeneous perturbations if λα has
a positive real part over a finite range of modes. The dis-
persion relation (the largest real part of λα, for any given
α) can be readily computed from:

λα =
1

2
[(trJα)Re + γ] +

1

2
[(trJα)Im + δ] ι (2)

where

γ =

√
A+
√
A2 +B2

2

δ = sgn(B)

√
−A+

√
A2 +B2

2

and

A = [(trJα)Re]
2 − [(trJα)Im]

2 − [(det Jα)Re]
2

B = 2 (trJα)Re (trJα)Im − [(det Jα)Im]
2
.

Here sgn(·) is the sign function and fRe, fIm indicate,
respectively, the real and imaginary parts of the operator
f . To further manipulate equation (2), we make use of the
definition of a square root of a complex number. Take,
z = a+ bι where ι =

√
−1 is the imaginary unit, then

√
z = ±

(√
a+ |z|

2
+ sgn(b)

√
−a+ |z|

2
ι

)
.

The instability sets in when | (trJα)Re | ≤ γ, a condition
that translates into the following inequality [20]:

S2(Λ
(α)
Re )[Λ

(α)
Im]2 ≤ −S1(Λ

(α)
Re ), (3)

where (ΛRe,ΛIm) span the complex plane where the
Laplacian eigenvalues reside. In the above relation S1, S2

are polynomials which take the following explicit form:

S1(x) = C14x
4 + C13x

3 + C12x
2 + C11x+ C10

S2(x) = C22x
2 + C21x+ C20.

The constants here are given by:

C14 = σ (1 + σ)
2

C13 = (1 + σ)
2

(σJ11 + J22) + 2trJσ (1 + σ)

C12 = det J (1 + σ)
2

+ (trJ)
2
σ + 2trJ (1 + σ) (σJ11 + J22)

C11 = 2trJ (1 + σ)
2

det J + (trJ)
2

(σJ11 + J22)

C10 = det J (trJ)
2

and

C22 = σ (1− σ)
2

C21 = (σJ11 + J22) (1− σ)
2

C20 = J11J22 (1− σ)
2
.

The system displays a generalized Turing instability,
determined by the asymmetric nature of the imposed cou-
pling if, after the homothetic transformation, the eigen-

values Du(Λ
(α)
Re ,Λ

(α)
Im) of the Laplacian operator L enter

the region of the complex plane (ΛRe,ΛIm) that is delim-
ited by inequality (3). Notice that the instability region is

drawn by taking DuΛ
(α)
Re ≡ ΛRe and DuΛ

(α)
Im ≡ ΛIm in the

complex plane (ΛRe,ΛIm) such that it remains invariant
to Du and the spectrum of L.

The latter relation (3) can be graphically illustrated
in the complex plane z =

(
ΛRe,ΛIm

)
, where the eigen-

values Λ(α) of the Laplacian operator L reside (see
Appendix A.1). In fact, inequality (3) enables one to
delimit a model-dependent region of instability, which is
depicted in Figure 2a. When drawing the domain of inter-
est, we assumed an abstract setting, without insisting
on the specific details that stem from a particular reac-
tion model. For what will follow, it is only important to
appreciate that condition (3) makes it possible to define a
portion of the parameter space, by construction symmetric
with respect to the horizontal (real) axis, that is eventually
associated with the onset of the instability. More specifi-
cally, if a subset of the spectrum of the Laplacian L falls
inside the region outlined above, then the instability can
take place (red stars in Fig. 2a). This conclusion is general
and independent of the reaction scheme employed. Notice
that when the two regions merge and incorporate a finite
part of the real axis, the outbreak of the instability is also
possible on a symmetric support (i.e. when the eigenvalues
of the Laplacian operator are real).

3 Universal mechanism for pattern formation

We are now in a position to elaborate on the univer-
sal mechanism which drives a reaction-transport system
unstable, for asymmetric diffusion on a discrete collection

https://epjb.epj.org/
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Fig. 2. On the mechanism of pattern formation with asymmetric diffusion. (a) The region colored in green denotes the domain
of the complex plane z =

(
ΛRe,ΛIm

)
where the instability can eventually take place. This is a pictorial representation of a

general situation that is always found, irrespectively of the specific choice of the reaction model. The blue empty symbols
stand for the spectrum of the Laplacian operator L obtained from a directed lattice of the type depicted in Figure 1c. The
eigenvalues are distributed on the unitary circle, as discussed in Section 2. When increasing Ω, the number of cells that compose
the examined lattice, the Laplacian spectrum displays eigenvalues with progressively larger (but still negative) component ΛRe
and still lying on the circle. We denote by θ the inclination of the line (dot dashed in the figure) that connects the selected
eigenvalue (empty star) to the origin of the complex plane. This latter eigenvalue can be freely moved along the aforementioned
line, by modulating the diffusion coefficient Du while keeping the ratio σ fixed. Stated differently, the spectrum of the matrix
L is an homothetic transformation (with centre 0 and ratio Du) of the spectrum of L. If θ is sufficiently small, i.e. if the
dashed line is steeper than the solid one (the instability threshold), then it is always possible (by increasing Du) to move the
associated eigenvalue inside the region (green) of the instability (see the filled red star). If the inclination θ is larger than the
critical one, θ∗, then the eigenvalues that slide on the corresponding dashed line are permanently confined outside the domain of
instability (filled blue star). The vertical dashed line is an asymptote and sets the leftmost boundary of the instability domain,
as described in the Appendix A.1. (b) To provide a quantitative illustration of the method, we consider the Brusselator model,
f(u, v) = 1− (b+ 1)u+ cu2v and g(u, v) = bu− cu2v, where b and c are free control parameters. In the plane (b, c), we isolate
the domain where the conventional Turing instability takes place (small blue domain), for σ = 1.4. The region shaded in red
identifies the domain of instability that is found when the system is evolved on a directed lattice made of Ω = 1000 cells and
assuming Du = 100. The ratio σ is kept constant to the reference value 1.4.

of lattice sites. As we shall realize, considering a finite,
although large, ensemble of mutually connected cells is
one of the key ingredients that instigates the instability
in an activator-inhibitor system for virtually any reac-
tion parameters and any ratio of the diffusion coefficients
(including σ < 1 and except for the zero measure, lim-
iting condition σ = 1). We begin by observing that the
Laplacian matrix L, associated with a closed directed
ring as assumed in Figure 1c, is a circulant matrix. This
simplified geometrical arrangement is solely assumed for
illustrative purposes. A Ω × Ω matrix C is circulant if it
takes the form

C =


c0 cΩ−1 . . . c2 c1
c1 c0 cΩ−1 . . . c2
... c1 c0

. . .
...

cΩ−2
. . .

. . . cΩ−1

cΩ−1 cΩ−2 . . . c1 c0

 .

The circulant matrix C is fully specified by its first
column, c = (c0, c1, . . . cΩ−1). The other columns of C
are generated as cyclic permutations of the vector c
with offset equal to the column index. The normalized

eigenvectors of a circulant matrix are given by φj =
1√
Ω

(
1, ωj , ω

2
j , . . . , ω

Ω−1
j

)
where ωj = exp(2πιj/Ω) is the

Ω-th root of unity and the eigenvalues are λj = c0 +

cΩ−1ωj + cΩ−2ω
2
j + · · ·+ c1ω

Ω−1
j where j = 0, 1, . . . ,Ω−1.

Hence the spectrum of L is complex and falls on the uni-
tary circle centered at (−1, 0) – empty stars in Figure 2,
panel (a).

When making Ω larger, one progressively reduces the
spectral gap, the relative distance between the two Lapla-
cian eigenvalues that display the largest real parts. Recall-
ing that the largest eigenvalue of the Laplacian is by
definition zero, this implies that the second eigenvalue of
L (ranked in descending order, with respect to the value
of their associated real parts) tends to approach the ori-
gin of the complex plane, when Ω is increased2. This, in
turn, implies that we can control at will the inclination (a
measure complementary to the slope) θ of the line (dashed
in the figure) that connects the second largest eigenvalue
to the origin of the complex plane. Similar considerations

2 The eigenvalues come in conjugate pairs. In what follows we shall
refer to the eigenvalue in the pair that displays positive imaginary
part.

https://epjb.epj.org/
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Fig. 3. Patterns triggered in the Brusselator model by asymmetric diffusion on a 1D ring. Left column: real (blue stars) and
imaginary (red circles) dispersion relation λα (a) and the associated pattern evolution (b). The ensuing pattern is oscillatory
and formes a travelling wave. The parameters are set to b = 8, c = 10, Du = 100, and σ = 1.4. Center column: dispersion
relation (c) and pattern evolution (d) yielding a steady state pattern, when b = 50, c = 62, Du = 10 and σ = 1.4. Right column:
dispersion relation (e) and pattern evolution (f) yielding a traveling wave with b = 8, c = 10, Du = 140 and σ = 1/1.4 ' 0.71.
In the insets in the upper panels, we zoom in on the (real and imaginary) dispersion relations focusing on the portion of the
curve where the instability takes place. In all cases, Ω = 100. Notice that, for the Brusselator model, oscillatory and stationary
patterns are numerically detected for σ > 1, while for σ < 1 oscillatory patterns are solely found. There is, however, no reason
to exclude that other reaction schemes would yield stationary stable patterns for σ < 1 as an outcome of the scheme shown
here.

apply to the other eigenvalues that follow in the ranking.
In Figure 2a we label by θ∗ the critical inclination of the
solid line that intersects tangentially the domain of insta-
bility traced according to inequality (3). Clearly, by con-
struction, a symmetric line always exists with inclination
−θ∗, that is tangent to the region of instability in the lower
complex semi-plane. Assume now that Ω is sufficiently
large so that θ < θ∗. Then recall that for the instability to
emerge, at least one eigenvalue of the rescaled Laplacian
L has to protrude into the region where the instability
is bound to occur. On the other hand, the eigenvalues
of L are a homothetic transformation, with centre 0 and
ratio Du, of the eigenvalues L. In other words, we can
force the second eigenvalue of L to move along the line to
which it belongs by modulating the diffusion constant Du,
while keeping σ constant, and so invade the region of the
instability (filled red star). If θ > θ∗, then the eigenvalue
is instead confined to the stable portion of the complex
plane for each choice of the scaling factor Du. In summary,
the system can be triggered unstable by simultaneously
acting on two independents “knobs”: first, by making Ω
sufficiently large, we force a subset of eigenvalues into
the vicinity of the origin, thus making their associated θ
smaller that the critical amount θ∗. Building on the anal-
ysis performed in the Appendix, see equation (A.14), the
above condition results in Ω > 2π/ (arctan f ′(r0)− π/2),
where the prime denotes the first derivative of f(x) =

√
−S1(x)/S2(x) and r0 is the abscissa of the point where

the line passing through the origin intersects tangentially
the curve f = 0. Secondly, by acting on Du (and conse-
quently on Dv so as to maintain σ unchanged), we make
the eigenvalues slide on their corresponding lines, until the
instability threshold is eventually breached. Interestingly,
the instability involves long wavelengths (hence yielding
macroscopic patterns) since, by construction, the real part
of the eigenvalues associated with the modes (eigenvec-
tors) triggered to grow approaches zero, when Ω increases.

In Figure 2b we present results for a specific case study,
the Brusselator model, often invoked in the literature as
a paradigm nonlinear reaction scheme for studying self-
organised phenomena, synchronisation, Turing patterns
and oscillation death. We find the region in the param-
eter space (b, c) for which the homogeneous steady state
is unstable for σ = 1.4. The Brusselator may undergo a
conventional Turing instability, in the portion of the plane
that is colored in blue. The asymmetry driven instability
(for Ω = 1000 cells and assuming Du = 100) is found on a
considerably larger domain, which can be made arbitrarily
large by further modulating Ω and Du.

In Figures 3b, 3d and 3f, we show patterns found
when integrating the Brusselator model for different
parameter values. Figures 3a, 3c and 3e display the real
and imaginary parts of the eigenvalues λα (the dispersion

relation, see above) against −Λ
(α)
Re . When the imaginary

https://epjb.epj.org/
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component of λα is small as compared to the corre-
sponding real part, steady state patterns are found to
emerge. Otherwise, the patterns are oscillatory in nature.
This is a rule of the thumb, which seems to implement a
necessary criterion. The mechanism of pattern selection
is in fact heavily influenced by the nonlinearities, which
become prominent beyond the initial stages of evolution,
hence limiting the predictive ability of the linear stability
analysis. It is worth stressing that the patterns displayed
in Figure 3 occur for a choice of parameters for which the
classical Turing instability is not permitted and for both
σ larger and smaller than one. In particular, one can
analytically show that the asymmetry driven instability,
that we here introduced and characterized, can develop
for any σ = 1± ε with 0 < ε� 1. This conclusion holds in
general, as can be proved rigorously (see Appendix A.1).

4 Discussion

To summarise, we have developed a general theory of
pattern formation for the case of asymmetric transport
of constituents in a large assembly of adjacent cells.
Macroscopic oscillatory or steady state patterns in an
activator-inhibitor system are now found for virtually any
ratio of diffusivities, larger or smaller than one, and any
choice of reaction parameters. The system (as composed
by a large ensemble of individual units, the cells) should
extend in space beyond a critical size for the instability to
eventually develop, at a chosen ratio of the diffusivities. It
is worth stressing that this observation might be relevant
to embryogenesis applications. In fact, it is known that
cell specialization for tissue development starts only when
the system has attained a critical size, resulting from the
aggregation of sufficiently many embryonic cells [21]. In
our theory we deal, for simplicity, with a one-dimensional
arrangement of cells which define the spatial support to
the model. The one-dimensional cell lattice has periodic
boundary conditions. The analysis can be extended, in
principle, to higher dimensions, by performing a Carte-
sian product of fundamental one-dimensional units of the
type analyzed here [22]. Periodic boundary conditions in
extended spatial dimensions can be, for instance, invoked
when mimicking organs in their embryonic stage [23,24]
with tubular or globular shapes. Our conclusion holds
however more generally, also when the assumption of
dealing with periodic boundary conditions (which make
the problem analytically tractable) is eventually relaxed3.
Taken all together, the potential applications of this newly
proposed route to pattern formation are multiple, from
organogenesis to embryonic development, and may also
include all those settings, from biology to ecology passing
through neuroscience [13–15,17,25,26], where asymmetric
flows are reported to occur.

3 For a general spatial arrangement, the eigenvalues of the Lapla-
cian tend to populate a bounded domain of the semi-negative defined
portion of the complex plane (a domain which can be ultimately
delimited by the Gershgorin circles). The frontier of this compact
domain plays the role of the unitary circle, where eigenvalues are
positioned when dealing with a circulant matrix, hence, periodic
boundary condition. This effect is made clear in Figure 1 of [20].
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Appendix A

A.1 On the shape of the instability domain
and the onset of the directed instability

The aims of this section are twofold. We will first provide
a detailed characterization of the region D of the complex
plane (ΛRe,ΛIm) where the instability eventually takes
place. Then, we will show that a non-zero inclination θ∗

exists for any value of σ strictly different from one. More
specifically, we shall prove that the line tangent to the
instability domain displays a slope which scales as 1/ε,
for σ = 1 ± ε and 0 < ε � 1. This observation yields an
important consequence. It is in fact always possible to
select a minimal lattice size, Ω, so as to have θ, the incli-
nation of the line that connects the second eigenvalue to
the origin, smaller than θ∗ > 0. This implies, in turn, that
the system can always be made unstable by appropriately
setting the strength of Du (and consequently Dv), while
keeping σ fixed to a nominal value arbitrarily close to one.
The instability cannot be seeded at σ = 1 (θ∗, being in this
case zero, or, equivalently the slope of the tangent to D,
infinite), a zero measure limiting condition.

By using a symbolic manipulator, it is possible to show
that the fourth degree polynomial S1(x) admits a double
root at x1 = −trJ/(Dv +Du), which is a positive defined
number because of the necessary assumption trJ < 0 (sta-
bility of the homogeneous fixed point). Factorising this
latter term, we can write S1(x) = (x+ trJ)2Q1(x) where

Q1(x) = (Dv +Du)(detJ+(DuJ22 +DvJ11)x+DuDvx
2),

is a second order polynomial whose roots are straightfor-
wardly determined as

x3 =
−(DuJ22 +DvJ11)−

√
(DuJ22+DvJ11)2 − 4DuDvdetJ

2DuDv

x4 =
−(DuJ22 +DvJ11) +

√
(DuJ22+DvJ11)2 − 4DuDvdetJ

2DuDv
.

(A.1)

If (DuJ22 +DvJ11)2−4DuDvdetJ > 0, then x3 < x4; oth-
erwise Q1(x) > 0 for all x. In fact, detJ > 0 owing to the
stability of the homogeneous fixed point.
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The characterization of S2(x) is straightforward as it is
a second degree polynomial. Its roots can be written as:

y1 = −J22

Dv
and y2 = −J11

Du
. (A.2)

Let us observe that the assumption of a stable homoge-
neous equilibrium implies trJ < 0. Thus, y1 and y2 cannot
be both negative. On the other hand, relation (3) cannot
be satisfied for negative ΛRe if y1 and y2 are both positive,
as it readily follows from a direct computation. Without
loss of generality, we can thus assume J11 > 0 and J22 < 0
(as for the case of the Brusselator model). Hence, the
two coupled species should be necessarily linked via an
activator-inhibitor scheme, for the generalized instability
to eventually develop, as in the original Turing frame-
work. Recall, however, that the route to instability dis-
cussed here enables one to virtually remove all constraints
on the diffusion constants, as imposed under Turing’s
approach.

Assume thus, that y1 > 0 and y2 < 0. Observe that
when S1 vanishes, the domain D hits the x-axis with a
vertical slope (provided S2 is non-zero at the same time,
which is generically true). On the other hand, if S2 van-
ishes (but not S1, which is again true in general) then the
domain displays a vertical asymptote (the vertical dashed
line in Fig. 2 in the main text).

Collecting together the above information, we can
isolate the following possible scenarios:

A: (DuJ22 + DvJ11)2 − 4DuDvdetJ > 0 and DuJ22 +
DvJ11 < 0 (see Fig. A.1). Restricting the analysis to
the relevant domain x ≤ 0, S1(x) is always positive
while S2(x) is positive for x < y2 and negative oth-
erwise. The domain D therefore displays a vertical
asymptote at x = y2.

B: (DuJ22 + DvJ11)2 − 4DuDvdetJ > 0 and DuJ22 +
DvJ11 > 0. Here, we can identify three sub-cases,
depending on the relative positions of the roots x3,
x4 and y2.
B.1: x3 < x4 < y2 (see Fig. A.2). In the negative

half-plane the domain D is composed of the
following parts: two unbounded regions never
touching the x-axis and a bounded domain
with a finite intersection with the x-axis; the
latter can be responsible for the emergence of
Turing patterns on symmetric supports. S1(x)
changes sign twice while S2(x) is positive for
x < y2 and negative otherwise.

B.2: x3 < y2 < x4 (see Fig. A.3). In the negative
half-plane D is composed of a single domain
intersecting the x-axis. Hence Turing patterns
on symmetric supports can develop. In the
interval (y2, x4) both S1(x) and S2(x) are neg-
ative, hence the inequality S2(x)y2 ≤ −S1(x)
is satisfied for all y.

B.3: y2 < x3 < x4 (see Fig. A.4). In the neg-
ative half-plane D is composed again of a
single domain intersecting the x-axis. Hence
Turing patterns on symmetric support can pos-
sibly occur. In the interval (x3, x4) both S1(x)

Fig. A.1. The domain D: (DuJ22 +DvJ11)2−4DuDvdetJ > 0
and DuJ22 +DvJ11 < 0. Left panel: the signs of the functions
S1(x) and S2(x) for x ≤ 0. Right panel: the corresponding
domain D is depicted. Note the vertical asymptote and the fact
that the domain has a limited extension on the horizontal axis.
The domain never intercepts the x-axis. Hence, Turing pat-
terns cannot develop on a symmetric support, whose Laplacian
spectrum is real.

Fig. A.2. The domain D: (DuJ22 +DvJ11)2−4DuDvdetJ > 0
and DuJ22 + DvJ11 > 0, x3 < x4 < y2. Left panel: the signs
of the functions S1(x) and S2(x) are characterized for x ≤ 0.
Right panel: the corresponding shape of the D domain is plot-
ted. Note the vertical asymptote and the fact that the domain
has a limited extension on the horizontal axis. The domain
intercepts the x-axis over a finite interval. Turing patterns can
hence develop on symmetric supports.

Fig. A.3. The domain D: (DuJ22 +DvJ11)2−4DuDvdetJ > 0
and DuJ22 + DvJ11 > 0, x3 < y2 < x4. Left panel: the signs
of the functions S1(x) and S2(x) for x ≤ 0. Right panel: the
corresponding shape of the D domain is displayed. The domain
intercepts the x-axis over an extended zone. Turing patterns
can hence develop on symmetric supports.

and S2(x) are negative, hence the inequality
S2(x)y2 ≤ −S1(x) is satisfied for all y.

C: (DuJ22 +DvJ11)2 − 4DuDvdetJ < 0 (see Fig. A.5).
S1(x) is always positive while S2(x) is positive for
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Fig. A.4. The domain D: (DuJ22 +DvJ11)2−4DuDvdetJ > 0
and DuJ22 + DvJ11 > 0, y2 < x3 < x4. Left panel: the signs
of the functions S1(x) and S2(x) are shown for x ≤ 0. Right
panel: the corresponding profile of the D domain is depicted.
Note the vertical asymptote and the fact that the domain has
a limited extension on the horizontal axis. The domain inter-
cepts the x-axis over an extended zone, and Turing patterns
are consequently possible on symmetric supports.

Fig. A.5. The domain D: (DuJ22 +DvJ11)2−4DuDvdetJ < 0
Left panel: the signs of the functions S1(x) and S2(x) are
shown for x ≤ 0. Right panel: the corresponding shape of the
D domain is given. Note the vertical asymptote and the fact
that the domain displays a limited horizontal extension. The
domain does not intercept the x-axis. Turing patterns can-
not set in when the system is made to evolve on a symmetric
support.

x < y2 and negative otherwise in the negative half-
plane x ≤ 0. The domain D displays a vertical
asymptote at x = y2.

In the cases where Turing patterns cannot develop on
a symmetric network, namely A and C (we will also
consider case B.1 because of its peculiar shape), we are
interested in determining the straight line that passes
through the origin and is tangent to the domain D.
Because the latter domain presents a clear symmetry
y 7→ −y we will limit ourselves to considering the tan-
gency condition for positive values of y. Further we shall
denote by y = f(x) =

√
−S1(x)/S2(x) the boundary of

D.
We select a generic point on the boundary of D, that is,

a point with coordinates (x0, f(x0)) (see Fig. A.6). Then,
we consider the equation of the line tangent to the domain
in x0, i.e. y = f ′(x0)(x − x0) + f(x0). Further, we let x0

vary and among all the straight lines, we select the one
passing through the origin, i.e. setting x = y = 0 in the
previous equation. The coordinate of such a point must
hence satisfy: 0 = −x0f

′(x0) + f(x0).

Fig. A.6. Tangent to D: A schematic representation of the
tangent line passing through the origin.

Using the definition of f(x), x0 must satisfy

2S1(x0)S2(x0)− x0(S′1(x0)S2(x0)− S1(x0)S′2(x0) = 0 ,
(A.3)

which appears to be a 6th order polynomial. It can be
shown that the coefficient of x6

0 is identically equal to zero
because of the definition of Cij . We therefore have a 5th
order polynomial, that we label P5(x0). By using a sym-
bolic manipulator, we can show that −trJ/(Dv + Du) is
a root of P5(x0)4. We are hence finally left with P5(x0) =
(x0 +trJ/(Dv +Du))P4(x0), where P4(x0) is a polynomial
of 4th degree, whose roots can be analytically determined
by using well known formulas.

To proceed with the analysis, we write P4(x0) = e +
dx0 + cx2

0 + bx3
0 + ax4

0. Then the four roots read

r1 = − b

4a
− S +

1

2

√
−4S2 − 2p+

q

S
(A.4)

r2 = − b

4a
− S − 1

2

√
−4S2 − 2p+

q

S
(A.5)

r3 = − b

4a
+ S +

1

2

√
−4S2 − 2p− q

S
(A.6)

r4 = − b

4a
+ S − 1

2

√
−4S2 − 2p− q

S
, (A.7)

where

p =
8ac− 3b2

8a2
(A.8)

q =
b3 − 4abc+ 8a2d

8a3
(A.9)

∆0 = c2 − 3bd+ 12ae (A.10)

∆1 = 2c3 − 9bcd+ 27b2e+ 27ad2 − 72ace (A.11)

Q =

[
∆1 +

√
∆2

1 − 4∆3
0

2

]1/3

(A.12)

S =
1

2

√
−2

3
p+

1

3a

(
Q+

∆0

Q

)
. (A.13)

4 In fact −trJ/(Dv + Du) is a double root of S1, hence a simple
root of S′1. Inserting x0 = −trJ/(Dv+Du) into equation (A.3) yields
the identity 0 = 0.
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Fig. A.7. The case of asymmetric transport where both diffusion and drift are present. (a) We show the transport formulation
for the general case when the chemicals move to both directions with different speeds a and b. (b) The Lapalcian spectrum for
a ring of 100 cells for different choices of the parameters (a = b = 0.5 red, a = 0.3, b = 0.7 green, a = 0.15, b = 0.85 magenta,
and a = 0, b = 1 blue).

Let us call r0 any negative (real) solution. Then, we
need to evaluate f ′(r0), the slope of the line passing
through the origin and tangent to the domain D. Let us
observe that this value is related to the critical angle θ∗,
as defined in the main text (see Fig. 2), by the relation

θ∗ = −π/2 + arctan f ′(r0) . (A.14)

f ′(r0) will depend on the set of parameters involved.
As anticipated in the beginning of this section, we aim at
characterizing the dependence of f ′(r0) on ε, when setting
σ = 1± ε and for 0 < ε� 1. To this end we observe that
the coefficients C2i can be rewritten as:

C22 = D4
u(1 + ε)ε2 = Ĉ22ε

2 (A.15)

C21 = D3
u ((1 + ε)J11 + J22) ε2 = Ĉ21ε

2 (A.16)

C20 = J11J22D
2
uε

2 = Ĉ20ε
2 , (A.17)

where Ĉ2i are consistently defined by the above equalities.
As a consequence, we can factor out a term ε2 from S2(x).
This implies that f(x) can be rewritten as

f(x) =

√
−S1(x)

S2(x)
=

1

ε

√
−S1(x)

Ŝ2(x)
=

1

ε
f̂(x) ,

where Ŝ2(x) follows the definition of the coefficients Ĉ2i.
We can hence apply the above analysis to the scaled func-

tion f̂(x), which is regular in the limit ε→ 0. In particular,
we can now select the negative root(s) of equation (A.3)

(where S2 is replaced with Ŝ2 and where ε is set to zero),

say r̂0. We can then compute f̂ ′(r̂0) and conclude that

f ′(r0) = f̂ ′(r̂0)/ε. That is, the optimal slope gets steeper

as ε get closer to 0. Moreover, for any given ε the slope is
finite, as anticipated above.

A.2 Allowing for diffusion and drift

In the main text we have discussed the simplest scenario
when species are only allowed to move clockwise. The aim
of this section is to show that a similar analysis, based
mainly on the spectral properties of the circulant matrices,
can be extended also to a more general case where species
are allowed to move in both directions, across the ring,
with assigned rates. In particular, we shall denote by a
and b the rates, respectively, associated with clockwise
and anti-clockwise moves (see Fig. A.7a) for a schematic
description). We can thus describe the process occurring
at node i as follows:

u̇i = Du

∑
j

Lijuj = bui−1 + aui+1 − aui − bui

=
Du(a+ b)

2
(ui−1 + ui+1 − 2ui)

+
Du(b− a)

2
(ui−1 − ui)

=
∑
j

(
Du(a+ b)

2
LS ij +

Du(b− a)

2
LDij

)
uj (A.18)

where we have introduced the operators LS and LD to
account for, respectively, the symmetric and asymmet-
ric components of the implemented transport mechanism
where species are allowed to move in both directions,
across the ring, with assigned rates, and we have set also
a+ b = 1. Note that the Laplacian matrix is still circulant
and this observation which can be exploited to generalize
to the current setting the analysis reported in the main
text. To illustrate how the presence of diffusion shapes
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the conditions for the instability we refer to Figure A.7b.
As in the case discussed in the main text where only the
drift term is considered, even in the case when diffusion is
present the eigenvalues of the Laplacian L fill an ellipse
in the complex reference plane. This fact follows from the
formula:

Λ(α) = a+ b+ (a+ b) cos(2α/n) + i(b− a) sin(2α/n),

which returns the eigevalues of a circulant matrix. Here
n stands for the number of cells that comprise the one
dimensional lattice. Owing to the particular distribution
of the eigenvalues, one can readily extend the reasoning
developed in the main text to the general setting when
symmetric and asymmetric transport are simultaneosly
accounted for. In the pure drift case (a = 0, b 6= 0 or b = 0,
a 6= 0) the ellipse becomes a perfect circle. The asymme-
try driven patterns fade away only in the limiting setting
when a = b, i.e. when the spectrum of the Laplacian L is
real.
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