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Abstract
Longitudinal tumour volume data from head-and-neck cancer patients show that
tumours of comparable pre-treatment size and stage may respond very differently
to the same radiotherapy fractionation protocol. Mathematical models are often pro-
posed to predict treatment outcome in this context, and have the potential to guide
clinical decision-making and inform personalised fractionation protocols. Hindering
effective use of models in this context is the sparsity of clinical measurements jux-
taposed with the model complexity required to produce the full range of possible
patient responses. In this work, we present a compartment model of tumour volume
and tumour composition, which, despite relative simplicity, is capable of producing a
wide range of patient responses. We then develop novel statistical methodology and
leverage a cohort of existing clinical data to produce a predictive model of both tumour
volume progression and the associated level of uncertainty that evolves throughout a
patient’s course of treatment. To capture inter-patient variability, all model parameters
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are patient specific, with a bootstrap particle filter-like Bayesian approach developed
to model a set of training data as prior knowledge. We validate our approach against a
subset of unseen data, and demonstrate both the predictive ability of our trained model
and its limitations.

Keywords Head-and-neck cancer · Predictive model · Patient variability ·
Heterogeneity · Uncertainty · Radiotherapy

1 Introduction

Radiotherapy remains a mainstay of cancer treatment, with approximately half of
all cancer patients receiving radiotherapy as part of their standard of care (Fowler
2006; Torres-Roca 2012; Enderling et al. 2009). It is common for a patient’s course
of treatment to be determined solely by tumour etiology, location, and stage. Other
patient-specific factors, such as the intrinsic radiosensitivity and composition of a
tumour, are not typically used to inform protocol selection in the clinic (Caudell et al.
2017). Clinical studies suggest that patients at a similar tumour, node, and metastasis
(TNM) stage, andwith comparable pre-treatment tumour volumes,may responddiffer-
ently to the same radiotherapy fractionation schedule (Scott et al. 2017; Sunassee et al.
2019).Mathematicalmodels have the potential to capitalise on real-time clinical obser-
vations to both predict patient specific responses and guide clinical decision-making.
It is hoped that such a tight integration could eventually be used to personalise frac-
tionation schedules either a priori or adaptively during a patient’s course of treatment
(Enderling et al. 2019).

Challenges associated with the application of mathematical models to interpret
data and draw predictions are perhaps most acute for single-patient clinical data.
Models must be sufficiently complex to reproduce the full gamut of patient responses
(Yankeelov et al. 2013; Collis et al. 2017; Brady and Enderling 2019). However,
clinical data are often limited, typically comprising solely noisy measurements of the
gross tumour volume (GTV) at sparse time intervals throughout a patient’s course
of treatment (Brady and Enderling 2019; Harshe et al. 2023). The necessity to start
treatment as soon as possible after diagnosis means that pre-treatment predictions
are often drawn from only one or two observations. Consequently, models aimed at
clinical application are relatively simple (Prokopiou et al. 2015; Rockne and Frankel
2017), incorporate limited biological detail, and often describe only the time-evolution
of the GTV (Sunassee et al. 2019; Prokopiou et al. 2015; Rockne and Frankel 2017).
While simplicity can elicit parameter identifiability and avoid overfitting, predictions
can be poor—or even misleading—if a model is so simple as to be unable to capture
the range of observed (possible) responses. The dangers of overfitting are particularly
pronounced for single-patient clinical data used for prediction, wheremodel validation
must be assessed pre-treatment; in diametric opposition to experimental data, technical
replicates are never available. It is, therefore, crucial to validate models across a wide
rangeof responses, and to accurately quantify uncertainty in predictions used in clinical
decision-making (Brady and Enderling 2019).
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Fig. 1 Gross tumour volume (GTV) measurements taken during radiotherapy. a Example CT scan of an
oropharyngeal cancer patient throughout treatment, showing tumour contoured in blue (data courtesy of
CD Fuller and MD Anderson). b–e Clinical data representing four qualitatively different radiotherapy
results. Predictions from the mathematical model, along with a 95% credible interval for the modelled
observation means, are shown in purple. In all cases, the radiotherapy schedule starts at the time of the
second observation. The four patients shown are excluded from the training data analysed in later parts of
our study. The units of GTV are given as the fold change (FC) relative to the initial volume (colour figure
online)

In this work, we present a predictivemathematical modelling framework using clin-
ical GTV data from a previously published cohort of head-and-neck cancer patients
who exhibit a variety of treatment responses (Fig. 1) (Zahid et al. 2021a, b). The pri-
mary goal of our framework is to integrate previously observed clinical observations
to predict the time course of radiotherapy response in new patients. To demonstrate
our framework, we focus our analysis on prediction of the tumour volume progres-
sion in four patients presented in Fig. 1 and in our previous work Lewin et al. (2020):
these patients are excluded from the otherwise randomly-selected cohort of patients
used to train the mathematical model. All patients in the clinical data set receive a
standard radiotherapy fractionation schedule, comprising fractions of 2Gy delivered
on weekdays over a four- to seven-week period (Lewin et al. 2016). To keep our study
as widely applicable as possible, we work with the most fundamental, albeit limited,
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mode of single patient data. Computed tomography (CT) scans are routinely used
to image tumours pre-treatment at both the diagnosis and treatment planning stages
(Fig. 1a) (Stevens et al. 2013; Sharma et al. 2016; Wang et al. 2009). Further scans,
such as cone beam CT, may be taken upon the delivery of each fraction but are usually
used solely for alignment purposes; for our data, scans were available once per week
during treatment. TheseCT scans are not of a high spatial resolution, are noisy, of a low
contrast, and do not differentiate heterogeneity in tumour composition. As such, only
noisymeasurements related to an estimate of the GTV are available at relatively sparse
intervals throughout each patient’s course of treatment (typically, once per week). The
heterogeneity in radiotherapy response exhibited in Fig. 1b–e raises several impor-
tant questions: in particular, how early into treatment can a practitioner determine if
a patient is responsive, and to what extent is it possible to predict the final tumour
volume during treatment using only GTVmeasurements? Given the side-effects asso-
ciated with radiotherapy, and possible indirect costs of switching treatments at too late
a TNM stage, any improvement in prediction accuracy is of great clinical value.

Mathematical models of tumour progression vary significantly in complexity; rang-
ing from simple phenomenological models of GTV, such as logistic and Gompertz
growth (Sachs et al. 2001; McAneney and O’Rourke 2007; Rockne et al. 2010;
Chvetsov 2013; Prokopiou et al. 2015; Tariq et al. 2016; Poleszczuk et al. 2018;
Browning and Simpson 2023), to highly detailed spatial models that capture multiple
facets of tumour heterogeneity (Greenspan 1972;Rockne et al. 2010; Lewin et al. 2018,
2020; Browning and Simpson 2023). The limitations and challenges imposed by clin-
ical data yield an overrepresentation of the former, meaning that the functional forms
for both growth and radiotherapy response are motivated almost entirely by empirical
observations rather than the underlying biological mechanisms. Yet, it is now well
established that intra-tumour heterogeneity and the tumour microenvironment play
important roles in overall growth, and may significantly influence treatment outcome
(Ribba et al. 2006; Rockne et al. 2009, 2015; Lewin et al. 2018, 2020; Browning et al.
2021). Motivated by these findings and in consideration of the noisy data available for
prediction, we take an intermediate approach and utilise a two compartment extension
of the so-called proliferation-saturation-index (PSI) model of Prokopiou et al. (2015)
and later Poleszczuk et al. (2018). This choice of ordinary differential equation (ODE)
model balances simplicity, through a phenomenological description of radiation-free
tumour growth saturation, with biological detail, through a radiotherapy response cor-
responding to a transfer of cellular material from a living to a dead state. Compared
with purely statistical or machine learning models, our mathematical approach allows
a full, interpretable, integration of clinical data from individuals, whereby the radio-
therapy schedule is imported directly from the reported patient fractionation schedule.
Finally, our model contains sufficient detail to allow us to quantify the potential util-
ity of expanding clinical data collection to include information relating to tumour
composition in addition to GTV.

We take a Bayesian pseudo-hierarchical approach to inference and model calibra-
tion, by leveraging observed population-level information to draw predictions and
quantify corresponding levels of prediction uncertainty. To account for inter-patient
heterogeneity, all model parameters are allowed to vary between patients. A schematic
of the approach is provided in Fig. 2. In contrast to standard Bayesian hierarchical
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Fig. 2 Pseudo-hierarchical approach used in the analysis. Devoid of any data, knowledge about model
parameters is encoded in the “first-level prior”, denoted by p1(θ), and is used to individually form a
set of posterior distributions for patients in the training set. The “second-level prior”, denoted by p2(θ),
represents knowledge gained from analysis of the training set and is used to form posterior distributions for
new patients, denoted by pnew(θ |Dnew). In effect, the approach identifies patients in the training set with
possibly similar outcomes to new patients

approaches, we do not make any parametric assumptions relating to the distribution
of model parameters between individuals. Instead, we build up a population-level
posterior distribution by calibrating the model to individual patients in a set of train-
ing data. As illustrated in Fig. 2, this population-level posterior distribution forms the
prior for analysis of new patients. In effect, the prior distribution for new patients
quantifies a set of possible patient outcomes based on those observed in the training
data. Successively applying the Bayesian inference algorithm as data becomes avail-
able throughout a patient’s course of treatment allows us to update this potential set of
future outcomes and the corresponding uncertainty in tumour volume.We validate our
approach by first exploring prediction ability on synthetic data, and then prospectively
making predictions on the four patients presented in Fig. 1b–e as they undergo their
course of treatment.

2 Methods

In this section,weoutline the clinical data, and themathematical and statisticalmethod-
ology developed and later employed in this work. First, in Sect. 2.1 we describe and
present the clinical data set used for quantitative analysis and which demonstrate
four disparate treatment response classifications. Secondly, in Sect. 2.2 we present
a mechanistic mathematical model of tumour volume progression, along with a set
of objective criteria that we use to classify model realisations into the four observed
classifications. Subsequently, in Sect. 2.3 we present a statistical model that connects
model predictions to clinical measurements. In Sect. 2.4 we outline the novel sta-
tistical methodology employed in the analysis. Finally, in Sect. 2.5 we outline the
procedure for resampling from the joint posterior to produce synthetic patient data. A
Julia implementation of the model and inference algorithm, along with data used in
the analysis, are available on GitHub.1

1 https://github.com/ap-browning/clinical-inference
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2.1 Tumour Volume Data

Current clinical practice involves two CT scans collected for each patient; one at
diagnosis and one at treatment planning. These scans are then used to estimate GTV
(Wang et al. 2009; Stevens et al. 2013; Sharma et al. 2016). While it is feasible to
obtain further scans at the time of delivery of each fraction, these scans are often of a
low quality, being used primarily to position the patient. As such, they are not typically
stored for research purposes.

In this paper, we use retrospective volumetric data, collected weekly, from
head-and-neck cancer patients, across multiple anatomical locations, including the
oropharynx, tonsil and base of tongue. Patients were immobilised via a thermoplas-
tic mask with or without bite block. Isocenter and positioning was verified daily via
orthoganal kV or CBCT imaging. Each CT scan was segmented by the same radi-
ation oncologist, giving weekly tumour volumes throughout treatment in addition
to a volume measurement at the treatment planning stage. Weekly cone beam CT
(CBCT) scans were extracted from the record and verify system (Mosaiq, Elekta).
Suitable CBCTs with minimal artifact were selected for contouring. Clinical target
volume (CTV) was created from GTV with a 5mm isotropic expansion. CTV was
then trimmed from barriers to spread including air, bone, fascial planes, and in some
casesmuscle. Planning target volume (PTV)was created fromCTVvia 3mm isotropic
expansion. An example suite of contoured CT scans from a single patient is shown in
Fig. 1a. The GTV data shown in Fig. 1b–e correspond to those presented and discussed
in Lewin et al. (2020). In total, GTV data from 51 patients was collected and made
available as supplementary material. All methods were carried out in accordance with
the institutional policies of the Moffitt Cancer Center. The clinical protocol cover-
ing patient data and methods used in this paper was approved by the Moffitt Cancer
Center’s Institutional Review Board (IRB). Since this is a retrospective study using
de-identified data of adult human subjects, informed consent was waived by the IRB.

2.2 Mathematical Model

Mathematical models of tumour growth and, to a lesser extent, radiotherapy response,
are well established (Araujo and McElwain 2003), ranging from compartmental ODE
models (Sachs et al. 2001; Chvetsov et al. 2009; Wang and Feng 2013; Chvetsov et al.
2014; Prokopiou et al. 2015; Tariq et al. 2016; Sunassee et al. 2019; Browning and
Simpson 2023) and spatially-resolved partial differential equation models (Greenspan
1972; Rockne et al. 2009, 2010, 2015; Lewin et al. 2018; Browning et al. 2021;
Browning and Simpson 2023), to agent-based models (Enderling et al. 2009; Gao
et al. 2013; Alfonso et al. 2014; Powathil et al. 2013, 2016; Richard et al. 2007) and
purely probabilistic models (Zaider andMinerbo 2000; Hanin 2004; Gong et al. 2011;
Bobadilla et al. 2017).

Given the limitations imposed by GTV clinical data, we present a relatively simple
mathematicalmodel that is able to capture the four classes of tumour response observed
in Fig. 1. In particular, we extend the PSI model (Poleszczuk et al. 2018) to include
a simple measure of tumour composition by modelling the volume of both living
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cells, L(t), and necrotic debris, N (t). The GTV is given by V (t) = L(t) + N (t).
Living cells proliferate logistically with rate λ d−1 and carrying capacity K [V (t)],
and potentially undergo necrosis at rate η d−1. Given that the growth dynamics occur
on a much slower timescale than the interval during which the patient receives each
fraction, we model radiotherapy as an instananeous transfer of living cells to necrotic
debris at record-informed dosing times ti , i = 1, 2, . . . , n. The model equations are
given by

dL

dt
=

Growth
︷ ︸︸ ︷

λL

(

1 − L

K

)

−
Necrosis
︷︸︸︷

ηL −

Radiotherapy
︷ ︸︸ ︷

γ L
n

∑

i=1

δ(t − ti ),

dN

dt
= ηL − ζN

︸︷︷︸

Decay

+ γ L
n

∑

i=1

δ(t − ti ),

(1)

where δ(t − ti ) is a delta function, representing a transfer of a volume γ L from the
living compartment to the dead compartment, such that γ d−1 quantifies the strength
of radiotherapy response. We assume further that necrotic material is degraded at a
constant rate ζ d−1. To capture inter-patient heterogeneity, all parameters are allowed
to vary between patients (Lawson et al. 2018).

The data suggest that initial GTV is comparable between responsive and poorly
responsive patients (Table 1). Therefore, we normalise L(t) and N (t) with the initial
GTV such that V (0) = 1 and describe the initial tumour composition as

L(0) = 1 − φ0, N (0) = φ0, (2)

where 0 ≤ φ0 ≤ 1 is an unknown, patient-specific parameter to be estimated that
represents the proportion of the tumour occupied by dead material at t = 0. We note
further that the interpretation of the carrying capacity parameter K iswith respect to the
measured initial GTV. Thus, GTVmeasurements presented throughout the paper may
be interpreted as the fold change (FC) compared to the initial GTV. The interpretation
of all other parameters remains unchanged by this choice of units.

In the supplementary material (Figs. S1 and S2), we perform a parameter sweep
across parameters relating to necrosis and necrotic material decay (η and ζ , respec-
tively), for a patient subject to daily doses of radiotherapy on weekdays over a six
week period, to verify that the model is able to reproduce the wide range of dynamics
observed in the clinical data. While the parameter sweep is not exhaustive, the results
demonstrate that varying only these two parameters is sufficient to produce the range
of responses observed in Fig. 1.

2.2.1 Classifying Responses

We observe four classes of qualitative response within the clinical data, as highlighted
in Fig. 1 and summarised in Table 1. In Fig. 1b, the patient responds well to radiother-
apy, with the tumour decreasing markedly in volume throughout treatment. Hereafter,
we refer to a patient exhibiting this type of behaviour as a fast responder. By contrast,
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Table 1 Prior classification of each patient response class, based on the full posterior, p(θ |{Di }ni=1) and
the second-level prior p2(θ), the latter corresponding to an expanded kernel density estimate constructed
from samples of the full posterior

Classification Proportion Initial volume [cm3]
p(θ |{Di }ni=1) p2(θ) Mean Std. Count

(∗) Fast responder 0.8763 0.6278 16.8 11.6 35.0

Poor responder 0.0598 0.3473 20.2 7.3 2.4

(∗) Plateaued response 0.0035 0.0021 3.4 4.8 0.1

(∗) Pseudo-progression 0.0604 0.0228 13.7 12.0 2.4

Eventual response (∗) 0.9402 0.6527 16.6 11.7 37.6

The statistics related to the initial volume are based on the classifications of the prior samples corresponding
to each patient in the training set, hence non-integer counts arise due to probabilistic classification of
patients. An approximate statistical test, based on Welch’s approximate unequal variance t-test (Welch
1947), indicates no statistically significant difference between fast and poor responders (P = 0.582), nor
between responders (∗) and poor responders (P = 0.557). Asterisks indicate classifications corresponding
to patients who show an eventual response

there are patients for whom the effects of radiotherapy appear to be marginal when
viewed in terms of tumour volume over time alone, as is the case in Fig. 1c. We clas-
sify these patients as poor responders. In a number of cases, the initial response of
the tumour to radiotherapy appears to be favourable, but the response plateaus in the
latter stages of treatment, resulting in a non-negligible final tumour volume (Fig. 1d).
Such patients are classified as having a plateaued response. However, this radiographic
volume may subsequently recede in the weeks after radiotherapy. Occasionally, as in
Fig. 1e, a patient may appear to exhibit continued tumour progression throughout the
first few weeks of radiotherapy before showing a delayed response, characterised by
a decrease in tumour volume towards the end of treatment. We characterise this type
of response as pseudo-progression.

We classify a model realisation into one of four classes of response based on a
standard patient receiving doses on weekdays over a six week period, with CT mea-
surements taken at the start of each treatment week and at the time of the final dose
(the pre-treatment volume measurement is not used to classify patients). Based on the
set of noise free synthetic measurements generated from the model, we define each
classification according to the following quantitative criteria.

1. Poor responder. All measurements above 85% of the volume observed at the start
of treatment.

2. Responder. At least one measurement below 85% of the volume observed at the
start of treatment. Responders are further classified:

(a) Pseudo-progressor. A second (noise-free) measurement greater than 102% of
the first following radiotherapy onset.

(b) Plateaued response.Not a pseudo-progressor,with a finalmeasurement greater
than 20% of the initial, and with a final rate-of-change less than 10% of the
maximum rate-of-change observed.

(c) Fast responder. Not in any other classification.
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The specific thresholds chosen in the classification algorithm yield excellent results
that reliably distinguish between each class (Fig. S4). However, the relatively small
number of plateaued responders and pseudo-progressors in the training set (Table 1)
suggests that the criteria will need to be reassessed shouldmore data become available.

2.3 Statistical Model

We take a standard approach and assume that CT scan data are independent and
normally distributed about the model prediction (Kreutz et al. 2012) such that

Vobs ∼ N
(

Vtotal, σ
2(Vtotal)

)

, (3)

where the standard deviation

σ(Vtotal) = α1 + α2Vtotal, (4)

is assumed to be a linear function of GTV such that the statistical model captures both
additive and multiplicative normal noise: α1 represents an absolute contribution to the
variance, and α2 a relative contribution.

While the dynamical parameters are assumed to vary between patients, we assume
that the noise parameters remainfixed.Therefore,wepre-estimate the noise parameters
α1 and α2 by first inferring them alongside dynamical parameters for each patient. We
then pool an equal number of noise parameter posterior samples for each patient
and approximate (α1, α2) as the marginal posterior mode. We are motivated to take
this relatively standard approach of pre-estimating the noise parameters to reduce
both the dimensionality of the parameter space and the complexity of the statistical
methodology.

2.4 Bayesian Inference

An important difference between clinical and experimental data relates to the sam-
ple size: in clinical studies, each patient undergoes therapy only once. Given that
patients are highly heterogeneous and data are relatively limited (Fig. 1), this poses a
significant statistical challenge for computational inference. To account for this, we
take a pseudo-hierarchical approach to inference and prediction by first training the
model on a subset of the data (the training set). We are motivated to develop this novel
approach to inference as opposed to a more standard Bayesian hierarchical approach
as there is no sensible means by which to propose a particular distributional form for
the joint parameter distributions at the population-level: given the distinct classes of
response observed in Fig. 1, for example, we expect the joint parameter distribution to
be multimodal. The correlation structure between model parameters is also unclear.

From a full cohort of 51 patients, we randomly select a group of 40 patients to act
as the training set; these patients represent those that have been observed throughout
an entire course of treatment, prior to the present. For each patient in the training set,
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Table 2 Parameters and first-level prior distributions

Parameter Units Prior Description

λ d−1 log λ ∼ U(−10, 0) Cell proliferation rate

K − log K ∼ U(0, 5) Carrying capacity

γ d−1 log γ ∼ U(−10, 0) Radiotherapy response

ζ d−1 log ζ ∼ U(−10, 3) Necrotic debris decay rate

η d−1 log η ∼ U(−10, 3) Cell necrosis rate

φ0 − logφ0 ∼ U(−5, 0) Initial necrotic proportion

The description relates to the exponentiated log parameter

we assume that initial knowledge about the model parameters is encoded in a “first-
level prior”, p1(θ), where θ = (log λ, log K , log γ, log ζ, log η, logφ0) (Fig. 2). We
then update our knowledge about the parameters pertaining to patient i using Bayes
theorem such that

p(i)(θ |Di )
︸ ︷︷ ︸

Posterior i

∝ p(Di |θ)
︸ ︷︷ ︸

Likelihood

p1(θ), (5)

whereDi represents data (including both volume measurements and the radiotherapy
schedule) for patient i . We choose p1(θ) to an independent multivariate uniform (see
Table 2 and Fig. 3), an uninformative choice.

The posterior for patient i can be interpreted as the full posterior, conditioned on
knowledge that the parameters relate to patient i

p(i)(θ |Di ) = p(θ |{Di }ni=1, i). (6)

The full posterior can be obtained by marginalising over all patients in the training
set and is given by

p(θ |{Di }ni=1) =
∑

i

wi p
(i)(θ |Di ), (7)

where wi = P(i) represents the prior probability (i.e., weighting) of patient i . The
result in Eq. (7) follows immediately from Eq. (6) by the law of total probability. For
simplicity, we set wi = const, however, such weights may be allowed to differ if
additional knowledge informs patient similarity; for example, based on characteristics
known to affect radiotherapy response, such as the clinical stage or age of a patient
(Belgioia et al. 2021). Another way to interpret the full posterior is that of a uniform
mixture of the individual-level posterior distributions. We then denote the full pos-
terior as the “second-level prior”, p2(θ), which represents our knowledge about the
parameters when analysing new patients (we drop notational dependence on already
observed data for convenience) (Fig. 2). An interpretation of our procedure is to iden-
tify the similarity between the new patient and the observed treatment outcomes for
patients in the training set, and to combine the additional knowledge obtained from
past patients when predicting outcomes for the new patient. In Fig. 3 we compare the
first-level prior p1(θ) to the full posterior (Eq. (7)), and in Fig. 4 we show pairwise
marginal distributions of samples from the full posterior (Eq. (7)).
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Fig. 3 Parameter posteriors from analysis of training data. First-level prior distribution (blue) and full
posterior (purple) following analysis of the training data. The first-level prior, p1(θ), comprises independent
uniform distributions in the log of each unknown parameter. Parameters relate to the cell proliferation rate,
λ, the carrying capacity, K , the radiotherapy response strength, γ , the decay rate of necrotic debris, ζ , the
cell necrosis rate, η, and the initial proportion of the population that is necrotic, φ0 (colour figure online)

Given a possibly temporally incomplete set of measurements from a new patient,
Dnew, the posterior distribution of the parameters is again given by

pnew(θ |Dnew) ∝ p(Dnew|θ) p2(θ). (8)

A simple technique to obtain a set of weighted samples from pnew(θ |Dnew) is to apply
a bootstrap particle filter to pre-obtained samples from p2(θ). Since patients in the
training set are weighted equally, these may comprise a concatenation of samples
from each posterior (we obtain these using an adaptive MCMC algorithm (Vihola
2020), diagnostic statistics and convergence plots are given as supplementary mate-
rial). An advantage of the bootstrap particle filter approach is that it requires minimal
computational effort to update the posterior for new patients. The primary limitation
introduced by this choice is that we cannot distinguish between parameters that vary
between patients and those that are fixed: hence, we pre-estimate and fix the noise
parameters in this work.

In practice, this approach may be problematic since patients in the training set are
unlikely to be identically representative of new patients, particularly for small training
sets (in our case, n = 40). In the bootstrap particle filter, this would lead to a small
number of heavily weighted particles (that may or may not produce model realisations
similar to the new patient data). We address this potential issue by forming p2(θ) by
resampling perturbed particles from p(θ |{Di }ni=1) using a multivariate normal distri-
bution with covariance matrix, denoted 
ε, constructed by expanding the covariance
matrix of Silverman’s rule for kernel density estimation,


ε = β

(

4

m(dim(θ) + 2)

) 1
dim(θ)+4

diag (
θ ) , (9)
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where β is an expansion factor (we choose β = 2), m is the number of samples of
θ |{Di }ni=1 and 
θ is the covariance matrix of the samples. We reject samples outside
the support of the first-level prior p1(θ) (see Table 2), in effect constructing p2(θ) as
a kernel density estimate with truncated multivariate normal kernels. This approach is
also similar to a one-step sequential Monte Carlo algorithm (Moral et al. 2006).

2.4.1 Quantifying Goodness-of-Fit

We quantify goodness-of-fit using the so-called Bayesian R2 statistic (Gelman et al.
2019), defined for a single posterior sample by

R2 = Var(Vfit)

Var(Vfit) + Var(Vfit − Vobs)
, (10)

where Vfit denotes the set of fitted values, and Vobs denotes the set of observed values.
A given posterior distribution yields a distribution of R2 statistics: in this work, we
report the median of the resultant distribution. Similarly to the frequentist R2 statistic,
a Bayesian R2 statistic of unity indicates that the model captures all data variability
(i.e., the variance of residuals, Var(Vfit − Vobs), is zero), while a Bayesian R2 statistic
of zero indicates that all fitted values lie on a horizontal line (hence, we expect low
R2 statistics for poor responders).

2.5 Generation of Synthetic Patient Data

We generate synthetic patient data by resampling parameters from the full posterior
and exposing patients towhatwe have previously referred to as a standard radiotherapy
regime (weekday doses over a six week period, with CT measurements taken at the
start of each treatment week and at the time of the final dose). Noise is added to syn-
thetic measurements according to the statistical model (Sect. 2.3) with pre-estimated
noise parameters. Synthetic data from a patient exhibiting a specific classification are
produced by utilizing only full posterior samples that produce the classification of
interest.

3 Results and Discussion

3.1 Model Calibration and Patient Classification

To verify that the two compartment model can capture the range of radiotherapy
responses observed in situ, we first calibrate the untrained mathematical model to
data from single patients in Fig. 1b–e using MCMC with the first-level prior. Best fits,
along with the associated uncertainty in GTV, are shown alongside data in Fig. 1b–e.
Overall, the model is able to reproduce clinical observations, although it has some
difficulty distinguishing between fast responders and plateaued responses. Given that
the plateaued response in Fig. 1d is diagnosed as such from only the last three obser-
vations, we attribute the potential for misclassification to uncertainty in the clinical
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Fig. 4 Parameter clustering according to classified patient response. Kernel density of the full posterior
distribution, following analysis of the training data set. Samples are classified into one of four patient
responses according to criteria set out in Sect. 2.2.1, and kernel density estimates of bivariate marginal
distributions conditioned on each classification shown. To aid comparison in the vicinity of themode of each
conditional posterior, only regions with densities greater than 50% of the maximum are shown. Parameters
relate to the cell proliferation rate, λ, the carrying capacity, K , the radiotherapy response strength, γ , the
decay rate of necrotic debris, ζ , the cell necrosis rate, η, and the initial proportion of the population that is
necrotic, φ0

observations (i.e., the noise model) and the lack of proceeding data points; it is impos-
sible to tell whether this patient will continue to respond should treatment continue.
Similar results are also seen for synthetic patients in the supplementarymaterial, where
patients that actually exhibit a plateaued response are classified as fast responders in
the presence of noise (Fig. S2).

Confident that themathematicalmodel can capture the observed range of responses,
we proceed to train the model by sampling from the posterior for each of the 40
patients in the training set. The full posterior, formed by concatenating equal numbers
of posterior samples from each patient in the training set (Eq. 7), is shown alongside
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the prior in Fig. 3. Note that the full posterior represents parameter combinations that
can be attributed to patients throughout the population (the parameters vary patient-
to-patient), and does not represent uncertainty in each parameter within any individual
patient. Therefore, we are less interested in whether such parameters are identifiable,
but rather that the full posterior now contains knowledge about the set of patient
responses observed in the training set.

The correlation structure in the joint posterior is extremely important: marginal
densities provide little information about each parameter and produce meaningless
predictions when sampled independently. Therefore, in Fig. 4 we investigate the cor-
relation structure by examining the set of pair-wise bivariate marginal distributions.
To gauge how parameter combinations vary with each radiotherapy response classi-
fication, we classify each posterior sample into a response class based on the criteria
set out in Sect. 2.2.1. The proportion of samples attributed to each class is shown in
Table 1.

First, it is evident from results in Fig. 4 that the predicted value of the initial necrotic
proportion, φ0, does not vary between fast and poor responders. This is seen in bivari-
ate denisties between φ0 and all other parameters. The statistic does, however, appear
to distinguish pseudo-progressors from the other response types: estimates for φ0 sug-
gest that tumours in such patients contain a much larger necrotic region pre-treatment.
Faster responders are characterised in relation to poor responders by both a higher
radiotherapy sensitivity, γ , and necrotic material decay rate, ζ . The necrotic mate-
rial decay rate also appears to distinguish poor, fast, and plateaued responders: poor
responders through a very low decay rate, plateaued responders by a high decay rate,
and fast responders an intermediate rate. Finally, results in Fig. 4 suggest that pseudo-
progressors are characterised by both a high cell proliferation rate and correspondingly
high radiotherapy response.

3.2 Model Predictions

Given that the training set is relatively small, a potential obstacle is that responses of
new patients may not be similar enough to those of existing patients to produce reliable
predictions; indeed only 6.0% of posterior samples correspond to patients that exhibit
a poor response to treatment. To address this with the existing data, we “expand”
the full posterior to form the second-level prior, p2(θ), by resampling and perturbing
(essentially, forming p2(θ) as a multivariate kernel density estimate based on the
full posterior, with a kernel variance expanded from Silverman’s rule to account for
new patient dissimilarity). The updated proportions, based on 100,000 samples from
p2(θ), are given in Table 1 and suggest an updated prior probability of a new patient
exhibiting a response at 65.3%. An alternative approach that is beyond the scope of
the current work would be to stratify perturbed full posterior samples based on an
external and accepted classification ratio: for example, to choose the prior weights
{wi } to achieve a desired prior ratio of patients in each classification. These results
highlight the difficulty of classifying patient outcomes based on a relatively small
cohort of patients with little prior parameter knowledge. Using the first-level prior
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Fig. 5 Temporal predictions for four synthetic patients. Synthetic data from patients exhibiting a a fast
response; b a poor response; c a plateaued response; and d pseudo-progression, are produced and used for
predictions at various stages through the patient’s treatment regime. In each case, the vertical dashed line
indicates when the prediction is made: opaquemarks indicate already-observed data used to produce predic-
tions, semi-transparent marks indicate the future, as yet unobserved, trajectory. Predictions are represented
as means (solid), 50% credible intervals (dark black or red shading), and 95% credible intervals (light black
or red shading) constructed from weighted posterior samples. Model trajectories are coloured black (for
retrospective predictions of tumour progression up to the present) and red (for prospective predictions of
future tumour progression) (colour figure online)

(i.e., excluding all knowledge gained through analysis of the training data) further
reduces the prior probability of an eventual response to 44.7%.

We first assess the predictive ability of our trained model by generating data from
four synthetic patients exhibiting a fast response (Fig. 5a); a poor response (Fig. 5b);
a plateaued response (Fig. 5c); and pseudo-progression (Fig. 5d). Given that each set
of patient-specific parameters is resampled from the full posterior, we expect each
synthetic patient to display a similar response to at least one patient in the training set.
Additionally, as each set of synthetic data is generated by the mathematical model,
we are guaranteed that the observed response is within the possible gamut of model
responses. We provide a table summarising the parameter values used for each patient
in the supplementary material (Table S1).

In Fig. 5 we simulate real-time predictions by calibrating and forming predictions
each week throughout treatment (i.e., at the time of each weekly CT scan). We show
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Fig. 6 Predictions for four synthetic patients. For the four patients analysed in Fig.5 we show a–d the evo-
lution of the posterior distribution relating to radiotherapy response, γ ; and e–h the evolution of predictions
for the relative tumour volume at the conclusion of treatment. In all cases, data up to, and including, the
relevant time are included in the prediction. In e–h, we show the mean (black disc), and both 50% and 95%
credible intervals for the final tumour volume, together with the true final tumour volume (red dashed),
both given as the fold-change (FC) relative to the initial volume, V (0). The true values of γ used for each
patient are given as supplementary material (Table S1) (colour figure online)

predictions made at the start of treatment (t = 14 d), and every second week following
(t = 28d, 42d and 56d). The results shown for t = 56 d correspond to retrospective
analysis of the trajectory, after all measurements have been taken, while the predictions
drawn at t = 14 d are made pre-treatment, before any radiotherapy response has been
observed. As a class under-represented in the data set and hence the prior, predictions
made for the pseudo-progressor at t = 28 d almost entirely miss the true trajectory.
Consequently, the single data point at t = 28 d that sees a decrease is judged alongside
both prior knowledge and potential measurement noise.

To quantitatively compare the time-evolution of prediction confidence, we plot in
Fig. 6a–d the evolution of posterior information relating to the radiotherapy response,
γ , and in Fig. 6e–h the time evolution of predicted final tumour volume (i.e., the
fold-change GTV at t = 56 d compared to the measurement at t = 0 d). The most
immediate result is that both the fast responders and pseudo-progressors yield a pos-
terior density for γ higher than that for the poor-responders. The results in Fig. 6e
show that the predicted final GTV quickly narrows around the true value for the fast
responder, but takes longer for the plateaued progressors and pseudo-responders. At
the same time, the results in Fig. 6f show that by two weeks into treatment, the model
predicts with 95% confidence that a patient will not see a final GTV less than 50%
of that pre-treatment. The results in Fig. 6g highlight again the difficulties faced when
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Fig. 7 Temporal predictions for the four patients excluded from the training set. We reproduce the analysis
from Fig. 5 for the four patients in Fig. 1. These patients were not included in the training set, and so
these results are representative of clinical predictions made throughout a new patient’s course of treatment.
Patients were classified previously as a a fast responder; b a poor responder; c exhibiting a plateaued
response; and, d exhibiting pseudo-progression. Results related to the remaining seven patients excluded
from the training set are given in the supplementary material (Fig. S6)

drawing predictions for patients exhibiting relatively rare responses: working with
synthetic data eliminates the question of model-misspecification, however the 95%
credible intervals produced from predictions drawn at t = 21 d and t = 28 d do not
cover the true value (which can be calculated by resimulating data from each synthetic
patient without measurement noise). Given GTV alone, it is not until t = 42 d (four
weeks into treatment) that the model predicts with 95% confidence that the patient’s
tumour will eventually see a reduction in volume. This is in line with previous reports
that mid-treatment responses correlate with outcome (Zahid et al. 2021b).

3.2.1 Clinical Data

Now that we have validated the model’s ability to predict the time course of GTV
for synthetic patients with a variety of radiotherapy responses, we turn to focus on
drawing real-time predictions from unseen clinical data.

In Figs. 7 and 8, we repeat the analysis performed in Figs. 5 and 6 for the four
patients initially exhibited in Fig. 1.We remind the reader that, although we previously
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Fig. 8 Predictions for the four patients excluded from the training set.We reproduce the analysis from Fig. 6
for the four patients in Fig. 1b–e. These patients were not included in the training set, and so these results
are representative of clinical predictions made throughout a new patient’s course of treatment

demonstrated that the model can reproduce the clinical observations for these four
patients, none were included in the training set. Hence, predictions drawn up to a
particular time include only GTV data up to and including that time, and knowledge
gained from the training set. For completeness, in the supplementary material we
reproduce the results in Fig. 7 for all 51 patients using a leave-out-one-cross-validation
approach, where predictions for each patient are drawn from a training set comprising
the other 50 patients.

At the time of treatment onset (t = 14 d in Fig. 7a, b and t = 12 d in Fig. 7c, d),
predicted trajectories are similar and predominantly represent prior knowledge from
the training set. By day 28, for the fast responder, and day 21, for the patient that
eventually exhibits a plateaued response, the model predicts with 95% confidence that
the patient will eventually achieve an overall reduction in tumour volume. Indeed,
for both of these patients the precision in predictions of the final tumour volume
narrows quickly around what is eventually observed. In contrast, at day 28 the patient
that eventually exhibits a poor response sees roughly half of all predicted trajectories
indicating an eventual increase in volume, and half a decrease. Throughout treatment,
themean prediction remains around the eventually observed value of unity. The results
for the pseudo-progressor mirror those observed in the synthetic data: the predictions
are perhaps initially misleading due to the relatively small (2.3%) prior probability of
a patient exhibiting such a response.

To quantitatively explore the model’s ability to predict patient classification, in
Fig. 9 we plot the posterior classification probabilities for predictions drawn at each
time point, in addition to a pooled classification probability of a patient displaying
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a response (i.e., not a poor responder). Initially, at t = 0 d, the classification proba-
bilities represent those in the second-level prior, p2(θ) (Table 1). The most notable
results are for the relatively rare classifications of plateaued response and pseudo-
progressor. In the case of the former, the patient has a posterior classificationmode (i.e.,
the most likely classification given all the information collected during the patients’
course of treatment) of a fast responder. This again highlights the difficulties distin-
guishing plateaued responses from observation noise seen in faster responders. The
pseudo-progressor, however, begins to gain a correct posterior classification probabil-
ity by t = 42 d, just over four weeks into treatment. The classifications following the
first measurement at t = 14 d are qualitatively similar to that observed in the prior,
subsequent measurements which show an increase in gross tumour volume lead to
classification as a poor responder, highlighting the limitations of the currently trained
model in distinguishing pseudo-progressors from poor responders.

To explore the relative value of existing and newly collected information, in the
supplementary material we produce additional results that show temporal predictions
for both synthetic and validation patients, produced using the uninformative (i.e., first-
level) prior. These results correspond to a prior probability of 44.7% that a patient will
eventually respond to treatment; much lower than that estimated from analysis of the
training data (94.0%) and that in the second-level prior (65.3%). For the synthetic
patients presented in Fig. 5, the results show a decrease in prediction fit (as measured
by Bayesian R2) for predictions drawn prior to t = 28 d. For times later than t = 42 d,
predictions drawn using both the uninformative and informative priors are comparable.
Similar results are seen for the validation patients presented in Fig. 7, although the
differences are less pronounced from the third-post-radiotherapy observation point
onwards. The difference between results for the synthetic and validation patients is
expected: the informative prior is known to be representative for the synthetic patients,
whereas we do not have this guarantee for the validation patients. Hence, observed
information is more important than prior information in newly informed patients that
are not well-represented by the prior.

3.3 Value in CollectingMeasurements of Tumour Heterogeneity

The weekly GTV used for our analysis already exceeds clinical practice of just two
pretreatment CT scans per patient. To assess the potential value of collecting higher-
quality scan data that additionally enables identification of the tumour’s necrotic
volume, we repeat our analysis of the synthetic patient in Fig. 5a given that noisy
measurements of both V (t) and N (t) are now available. The results in Fig. 10a, b
show that, by day 28, relatively precise predictions relating to the trajectories of both
variables can now be made. In Fig. 10c we quantitatively compare predictions for the
final GTV in both scenarios. As expected, more precise estimates can be made should
data relating to both variables be available.

In Fig. 11, we repeat the analysis for two new synthetic patients that experience
a poor response. In the case of the first patient, a small gain in predictive ability is
seen from the inclusion of necrotic volume measurements (Fig. 11c); interestingly,
this improvement is not seen for the second patient (Fig. 11f). Overall, these results
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Fig. 9 Classification of the four patients excluded from the training set. We predict each patient’s classified
response using data up to and including the relevant time (height of each region indicates the predicted
proportion). The predicted probability of the patient responding (i.e., receiving a classification that is not
that of a poor responder) is shown in black dashed. Before the start of treatment, the predicted classifications
correspond to those of the second-level prior in Table 2

highlight a key challenge with using the population-calibrated mathematical model
to draw predictions relating to tumour composition and the underlying cause of a
poor response, particularly given the wide-ranging spatial compositions seen in poor
responders. The first synthetic patient exhibits a poor response due to the development
of a tumour comprising almost entirely necrotic material, which does not degrade
(Fig. 11b), while the tumour composition in the second synthetic patient is perhaps
more realistic, with the necrotic fraction comprising approximately 60% of the GTV at
the end of treatment. (Fig. 11e). Since the model is not trained using clinical data relat-
ing to tumour composition, it cannot distinguish between tumour compositions that are
clinically realistic and those that are not. This is not an issue for prediction of the GTV,
as prediction uncertainty incorporates all possible tumour compositions through prior
knowledge. Predictions of necrotic volume,meanwhile, represent predominantly prior
knowledge in addition to restrictions imposed by the modelled relationship between
the observed GTV of patients in the training set and their potential inner tumour
composition.
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Fig. 10 Predictions for a synthetic patient with a fast response subject to both GTV and necrosis mea-
surements. a–b We reproduce the analysis from Fig. 5a in the case that information relating to both V (t)
and N (t) is available. c Mean, 50%, and 95% credible intervals for the final GTV in both data collection
scenarios. The true value (calculated by resimulating data from each synthetic patient without measurement
noise) is also shown (red dashed). Lower plot in c is a cropped inset of the upper (colour figure online)

Fig. 11 Predictions for two synthetic patients with a poor response subject to both GTV and necrosis
measurements. a–b, d–e We produce dynamic predictions of tumour progression for each patient in the
case that information relating to both V (t) and N (t) is available. c, f Mean, 50%, and 95% credible intervals
for the final GTV in both data collection scenarios. The true value (calculated by resimulating data from
each synthetic patient without measurement noise) is also shown (red dashed). Lower plot in each set is a
cropped inset of the upper (colour figure online)

4 Conclusion

The development of predictive mathematical models of patient-specific tumour
response is hindered by multiple challenges. Mathematical models must incorporate
sufficient detail to capture a wide range of potential responses, while clinical data
are highly limited, often comprising just one or two noisy measurements of tumour
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volume prior to treatment initiation. Advances in imaging technologies or the use of
magnetic resonance imaging embedded in radiation delivery devices may, in future,
provide a cost-effective means of collecting more detailed information, allowing the
calibration of correspondingly more detailed mathematical models (Gatenby et al.
2013; Gillies and Balagurunathan 2018; McGee et al. 2021; Park et al. 2023). In this
work, however, we work with a fundamental set of measurements, and present the sta-
tistical methodology and an appropriately complex mathematical model to maximise
data utility and draw clinically relevant predictions by leveraging a cohort of patients
that exhibit a variety of treatment responses.

Importantly, the twocompartmentmodel is able to reproduce the full rangeof patient
responses observed in our cohort of clinical data, representing an improvement over
previously proposed one-compartment models which may not capture more complex
behaviours, such as the plateaued response and pseudo-progressor behaviour. This is
particularly important for prediction, since the choice of model and gamut of possible
responses form a significant part of prior knowledge.While themathematical literature
presents an extensive catalogue of more complex models, we find that our choice of
model with six unknown parameters, all with a direct biophysical interpretation, is
simultaneously both sufficiently simple to ensure practical identifiability in somecases,
and sufficiently complex to produce the variety of responses seen in the clinical data.
Parameter identifiability is clearly not essential to produce predictions (single patient
predictions drawn early in the course of treatment from the first-level prior, where the
number of parameters exceeds the number of data points, are still sensical), however
the relatively small parameter space and resultant tightly constrained second-level
prior (Fig. 4) ensures adequate coverage in our resampling-based inference method:
we expect our approach to become prohibitively expensive for models with large
numbers of parameters.

The overarching goal of the presented framework is to leverage existing clinical
data to produce a predictive model for GTV that accurately captures the uncertainty
in predictions made for new patients. By benchmarking against both synthetic and a
validation clinical data set, we show that our approach excels at this goal for patients
with more typical responses: the fast and poor responders. Given the relatively small
size of our training data—comprising measurements from 40 patients—it is no sur-
prise that our approach does not perform as well for patients with atypical responses:
pseudo-progressors, for instance, make up only 2.3% of the prior, meaning that the
GTV progression of these patients is informed by (on average) a single patient in the
training set. In this case, it takes six on-treatment measurements before the patient is
identified asmore likely to exhibit an eventual response than a poor response. Themost
effective remedy would be to accumulate significantly more clinical data with better
representation of outliers. Should enough data become available, stratification could
be used to ensure that representation of patients in the training data either concords
with that in the population, or incorporates non-quantitative prior knowledge (such as
patient characteristics) that pre-inform similarities with patients in the training set. Our
modelling framework is well-poised to incorporate more detailed clinical data, includ-
ing, for instance, radiotherapy plan adaptation and information relating to variations
in delivered dose throughout the course of treatment. Inclusion of such information is
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likely to lead to better response classification, particularly if the radiotherapy dose is
modified during the course of treatment.

Both the accuracy and precision of predictions could also be improved for all
patients through a better biological understanding of radiotherapy response. The final
set of results presented in this work highlight that GTVmeasurements alone are insuf-
ficient to identify the root cause of a poor response. Indeed, predictions related to the
inner tumour composition must be treated with as much caution as with predictions
for atypical patients that are dissimilar to all patients in the training set. The absence of
tumour composition data in the training set means that all predictions of tumour com-
position are only informed by data indirectly through the model, which has, in turn,
been validated against solely GTV data. The prospect of training a model with joint
GTV-composition measurements is at present hypothetical, although entirely possible
through advanced imaging technologies (Sun et al. 2018; Salem et al. 2019; Rockne
et al. 2019). At this stage, our framework could additionally be applied to answer
important questions relating to the number of tumour composition measurements
required to accurately predict patient outcome throughout their course of treatment.

We highlight that our statistical methodology is, for the most part, model agnostic.
Thus, informed by more detailed data, our approach could be used to develop a fully
validated predictive model of not just GTV, but tumour composition, cell density, pro-
liferation, hypoxia, and more. However, this proposition is not without limitation: our
current choice to bootstrap parameter samples is likely to perform poorly for models
with a large number of parameters. Such dimensionality-induced issues can be in part
alleviated by sampling the full posterior directly, although this would introduce addi-
tional computational challenges. Further statistical developments are also needed to
include parameters that are fixed between patients (for example, the noise parameters),
or parameters that are assumed to be uncorrelated to others.

Our results add to a growing body of work (Claret et al. 2009; Ribba et al. 2012;
Rockne et al. 2019; Bruno et al. 2020) that highlights the utility that mathematical
models could bring to the clinic; in future informed by highly detailed and represen-
tative patient data to provide objective, real-time, and personalised patient predictions
that inform clinical decision-making.
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org/10.1007/s11538-023-01246-0.
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