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S1 Network equations

All network equations can be derived from the network geometry and the
equation construction in Section 3.1. This section contains the network
equations for all networks studied in this publication.

S1.1 Triangle network

The geometry of the triangle network can be seen in Figure 2a. This network
requires three pressure boundary conditions: P 1, P 2 and P 3; and two haema-
tocrit boundary conditions: H(1,4) and H(2,5). The steady-state equations for
the triangle network are as follows:

0 = Q(1,4) +Q(6,4) +Q⟨5,4⟩, (S1)

0 = Q(2,5) +Q(6,5) +Q⟨4,5⟩, (S2)

0 = Q(3,6) +Q(4,6) +Q(5,6), (S3)

H(4,6) =


ψ(4,6)(Q(4,6)/Q(1,4),H(1,4))H(1,4)Q(1,4)

Q(4,6)
Q⟨4,5⟩ > 0,

H(1,4)Q(1,4)+H⟨4,5⟩Q⟨5,4⟩
Q(4,6)

Q⟨4,5⟩ ≤ 0,
(S4)

H(5,6) =


ψ(5,6)(Q(5,6)/Q(2,5),H(2,5))H(2,5)Q(2,5)

Q(5,6)
Q⟨4,5⟩ < 0,

H(2,5)Q(2,5)+H⟨4,5⟩Q⟨4,5⟩
Q(5,6)

Q⟨4,5⟩ ≥ 0,
(S5)

H⟨4,5⟩ =


ψ⟨5,4⟩(Q⟨5,4⟩/Q(2,5),H(2,5))H(2,5)Q(2,5)

Q⟨5,4⟩
Q⟨4,5⟩ < 0,

ψ⟨4,5⟩(Q⟨4,5⟩/Q(1,4),H(1,4))H(1,4)Q(1,4)

Q⟨4,5⟩
Q⟨4,5⟩ > 0,

0 Q⟨4,5⟩ = 0,

(S6)

H(6,3) =
H(4,6)Q(4,6) +H(5,6)Q(5,6)

Q(6,3)
. (S7)

S1.2 Square plus triangle network

The geometry of the square plus triangle network can be seen in Figure 2b.
This network requires three pressure boundary conditions: P 1, P 2 and P 3;
and two haematocrit boundary conditions: H(1,7) and H(2,8). The steady-state
equations for the square plus triangle network are as follows:

0 = Q(1,7) +Q(4,7) +Q⟨8,7⟩, (S8)

0 = Q(2,8) +Q(5,8) +Q⟨7,8⟩, (S9)

0 = Q(6,4) +Q(7,4) +Q⟨5,4⟩, (S10)

0 = Q(6,5) +Q(8,5) +Q⟨4,5⟩, (S11)

0 = Q(3,6) +Q(4,6) +Q(5,6), (S12)
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H(7,4) =


ψ(7,4)(Q(7,4)/Q(1,7),H(1,7))H(1,7)Q(1,7)

Q(7,4)
Q⟨7,8⟩ > 0,

H(1,7)Q(1,7)+H⟨7,8⟩Q⟨8,7⟩
Q(7,4)

Q⟨4,5⟩ ≤ 0,
(S13)

H(8,5) =


ψ(8,5)(Q(8,5)/Q(2,8),H(2,8))H(2,8)Q(2,8)

Q(8,5)
Q⟨7,8⟩ < 0,

H(2,8)Q(2,8)+H⟨7,8⟩Q⟨7,8⟩
Q(8,5)

Q⟨7,8⟩ ≥ 0,
(S14)

H⟨7,8⟩ =


ψ⟨8,7⟩(Q⟨8,7⟩/Q(2,8),H(2,8))H(2,8)Q(2,8)

Q⟨8,7⟩
Q⟨7,8⟩ ≤ 0,

ψ⟨7,8⟩(Q⟨7,8⟩/Q(1,7),H(1,7))H(1,7)Q(1,7)

Q⟨7,8⟩
Q⟨7,8⟩ > 0,

0 Q⟨7,8⟩ = 0,

(S15)

H(4,6) =


ψ(4,6)(Q(4,6)/Q(7,4),H(7,4))H(7,4)Q(7,4)

Q(4,6)
Q⟨5,4⟩ > 0,

H(7,4)Q(7,4)+H⟨4,5⟩Q⟨5,4⟩
Q(4,6)

Q⟨4,5⟩ ≤ 0,
(S16)

H(5,6) =


ψ(5,6)(Q(5,6)/Q(8,5),H(8,5))H(8,5)Q(8,5)

Q(5,6)
Q⟨4,5⟩ < 0,

H(8,5)Q(8,5)+H⟨4,5⟩Q⟨4,5⟩
Q(5,6)

Q⟨4,5⟩ ≥ 0,
(S17)

H⟨4,5⟩ =


ψ⟨4,5⟩(Q⟨4,5⟩/Q(7,4),H(7,4))H(7,4)Q(7,4)

Q⟨5,4⟩
Q⟨4,5⟩ < 0,

ψ⟨5,4⟩(Q⟨5,4⟩/Q(8,5),H(8,5))H(8,5)Q(8,5)

Q⟨4,5⟩
Q⟨4,5⟩ > 0,

0 Q⟨4,5⟩ = 0,

(S18)

H(6,3) =
H(4,6)Q(4,6) +H(5,6)Q(5,6)

Q(6,3)
. (S19)

S2 Numerical continuation

In Section 3.3 we describe the use of numerical continuation to both find an
initial equilibrium of the system of network equations described in Section
3.1, and then study their trajectory in parameter space as we vary different
network parameters. In this supplementary information, we will provide more
detail on how we use continuation to find solutions to the network equations,
including our choice of starting system G(H,P), and the process by which we
find an initial solution to the network equations and then create a bifurcation
diagram as a network parameter is varied. More details of these techniques
may be found in books, e.g. (Allgower and Georg, 2003; Kuznetsov et al, 1998).

S2.1 Finding an initial equilibrium

The homotopy function for finding an initial equilibrium of the system of
network equations takes the following form:

h(H,P, λ) = F(H,P)(1− λ) +G(H,P)λ, (S20)
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where F = 0 is the system of network equations described in Section 3.1 and
G = 0 is a starting system. We considered two different choices for this start-
ing system. The first choice of G is that of the network flow equations with a
constant haematocrit distribution. In this case, fixing the haematocrit distri-
bution uniquely defines the pressures in the network because the conservation
of flow equations are linear for a fixed haematocrit distribution. For a net-
work N = {N,E}, the functions associated with the pressure and haematocrit
variables for the starting system G = 0 take the following forms:

Gv(H,P) = Q(u,v) +Q(w,v) +Q(z,v), (S21)

G(v,w)(H,P) = H(v,w) −H∗
(v,w), (S22)

where Gv is the function associated with the pressure variable Pv, G(v,w) is
the function associated with the haematocrit variable H(v,w), and H∗

(v,w) is
a constant haematocrit that has been set. This means that the solution to
G = 0 is specified by the chosen constant haematocrit distribution H∗.

As the function Fv(H,P), associated with the pressure variable Pv, (Equation
(18)) is the same as Gv(H,P):

Gv(H,P) = Fv(H,P) = hv(H,P, λ). (S23)

Regardless of whether F(v,w) takes the form of Equations (19) or (20), the
homotopy function, h(v,w), associated with the haematocrit variable H(v,w),
takes the following form:

h(v,w)(H,P, λ) = F(v,w)(H,P)(1− λ) + (H(v,w) −H∗
(v,w))λ, (S24)

where λ is a continuation parameter. The homotopy function is easily adapt-
able if a continuation is unsuccessful in obtaining an equilibrium of the
network. A new constant haematocrit distribution, H∗, is chosen until an
equilibrium is obtained. Although in most cases this is sufficient to perform
a successful continuation, in general, it is not possible to determine if a path
between the solutions of the starting system and target system exists.

The second starting system we consider is that of the network equations with
a different splitting rule. If the solutions to the network equations for the
splitting rule ϕ are known, then the network equations with ϕ as the splitting
rule can be used as the starting system. Let F(ψ)(H,P) = 0 denote the system
of equations for a network using the splitting rule ψ and let F(ϕ)(H,P) = 0
denote the system of equations for a network using the splitting rule ϕ. Then
the homotopy function converting the solutions to the network equations
using the ϕ splitting rule to the ψ splitting rule takes the following form:

h(H,P, λ) = F(ϕ)(H,P)λ+ F(ψ)(H,P)(1− λ). (S25)
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One strategy for finding solutions to the network equations for different split-
ting rules may be to start with a constant haematocrit distribution to find the
solutions to the network equations for one splitting rule, then use these equi-
libria to find the equilibria and the network equations using other splitting
rules.

S2.2 Tracking equilibria in parameter space

Once at least one equilibrium of a network is known, numerical continuation
can be used to investigate how the equilibria change as certain parameters
vary. For this purpose, the homotopy function is as follows:

h(H,P, λ) = F(H,P, λ), (S26)

where λ is the parameter to be varied. For instance, λ could be one of the
inlet pressures or inlet haematocrits. Once the solution to h = 0 is known for
a starting value of λ = λ0, this solution is used as the starting solution for
numerical continuation as λ varies.

The homotopy functions of Equations (S24-S26) are used to generate bifurca-
tion diagrams or sets of equilibria of the network. The process of generating a
bifurcation diagram or a single equilibrium is summarised by the flow chart in
Figure S1. All numerical continuation is performed by the bifurcation analysis
software AUTO 07p (Doedel et al, 1999).
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Network topology N = {V,E}, splitting rule and network parameters

Choose H∗

Use homotopy Equation (S24) to identify
an equilibrium of the system

Single equilibrium of the system

Use a different splitting rule?

Bifurcation analysis using Equation (S26)
for a single parameter

Use homotopy Equation (S25) to identify
an equilibrium of the system

Choose a new parameter

Bifurcation diagram
or a set of equilibria

Choose a known equilibrium Yes

No

Yes

No

Figure S1: Flow diagram of a process to generate bifurcation diagrams for the
system of network equations.

S3 Asymmetry of the haematocrit distribution
in the triangle network

In this section, we investigate the contribution of plasma skimming, at bifur-
cation and convergence units, on the haematocrit distribution in the triangle
network.
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S3.1 Properties of a convergence unit

The haematocrit value in the outflowing vessel of a convergence unit in Figure
1b is lower than the haematocrit in one of the inlet vessels as a direct
consequence of the network conservation laws. Rearranging the solutions to
F(v,w) = 0 for Equation (19) yields the following expression:

H(v,w) =
Q(u,v)

Q(v,w)
H(u,v) +

Q(z,v)

Q(v,w)
H(v,z), (S27)

using equation (18), this expression simplifies to the following form:

Q(u,v)

Q(v,w)︸ ︷︷ ︸
=r

H(u,v) +

(
1−

Q(u,v)

Q(v,w)

)
H(v,z) = H(v,w), (S28)

which simplifies to:

H(v,w) = rH(u,v) + (1− r)H(v,z). (S29)

As 0 ≤ r ≤ 1:

min(H(v,z), H(u,v)) ≤ H(v,w) ≤ max(H(v,z), H(u,v)). (S30)

S3.2 Properties of a bifurcation unit

Flow bifurcations have similar properties to flow convergences. Consider the
bifurcation unit in Figure 1a. With F(v,w)(H,P ) defined by the left hand side
of Equation (20), if F(v,w)(H,P ) = 0 then:

H(v,w) = ψ(v,w)(Q(v,w)/Q(u,v)︸ ︷︷ ︸
=r

, H(u,v))
Q(u,v)

Q(v,w)︸ ︷︷ ︸
=1/r

H(u,v). (S31)

This expression simplifies to give:

H(v,w) =
1

r
ψ(v,w)(r,H(u,v))H(u,v), (S32)

such that r = Q(v,w)/Q(u,v). This equation is important because H(v,w) is
greater than or less than H(u,v) depending on the properties of ψ(v,w) and the
value of r.
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Consider the general splitting rule of Equation (13) with:

A = − 7

D(u,v)

(D(v,w) −D(v,z))

(D(v,w) +D(v,z))
, ρ = 2.0, X0 = 0.05.

In Figure S2, we sketch the ratio ψ(v,w)(r) for two sets of values of the diame-
ters for the bifurcation unit in Figure 1a. In Figure S2a, D(v,w) = D(v,z), while
in Figure S2b, D(v,w) = 100µm, D(v,z) = 5µm and D(u,v) = 10µm. If r = 0.6
and the diameters of the daughter vessels are equal, Figure S2a indicates that
ψ(v,w)(r)/r > 1. In contrast, if r = 0.6 and the diameters of the vessels are the
same as those used to generate Figure S2b, then ψ(v,w)(r)/r < 1. Therefore,
the haematocrit in the daughter vessels depends on the splitting rule and the
network parameters. However, if A = 0, then ψ(v,w)(r) ≥ r for r ≥ 0.5 for all
values of ρ and X0. In this case, the daughter vessel with the larger flow also
has a greater haematocrit value than the parent vessel.

A similar expression can be formulated for the haematocrit in the other
daughter vessel, H(v,z). It is straightforward to show that:

H(v,z) =
(1− ψ(v,w)(r))

1− r
H(u,v). (S33)

If ψ(v,w)(r) > r, then 1− ψ(v,w)(r) < 1− r and H(v,z) < H(u,v). We conclude,
without loss of generality, that:

H(v,z) ≤ H(u,v) ≤ H(v,w), (S34)

for the haematocrit values of the bifurcation unit in Figure 1a.
Another important property of splitting rules is the existence of a maximum
of ψ(v,w)/r in Figures S2c and S2d. Both figures show the plot of:

f(v,w)(r) =
ψ(v,w)(r)

r
, (S35)

which is also the scaling factor for the daughter haematocrit in Equation (S32).
There exists a value of r = r1 < 1 such that ψ(v,w)(r) = r, because ψ(v,w)(1−
X0) = 1, and 1 − X0 < 1. Equation (S35) is once differentiable on (0, 1)
because ψ(v,w)(r) and 1/r are both once differentiable on (0, 1). Therefore, a
maximum of f(v,w)(r) always exists in an interval between (r1, 1−X0). Taking
the derivative of f(v,w)(r) with respect to r, it is straightforward to show that:

f ′(v,w)(r) =
1

r
(ψ′

(v,w)(r)− f(v,w)(r)). (S36)
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Figure S2: Comparison of ψ(u,v) with the two different parameter sets for the
bifurcation unit in Figure 1a. (a): Plot of ψ(u,v)(r) for the vessel diameters D(v,w) =
D(v,z); (b): Plot of ψ(u,v)(r) for D(v,w) = 100µm , D(v,z) = 5µm and D(u,v) = 10µm;
(c): Plot of ψ(u,v)(r)/r for D(v,w) = D(v,z); (d): Plot of ψ(u,v)(r)/r for D(v,w) =
100µm , D(v,z) = 5µm and D(u,v) = 10µm.

ψ′
(v,w)(r1) > 1, because ψ(v,w)(r) intersects r at r = r1. Therefore:

f ′(v,w)(r1) =
1

r1
(ψ′

(v,w)(r1)︸ ︷︷ ︸
>1

− f(v,w)(r1)︸ ︷︷ ︸
=1

) > 0. (S37)

If we take the first derivative of Equation (13) with respect to r, we obtain the
following function for the derivative:

ψ′
(v,w)(r) =


0 if r < X0

0 if r > 1−X0

(1−2X0)e
Aρ((r−X0)(1−r−X0))

ρ−1

(eA(r−X0)ρ+(1−r−X0)ρ)2
if X0 ≤ r ≤ 1−X0

(S38)
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Since ψ′
(v,w)(1−X0) = 0 we have that:

f ′(v,w)(1−X0) =
1

1−X0
(ψ′

(v,w)(1−X0)︸ ︷︷ ︸
=0

−f(v,w)(1−X0)) < 0. (S39)

Since f ′(v,w)(r1) > 0 and f ′(v,w)(1 − X0) < 0, at least one maximum must

exist in the interval (r1, 1 − X0). Furthermore, f(v,w)(r) eventually decreases
as r approaches 1. For r2 ∈ [1 −X0, 1], due to the fact that the derivative of
ψ′
(v,w)(r) is equal to 0 for all values of r2, we have that:

f ′(v,w)(r2) =
1

r1
(ψ′

(v,w)(r2)︸ ︷︷ ︸
=0

− f(v,w)(r2)︸ ︷︷ ︸
>0

) < 0. (S40)

Counterintuitively, this means that as the flow ratio, r, approaches 1, the
haematocrit vessel (v, w) must decrease.

S3.3 Asymmetric haematocrit distribution of the
triangle network

Figure S3 shows the plots of H(4,6) and H(5,6) in the triangle network as length
ratio β is varied, for the same network parameters explored in Section 4.1.
Note that:

H(4,6) > H(1,4) = H(2,5) = 0.45 > H(5,6), (S41)

for the (+) equilibria, and the opposite is true for the (−) equilibria. This
inequality is a consequence of the plasma skimming properties of blood
discussed in Sections S3.1 and S3.2, and the presence of the redundant
vessel. The triangle network must contain one flow bifurcation, at either
nodes 4 or 5. In the case of the (+) equilibria, this flow bifurcation is
at node 4. Therefore, as Q(4,6) > Q⟨4,5⟩, H(4,6) > 0.45 > H⟨4,5⟩, and

H(5,6) < max({H⟨4,5⟩, H⟨2,5⟩}) = 0.45. Therefore, the triangle network has
an asymmetric haematocrit distribution for the (−) and (+) equilibria, even
when the network is symmetric (β = 1).

Although we do not include plots of the haematocrits in the fixed vessels
of the extended-triangle network, we can infer a similar asymmetry of the
haematocrit distribution. Asymmetry of the haematocrit distribution would
also emerge as a result of non-zero flow in present in the extended-triangle
network redundant vessels, and the plasma skimming properties.

S4 Effect of different splitting rules

So far our results in Section 4 have been generated using the Pries 1990 split-
ting rule first described by Pries et al (1990). This splitting rule is defined by
Equation (13), and the coefficients in Equations (14-16). Splitting rules like
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Figure S3: Series of bifurcation diagrams showing how the haematocrit in the fixed
vessels of the triangle network vary as β varies. (a) haematocrit H(4,6). (b) haemat-
ocrit H(5,6).

those defined by Pries and Secomb (2005) and Klitzman and Johnson (1982)
share the same form as the Pries 1990 rule but use different A, ρ and X0 coeffi-
cients. We have demonstrated that the triangle and extended-triangle network
admit multiple equilibria when the flow direction in one of the redundant ves-
sels changes direction as one or more parameters are varied. Although these
splitting rules share the same basic structure, this does not rule out the pos-
sibility that multiple equilibria are an artefact of the Pries 1990 splitting rule
instead of arising from the geometric properties of the network. Therefore, in
this section, we will generate bifurcation diagrams for the extended-triangle
network for the splitting rule coefficients in Table S1.

Splitting rule ρ A X0

Pries 1990 1 + 6.98
1−H(u,v)

D(u,v)
− 6.96

D(u,v)
log

(
D(v,w)

D(v,z)

)
0.4

D(u,v)

Pries 2005 1 + 6.98
1−H(u,v)

D(u,v)
−13.29

[
D2

(v,w)−D2
(v,z)

D2
(v,w)

+D2
(v,z)

]
1−H(u,v)

D(u,v)
0.964

1−H(u,v)

D(u,v)

Simple I, II & III 1.1, 1.4, 2 − 7
D(u,v)

(D(v,w)−D(v,z))

(D(v,w)+D(v,z))
0.05

Table S1: Summary of the different functional forms that are used in Equation
(13) to generate the different haematocrit splitting rules. The indices of the vessels
correspond to the bifurcation unit in Figure 1a and the functions of ρ,A and X0

determine the ratio of RBCs Q(v,w)H(v,w)/Q(u,v)H(u,v).

In this section, we consider five different splitting rules, two from the literature,
and three that have been newly created. The existing splitting rules are the
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Pries 1990 (Pries et al, 1990) and Pries 2005 (Pries and Secomb, 2005) rules;
the other splitting rules are detailed in Table S1. The following parameter
values are used when simulating flow in the extended-triangle network:

β = 1.1, α = 0.5, D = 10, H(1,7) = H(2,8) = 0.45,

where α and β are defined by equations (22-24). We vary P 1 and set
P 2 = 1− P 1 in this section.

Figure S4 shows the bifurcation diagrams for the flow and haematocrit vari-
ables of the extended-triangle network for the two Pries rules and the Simple I
splitting rule, as P 1 increases from 0.45 to 0.55. Figures S4c and S4d indicate
that differences between the equilibria are most pronounced for the variables
of the vessels furthest away from the inlets. Regardless of the difference in
the values of H⟨4,5⟩ and Q⟨4,5⟩, the difference between equilibria for the three
splitting rules is small.
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Figure S4: Series of bifurcation diagrams showing how the flow and haematocrit in
the redundant vessels in the extended-triangle network change as the inlet pressure
P 1 varies for the Pries 1990, Pries 2005 and Simple II splitting rules. Key: each
equilibrium is labelled −, 0 or + depending on whether the flow in the redundant
vessels is negative, intermediate, or positive. The arrows on the network diagrams
indicate the vessels for the corresponding flow plot, and defines which flow direction is
considered positive. The equilibria are represented by the different line styles: dotted
line for the Pries 1990 rule, dashed line for the Pries 2005 rule, and solid line for the
Simple II rule.

The bifurcation diagrams for the extended-triangle network are similar
regardless of the choice of the splitting rule. The network admits a unique
solution branch between P 1 = 0.45 and P 1 ≈ 0.46 with negative flow in
both redundant vessels. At P 1 ≈ 0.46, two more solution branches emerge
from a fold bifurcation, one with positive flow in vessel ⟨4, 5⟩, and one with
intermediate flow. At P 1 ≈ 0.49, the solution branches with intermediate and
negative flow in vessel ⟨4, 5⟩ collide at another fold bifurcation. Another two
solution branches emerge from a fold bifurcation at P 1 ≈ 0.495 with positive
and intermediate flow in vessel ⟨7, 8⟩. The solution branches with negative
and intermediate flow also collide at a fold bifurcation at P 1 ≈ 0.5, and the
solution branch with positive flow in both redundant vessels exists for all
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higher values of P 1.

As with the bifurcation diagrams in Figure 3, the intervals of multiple equi-
libria exist in between two fold bifurcations, in which the direction of the flow
in a redundant vessels changes direction. This first interval is approximately
0.45 ≲ P 1 ≲ 0.49 and the second interval is approximately 0.495 ≲ P 1 ≲ 0.5.
The difference in sizes of the intervals for the three splitting rules are not
significant. The first interval can be more clearly identified in Figures S4c and
S4d, and the second interval can be more clearly identified in Figures S4a and
S4b. Applying the definitions of the types of flow to both intervals, the first
interval is characterised by different flow in vessel ⟨4, 5⟩, and the second by
the flow in vessel ⟨7, 8⟩. Therefore, regardless of the differences between the
solution branches, multiple equilibria still emerge as the flow in a redundant
vessel changes direction in between two fold bifurcations.

Figure S5 shows a similar comparison to that of Figure S4. As with Figure
S4, the extend-triangle network admits two intervals of multiple equilibria in
Figure S5. Both of these intervals are created by the same common double
fold bifurcation structure. However, the difference in size for the intervals
is much larger for Figure S5. With the intervals being the smallest for the
Simple I splitting rule and largest for the Simple III splitting rule. In the case
of the Simple III splitting rule, the two intervals overlap slightly, creating a
small interval in which five equilibria exist.

Apart from differences in the size of the intervals of multiple equilibria, all
equilibria in Figures S4 and S5 have the same qualitative properties as the
equilibria in Section 4: all intervals of multiple equilibria are created by the
changing flow direction in a redundant vessel, and all equilibria have unique
flow configurations. Therefore, we conclude that the link between the equilib-
ria of a network and the flow in the redundant vessels is a property of the two
networks regardless of the choice of splitting rule.
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Figure S5: Series of bifurcation diagrams showing how the flow and haematocrit in
the redundant vessels in the extended-triangle network change as the inlet pressure
P 1 varies for the three simple splitting rules. Key: each equilibrium is labelled −, 0
or + depending on whether the flow in the redundant vessels is negative, interme-
diate, or positive. The arrows on the network diagrams indicate the vessels for the
corresponding flow plot, and defines which flow direction is considered positive. The
equilibria are represented by the different line styles: solid line with x markers for
the Simple I rule, solid line for the Simple II rule, and solid line with squares for the
Simple III rule.
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