
Bulletin of Mathematical Biology           (2025) 87:93 
https://doi.org/10.1007/s11538-025-01472-8

ORIG INAL ART ICLE

Characterising the Behaviour of a Structured PDEModel of
the Cell Cycle in Contrast to a Corresponding ODE System

Ruby E. Nixson1 · Helen M. Byrne1,2 · Joe M. Pitt-Francis3 · Philip K. Maini1

Received: 20 December 2024 / Accepted: 26 May 2025
© The Author(s) 2025

Abstract
Experimental results have shown that anti-cancer therapies, such as radiotherapy and
chemotherapy, can modulate the cell cycle and generate cell cycle phase-dependent
responses. As a result, obtaining a detailed understanding of the cell cycle is one
possible path towards improving the efficacy of many of these therapies. Here, we
consider a basic structured partial differential equation (PDE) model for cell progres-
sion through the cell cycle, and derive expressions for key quantities, such as the
population growth rate and cell phase proportions. These quantities are shown to be
periodic and, as such, we compare the PDE model to a corresponding ordinary differ-
ential equation (ODE) model in which the parameters are linked by ensuring that the
long-term ODE behaviour agrees with the average PDE behaviour. By design, we find
that the ODE model does an excellent job of representing the mean dynamics of the
PDEmodel within just a few cell cycles. However, by probing the parameter space we
find cases in which this mean behaviour is not a good measure of the PDE population
growth. Our analytical comparison of two caricature models (one PDE and one ODE
system) provides insight into cases in which the simple ODE model is an appropriate
approximation to the PDE model.

Keywords Cell cycle · Mathematical modelling · Structured PDE · Age-structured
models

1 Introduction

The cell cycle controls the duplication of cellular content and the eventual division
of a cell into two daughter cells. A cell must pass through the four phases of the cell
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Fig. 1 (a) A simple schematic illustrating the four phases of the cell cycle, along with the “quiescent" G0
phase. (b) A simplified schematic of the cell cycle in which the S, G2 and M phases are grouped together
and labelled G2. This figure was created with BioRender.com.

cycle before cell division takes place (see Figure 1). During the first phase, denoted
by G1, the cell faces a “choice" of either remaining in an actively cycling state or
pausing cell cycle progression (Matthews et al 2022). Following this, the cell genome
is duplicated in the S phase. This process is highly regulated to ensure that DNA
duplication only occurs once per cycle (Matthews et al 2022). The cell then moves
into the G2 phase, followed by the M phase, where mitosis takes place. At the end of
the M phase, cells divide to produce two identical daughter cells, and the cycle starts
again. Throughout the cell cycle, complex regulatory pathways (Matthews et al 2022;
Williams and Stoeber 2012; Liu et al 2022; Suski et al 2021) control the progression
rate to the next phase.

Mathematical modelling of the cell cycle is an active field of research, spanning
a variety of approaches, including agent-based models (ABMs), partial differential
equations (PDEs) and ordinary differential equations (ODEs), with many of these
models being applied to model cancerous cell populations. Global estimates indicate
that 19.3 million new cancer cases were diagnosed and 10 million cancer deaths were
reported in 2020 (Sung et al 2021). Mutations in cancerous cells alter the regulatory
mechanisms found in the cell cycle of normal cells to benefit the survival and growth
of tumours (Matthews et al 2022). Experimental results show that cellular responses
to radiotherapy can be affected by cell cycle phase (Pawlik and Keyomarsi 2004;
Lonati et al 2021; Muz et al 2015; Yashar 2018; Lonati et al 2021). Furthermore,
chemotherapies for cancerous cells are also known to interact with the cell cycle, with
some chemotherapeutic drugsmodulating progress through the cell cycle, while others
induce a cell cycle phase-dependent response (Schwartz andShah2005; Sun et al 2021;
Otto and Sicinski 2017). A review of mathematical modelling of the cell cycle and its
impact on anti-tumour treatment strategies is provided by Ma and Gurkan-Cavusoglu
(2024).

The use of structured population models, in which the cell population is divided
with respect to some important property, for example, time spent in a certain cell
cycle phase (see Caswell et al 1997 for a general overview of structured population
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models), has been explored in multiple ways. In early work, Rubinow (1968) presents
a structured PDE model of actively-cycling cells, where cell cycle progression is used
to structure the population. The speed with which the progression variable changes is
assumed to depend on the current cell cycle position, and an analytical solution for
the density of cells at a given progression level and time is derived. This model forms
the basis for the work in this paper.

Much of the recent work on cell cycle modelling focuses on stochasticity and com-
putational techniques, such as numerical solutions to PDE systems or implementation
of ABMs (see Kynaston et al 2022; Jin et al 2021; Celora et al 2024), while the ana-
lytical study of the ODE and PDE models is not so common. A comparison of three
increasingly-complex ODE systems and a structured PDE model was recently con-
ducted by Ubezio (2024). The PDE model has cell populations structured by the time
which they have spent in their current cell cycle phase, where cells progress through
the cell cycle phases at fixed time intervals. Furthermore, cell death and quiescence is
considered. The complexity of the proposed PDE model means that analytical results
are not considered; instead each of the four models are fitted to experimental data. The
fit to experimental data is found to be much improved when the models are modified
to account for more complex variability in inter-mitotic times.

Mathematical models of the cell cycle often take a compartment-based approach, in
which each compartment of the model represents a different cell cycle phase. In many
of these models the dynamics are controlled by sub-cellular processes, such as the
relative expression of cell cycle proteins (Bekkal Brikci et al 2008; Tyson and Novák
2001, 2022). Parametrising such models requires time-series data on these protein
expression levels, which vary between cell lines and environmental conditions (such
as oxygen availability).

Experimentalists may instead opt for simpler compartment-based models to
describe the cell cycle. Here the rates of progress through each phase are assumed
to be constant, and there are fewer model parameters. Several previous works look
at population-balance, compartment-based ODE models (Celora et al 2022; Ubezio
2024), in which the proportion of cells in a given cell cycle phase settles to a steady
state. SuchODEmodels consider the number of cellswithin a cell cycle phase,whereas
structured PDE models view the cell cycle as a continuum, providing a more detailed
description of the cell distribution. This raises questions about the extent to which
the additional detail included in PDE models generates more insight into the sys-
tem dynamics than simpler ODE models. Considering the discussion above about
cell-cycle dependent anti-tumour treatment responses, such issues could be important
when investigating optimal treatment strategies, although we leave explicit consider-
ation of treatment to future work.

We choose two simple models of the cell cycle, a linear ODE model and a PDE
model. We consider one of the simplest maturity-structured PDEmodels, as presented
by Rubinow (1968), which introduces a time delay for progression of cells through
each phase. The added complexity when compared to the linear ODE system acts as
a proxy for more complicated biology. Thus, it is of interest to identify conditions
under which the extra complexity included in the PDE model can be neglected and
approximated by a simpler ODE model. We choose to leave consideration of how
to fit these simple models to experimental data to future work, but note that this has
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been considered in the literature for several PDE and ODE models (Tyson et al 2012;
Gabriel et al 2012; Ubezio 2024; Celora et al 2022).

The remainder of the paper is structured as follows. In Section 2, we introduce the
general PDE model used by Rubinow (1968) and define simple functional forms to
specify a continuously-structured model of a simplified cell cycle. Using the method
of characteristics, we solve the PDE and use the solution to obtain expressions for
quantities that could be measured by experimental data, such as the proportion of
cells in each cell cycle phase, and the total population number. We also consider the
behaviour of these quantities and find that we can average them over a single cell
cycle to produce two constant quantities, namely the average population growth rate
and average G2 proportion, depending only on the PDE model parameters. In Section
3, we analyse a linear ODE system designed to model the same underlying process
as the PDE model, and derive expressions for the steady-state growth rate and G2
proportion in terms of the ODE parameters. In Section 4, we relate the two models
by equating their analytic expressions for the growth rates and G2 proportions. In this
way, we obtain a mapping from a set of PDE parameters to a corresponding set of
ODE model parameters. We explore the sensitivity of the ODE parameters to changes
in the PDE parameters, and find regions of PDE parameter space in which the two sets
of PDE parameters give rise to the same set of ODE parameters. We also consider how
well the ODE model approximates the PDE model generated from these parameter
mappings. We show further that fitting the ODEmodel to simulated PDE data without
knowledge of the underlying parameters can lead to poor approximations.

In Section 5 we summarise our results and discuss ideas for further analysis of
the two models, including parameter identifiability analysis, explicit modelling of
treatment, and fitting to experimental data.

2 Introducing the PDEModel

2.1 Deriving theModel

Following Rubinow (1968), we introduce a PDE model of the cell cycle in which
the continuous independent variable φ ∈ [0, 1] represents a cell’s position in the
cell cycle, where φ = 0 corresponds to a cell at the beginning of the G1 phase, and
φ = 1 corresponds to a cell at the end of the M phase. We neglect cell death under
the assumption that the cells are in an optimal environment, with sufficient nutrient
supply, no anti-tumour treatment applied and no growth-limiting spatial constraints.
We assume that the dynamics of p(φ, t), the density of cells with cell cycle position
φ ∈ [0, 1] at time t > 0, can be described via the following PDE,

∂ p

∂t
+ ∂

∂φ
(v(φ)p(φ, t)) = 0. (1)

In Equation (1), v(φ) denotes the rate at which a cell with phase φ progresses through
the cell cycle, so that v(φ)p(φ, t) is the flux of cellswith phaseφ at time t .We prescribe
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the initial distribution of cells along the cell cycle continuum via the function

p(φ, 0) = p0(φ). (2)

We incorporate mitosis into the model by assuming that the flux of cells at φ = 0
depends on the flux at φ = 1 as follows:

v(0)p(0, t) = 2v(1)p(1, t). (3)

Equation (3) states that the flux of cells entering the cell cycle at the start of G1 (where
φ = 0) is double the flux of cells exiting the cell cycle at the end of theM-phase (where
φ = 1). Thus, when cells with φ = 1 divide, they produce two identical daughter cells
with φ = 0. We note that while we neglect cell death, Rubinow’s analysis accounts
for cell death (Rubinow 1968). In this more general case, the following analysis holds
with minimal changes to the qualitative behaviour of the results.

We note the equivalence of our PDE model for the cell cycle to timer, sizer and
adder models for cell size control through sequential generations of cell proliferation
(Facchetti et al 2017; Xia et al 2020; Rhind 2021; Rishal and Fainzilber 2019). Timer
models have cells growing for a fixed amount of time before division. This can also
be seen here via our definition of v(φ), where

η1 =
∫ 1

0

1

v(φ)
dφ (4)

is the fixed time taken for a cell to complete a full cell cycle. Alternatively, sizermodels
assume that each cell is aware of its own size, and will divide when its size reaches a
target value. Our model is equivalent to this framework in that each cell has a φ value,
and division occurs when φ = 1. Similarly, in adder models the size of each cell must
increase by a fixed increment from its birth size in order for proliferation to occur.
The equivalence of this framework to our model is that all cells start with φ = 0, and
must increase to φ = 1 for cell division to occur. Both the sizer and adder frameworks
suggest that φ can be viewed as a proxy for cell size.

The PDE framework presented here assumes a fixed time interval between cell
divisions (inter-mitotic time). Wemake this simplifying assumption to aid the analytic
comparison of the PDE and ODE model later in this work. However, experimental
work tracking the time taken for individual cells to divide has allowed for mathe-
matical models to fit a probability distribution for the inter-mitotic time (Tyson et al
2012; Gabriel et al 2012; Stukalin et al 2013). The observed stochasticity in the inter-
mitotic time has subsequently been used in several model frameworks, most notably
in age-structured PDE models and stochastic birth-death process models (Stukalin
et al 2013; Olofsson 2008; Olofsson and McDonald 2010; Maler and Lutscher 2010;
Gabriel et al 2012; Xia et al 2020). The assumption that inter-mitotic times are cor-
related between mother-daughter and sister pairs of cells has also been considered
mathematically (Lebowitz and Rubinow 1974; Webb 1986; Yan and Fu 2016), and a
stochastic branching-process model has considered fitting to experimental data (Nor-
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don et al 2011). Without loss of generality we fix φ1 = 1/2 to represent the boundary
between the G1 and the S/G2/M phases.

In practice, v = v(φ) may vary continuously with φ. However, we are unable to
find experimental data that sheds light on possible biologically-realistic functional
forms for v(φ) beyond the simplest assumption, which is that progression velocity
is constant in each phase. In practice, these constant values can be found via FUCCI
analysis (Sakaue-Sawano et al 2008; Jin et al 2021), which tags the cells with certain
colours depending on their cell cycle phase. Thus, for simplicity and to aid comparison
with a simple two-compartment ODE model (see Section 3), we assume that v(φ) is
piecewise constant:

v(φ) =
{

v, for 0 ≤ φ ≤ 1
2

u, for 1
2 < φ ≤ 1.

(5)

With this definition of v(φ), we are, in effect, decomposing the cell cycle into two
compartments, one for φ ∈ [0, 1/2] and another for φ ∈ [1/2, 1]. We assume here that
φ ∈ [0, 1/2] corresponds to a cell in theG1 phase, and thatφ ∈ [1/2, 1] corresponds to
a cell in the S/G2/M phases (see Figure 1 for this simplified approach), which we will
refer to as G2 from now on. Thus, in the subsequent analysis, we decompose the cell
cycle into two compartments, rather than three or four. We note here that the method
proceeds identically in these more complex cases, and we discuss the differences in
results in Section 2.3.1.

For simplicity, we also assume a uniform initial cell density in each phase, so that

p0(φ) =
{
p0, for 0 ≤ φ ≤ 1

2

q0, for 1
2 < φ ≤ 1

(6)

for some constants p0, q0 ≥ 0.
With the boundary between phases fixed at φ1 = 1/2, we now use the functional

form for v = v(φ) to determine cell cycle properties in terms of PDE model param-
eters. More specifically, the length of the cell cycle and the two phases are given
by

Cell cycle duration = η1 = 1

2v
+ 1

2u
, (7)

Duration of G1 = L1 = 1

2v
, (8)

Duration of G2 = L2 = 1

2u
. (9)

These quantities will be useful later when analysing the solution to the PDE model.
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2.2 Solution for p(�, t)

The piecewise-constant functional forms of v(φ) and p0(φ) given by equations (5)
and (6), respectively, allow us to implement the method of characteristics to solve the
PDE (1).

For our specific choices of v(φ) and p0(φ), the solution space partitions into three
regions based on the lengths of each cell cycle phase.

We define η1 = L1 + L2 to be the total cell cycle length, and k(t) as the number
of full cell cycles completed since t = 0. More specifically,

k(t) = � t

η1
�. (10)

For clarity, we define τ = t + k(t)η1. Then the solution in each of these regions is
given by:

1. For 0 < τ < min(L1, L2):

p(φ, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2k(t)+1q0
u
v

for 0 < φ < vτ

2k(t) p0 for vτ < φ < 1
2

2k(t) p0 v
u for 1

2 < φ < uτ + 1
2

2k(t)q0 for uτ + 1
2 < φ < 1.

(11)

2a. If v > u, for L1 < τ < L2:

p(φ, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2k(t)+1q0
u
v

for 0 < φ < 1
2

2k(t)+1q0 for 1
2 < φ < u · (τ + 1

2u − 1
2v )

2k(t) p0 v
u for u · (τ + 1

2u − 1
2v ) < φ < u · (τ + 1

2u )

2k(t)q0 for u · (τ + 1
2u ) < φ < 1.

(12)

2b. If u > v, for L2 < τ < L1:

p(φ, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2k(t)+1 p0 for 0 < φ < v · (
τ − 1

2u

)
2k(t)+1q0

u
v

for v · (
τ − 1

2u

)
< φ < vτ

2k(t) p0 for vτ < φ < 1
2

2k(t) p0 v
u for 1

2 < φ < 1.

(13)

3. For max(L1, L2) < τ < η1:

p(φ, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2k(t)+1 p0 for 0 < φ < vτ − v
2u

2k(t)+1q0
u
v

for vτ − v
2u < φ < 1

2

2k(t)+1q0 for 1
2 < φ < u · (τ + 1

2u − 1
2v )

2k(t) p0 v
u for u · (τ + 1

2u − 1
2v ) < φ < 1.

(14)
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Fig. 2 Solutions for p(φ, t) to highlight three of the four solutions (11)-(14), where v = 1/16, u = 1/28,
p0 = 1, q0 = 3. We plot the density profile p(φ, t) at four times: (a) t = 0 hours, given by equation (11),
(b) t = 6 hours, given by equation (11), (c) t = 12 hours, given by equation (12), and (d) t = 18 hours,
given by equation (14).

Therefore, splitting the solution up into three cases based on the value of t allows
us to find the solution for any φ ∈ (0, 1) with this given t > 0. For a fixed t > 0,
we see that the solution splits the φ-domain into four sections, with a constant cell
density in each region. This is illustrated in Figure 2, where we plot the cell density
p(φ, t) as φ varies for different values of t ≥ 0. We choose the three values of t to be
within a single cell cycle, and to cover all three of the cases from equations (11)-(14)
that occur for a single set of parameters (v, u, p0, q0). In each case where t �= 0, we
see four regions where the solution is constant.

2.3 Phase Counts and Proportions

We denote by pG1(t) and pG2(t) the number of cells in each phase, and note that

pG1(t) =
∫ 1

2

0
p(φ, t)dφ and pG2(t) =

∫ 1

1
2

p(φ, t)dφ, (15)

respectively. Using these expressions we can define the cell phase proportions via

π1(t) = pG1(t)

N (t)
and π2(t) = pG2(t)

N (t)
, (16)
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where N (t) = pG1(t) + pG2(t).
In each of the four cases (11)-(14) (where only three will be present for a given

parameter set, (v, u, p0, q0)), the solution is piecewise constant in each of four sub-
intervals of the φ domain. Therefore, the integrals are easy to calculate as the sum of
four constants, and the results for πG2(t) and N (t) in each case are as follows:

1. For 0 < τ < min(L1, L2):

N (t) = 2k(t)
[
1

2
(p0 + q0) + uq0(t − k(t)η1)

]
, (17)

πG2(t) =
1
2q0 + (p0v − q0u)τ

1
2 (p0 + q0) + uq0(t − k(t)η1)

. (18)

2a. If v > u, for L1 < τ < L2:

N (t) = 2k(t)
[
1

2
(p0 + q0) + uq0 (τ )

]
, (19)

πG2(t) =
1
2 (p0 + q0) − u

v
q0 + uq0τ

1
2 (p0 + q0) + uq0τ

. (20)

2b. If u > v, for L2 < τ < L1:

N (t) = 2k(t)
[
q0 +

(
1

2
− v

2u

)
p0 + vp0τ

]
, (21)

πG2(t) =
v
2u p0

q0 + ( 1
2 − v

2u

)
p0 + vp0τ

. (22)

3. For max(L1, L2) < τ < η1:

N (t) = 2k(t)
[
q0 +

(
1

2
− v

2u

)
p0 + vp0τ

]
, (23)

πG2(t) =
(

v
2u + 1

2

)
p0 − u

v
q0 + (2uq0 − vp0)τ

q0 + ( 1
2 − v

2u

)
p0 + vp0τ

. (24)
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2.3.1 Periodicity and average values

Recalling the definition of k(t):

k(t) = � t
1
2v + 1

2u

� = � t

η1
�, (25)

we see that k(t + η1) = k(t) + 1. Therefore, for each t > 0,

(t + η1) − k(t + η1)η1 = (t + η1) − (k(t) + 1)η1
= t − k(t)η1
= τ.

(26)

Using (26) in equations (18), (20), (22), (24), we deduce that πG2(t) is periodic in
t , with period equal to the cell cycle length η1. We note that periodicity persists
independent of the functional form of v(φ). Thus, one could use a different v(φ)

in equation (5) and obtain qualitatively similar results. Furthermore, the addition of
a death term, as in Rubinow (1968), would preserve periodicity, but increase the
complexity of the analysis.

We now exploit the periodicity of πG2(t) to determine its mean value over a cell
cycle. This mean value, π̄2, is given by

π̄2 = 1

η1

∫ η1

0
πG2(t)dt . (27)

By referring to equations (18)-(24), we note that the expressions for πG2(t) can be
written in the general form

π(t) = a + bτ

c + dτ
, (28)

where a, b, c and d are known constants. As we need only consider t ∈ [0, η1) for the
mean value by periodicity, we put k(t) = 0 in these calculations.

To simplify the calculation, we reframe the initial conditions (6) as q0 = sp0, for
some positive constant s. After some algebra, we find that when L1 > L2, the average
proportion of cells in the G2 phase, π̄2, is given by

2s2u2v2η1π̄2 =
[
4u3s4 + 4(u3 − u2v)s3 + (uv2 − 2u2v)s2

]
log

(
s + 1 − v

2u

)

+
[
−4u3s4 + 4(u2v − u3)s3

]
log(1 + s)

+
[
2(u2v − uv2)s2 + (v3 − uv2)s + v3

]
log(1 + s)

+
[
uv2s2 + (uv2 − v3)s − v3

]
log

(
s + 1

2

)
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+
[
2uv2s2 + (uv2 − v3)s − v3

]
log(2) + 2u2vs3 − 2uv2s2 + v3s,

(29)

whilst when L2 > L1,

2s2u2v2η1π̄2 =
[
2(u2v + uv2)s2 + (uv2 − v3)s − v3

]
log

(
s + 1 + u

v

)

+
[
−4u3s4 + 4(u2v − u3)s3

]
log(1 + s)

+
[
2(u2v − uv2)s2 + (v3 − uv2)s + v3

]
log(1 + s)

+
[
4u3s4 + 4(u3 − u2v)s3 − 4u2vs2

]
log

(
s + 1

2

)

− 2u2vs2 log(2) + 2u3s3 + (uv2 − 3u2v)s2 + uv2s.

(30)

Furthermore, we can use the expressions (17), (19), (21) and (23) for the total
population numbers to find the growth rate of the population. To illustrate the process,
we use the case in which the G2 phase is longer than the G1 phase (corresponding to
u < v), and note that the analysis can be repeated in the same way for the reverse case.
If we denote the total cell population at time t > 0 by N (t), we find from equations
(17) - (23) that

N (t) =
{
2k(t)

[ 1
2 (1 + s) + suτ

]
p0 for 0 < τ < 1

2u ,

2k(t)
[
s + ( 1

2 − v
2u

) + v · (t − k(t)η1)
]
p0 for 1

2u < τ < η1,
(31)

where k(t) is the positive integer defined by k(t) = �t/η1�. For any integer K ≥ 0,
consider t ∈ (Kη1, (K + 1)η1) so that k(t) = K remains constant in this interval.
Then we can differentiate (31) with respect to t to obtain

N ′(t) =
{
2K usp0 for 0 < t − Kη1 < 1

2u ,

2K vp0 for 1
2u < t − Kη1 < η1,

(32)

where N ′(t) denotes the derivative with respect to time of the total population number.
Therefore, for any fixed integer K ≥ 0 the population growth rate, β(t), at time

t > 0 is given by

β(t) = N ′(t)
N (t)

=
⎧⎨
⎩

su
1
2 (1+s)+su(t−Kη1)

for 0 < t − Kη1 < 1
2u ,

v

s+
(
1
2− v

2u

)
+v·(t−Kη1)

for 1
2u < t − Kη1 < η1.

(33)
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We note that the growth rate is time-periodic with period η1, and so we can calculate
the mean growth rate β̄ over a single period t ∈ [0, η1], where K = 0, as follows

β̄ = 1

η1

∫ η1

0
β(t)dt

= 1

η1

∫ 1
2u

0

su
1
2 (1 + s) + sut

dη̃ + 1

η1

∫ η1

1
2u

v

s + 1
2 − v

2u + vt
dt

= log(2)

η1
.

(34)

Note that this is the growth rate that we estimate if we assumed exponential growth
for the population.

We pause here to consider the impact of splitting the φ axis intomore compartments
in order to represent each cell cycle phase individually. We could extend our piecewise
constant functional forms for p0(φ) and v(φ) to account for these extra compartments
and repeat the above analysis. This would not affect the periodicity of the resulting
solutions. However, increasing the number of compartments increases the number of
cases for consideration. For example, with two compartments there are 4 different
cases based on the value of t and the relative lengths of the compartment, and each
solution comprises four piecewise components. In the three compartment case, we
must consider the relative lengths of the three phases, and also their pairwise sums.
Thus, if a, b, c represent the lengths of the three phases, respectively, we would need
to know how a, b, c, a + b, a + c, and b + c are all ordered. There are 12 different
arrangements of these lengths, each of which would require a piecewise solution with
6 components for p(φ, t). Of these 12 solutions, 7 would be needed to span a single
period of t , namely [0, η1]. Thus determining the phase proportions would be more
cumbersome to calculate. We expect the number of cases to consider to increase
significantly if four compartments were considered.

We use the expressions calculated above in Figure 3 to plot the cell cycle phase
proportions for fixed values of v and u (with v < u) and two choices of initial
conditions. The simulations show how the dynamics change as the proportions of
cells initially in the G1 and G2 phases vary. The mean values of the oscillations over
a single period, calculated using equation (29), are very similar in the two cases.

We note from equations (29) and (30) that πG1(t) and πG2(t) are independent of
the parameter p0. This is because the initial proportions πG1(t = 0) and πG2(t = 0)
depend on s and not p0.

Figure 4 shows how the total cell population N (t) evolves for different values of
(v, u) when the cell cycle length is fixed at η1 = 1/2v + 1/2u = 15 hours. For
each (v, u) pair, the total cell population takes the same value of N (t) whenever
t = mη1 for some integer m > 0, but each pair reaches this value in different ways
for t ∈ [mη1, (m + 1)η1]. We see that when the G1 velocity is smaller than that of G2,
the population is larger than the population resulting from the “average" growth value
in equation (34), whenever t �= mη1 (and conversely when the two phase velocities
are swapped).
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Fig. 3 Cell cycle phase proportion dynamics for the G2 phase over the time-span of 5 complete 22-hour
cell cycles show sharp periodic oscillations. Here v = 1/28, u = 1/16, and we use two different initial
conditions, with s = 10−0.5 (blue curves) and s = 105 (orange curves). The corresponding curves for the
phase proportions of the G1 phase are omitted here, but can be found using πG2 (t) = 1 − πG1 (t). The
dashed lines represent the mean value of the oscillatory curve of the corresponding colour over a single
period, η1 = 22 hours. The two values of s were chosen such that the mean values would be similar.

Fig. 4 The relative values of the two phase velocities drive differences in population growth in each period.
Here we fix η1 = 15 hours, and plot the log-scaled population N (t) for two pairs of (v, u) values. The blue
curve shows the growth for (v, u) = (0.04, 0.2), whilst the orange curve uses (v, u) = (0.2, 0.04). The
population size found using exp(β̄t), where β̄ is the mean value of the growth rate (see equation (34)) is
given by the black dashed line. We fix s = 1 in each case.

In conclusion, for a fixed cell cycle lengthη1, different combinations of the cell cycle
progression velocities (v, u) that satisfy η1 = 1/2v+1/2u can generate identical total
cell population values when measured at fixed time intervals, t = mη1, for integers
m > 1. However, the growth dynamics of the populations at intermediate times may
differ.

In summation, we have derived the general solution for a simple, continuously-
structured PDE model of the cell cycle. We have used the resulting analytical
expressions to derive expressions for the population growth rate, and the proportion
of cells in each cell cycle phase. These expressions are periodic, and so can be utilised
to derive analytical expressions for the mean growth behaviour of the PDE system.
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In the next section, we present a simpler ODE system, and then consider how we
can relate both models.

3 Introducing the ODEModel

3.1 Simple ODEModel

In this section we analyse a linear ODE model corresponding to the PDE model. As
for the structured model, we decompose the cell cycle into two phases which we term
G1(t) and G2(t) (≡ S + G2 + M), and consider the simplest representation of cells
moving between the two phases at some given rates. Assuming that there is no cell
death in the system, we propose the following pair of ODEs to describe the population
growth

dG1

dt
= 2k2G2 − k1G1,

dG2

dt
= k1G1 − k2G2, (35)

with

G1(0) = G0
1, G2(0) = G0

2, (36)

where G0
1 and G0

2 are non-negative constants. In equations (35), k1 and k2 denote the
rates at which cells in the G1 and G2 compartments, respectively, move into the next
compartment. The factor of two in the ODE for G1(t) ensures that when cell division
occurs at the end of the G2 phase, two daughter cells enter the G1 population. As with
the PDE model, we wish to know how the total population N (t) = G1(t)+G2(t) and
the phase proportions g1(t) = G1(t)/N (t) (and g2(t) = G2(t)/N (t)) evolve over
time. Using equations (35), it is straightforward to show that

1

N

dN

dt
= k2g2, (37)

dg2
dt

= k1 − (k1 + k2)g2 − k2g
2
2 . (38)

In order to find a relationship between the ODE model parameters (k1, k2) and the
PDEmodel parameters (v, u, s), we consider the behaviour of the ODEmodel at large
times.

By setting the time derivative equal to zero in equation (38), we find that the stable
steady state G2 cell cycle proportion, g̃2, is

g̃2 =
−k2 − k1 +

√
k22 + 6k1k2 + k21
2k2

∈ [0, 1]. (39)
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Recalling that the population growth rate is given by N ′(t)/N (t), we use (39) in
(37) to find that the long-term growth rate of the population is given by

λ+ =
−(k1 + k2) +

√
k22 + 6k1k2 + k21
2

. (40)

Aswith the PDEmodel, this analysis could be extended to account for four cell cycle
phases without affecting the qualitative results. Coupled linear ODEs would describe
the dynamics of each phase and the cell population would undergo asynchronous
exponential growth (Gyllenberg and Webb 1992), i.e. the total number of cells grows
exponentially, but the proportion of cells in each phase settles to a steady-state value.

Equations (39) and (40) define twomeasurable model quantities λ+ and g̃2 in terms
of the ODE model parameters. We can use these expressions to estimate k1 and k2
given measured values of λ+ and g̃2, via the expressions

k2(λ
+, g̃2) = λ+

g̃2
, (41)

and

k1(λ
+, g̃2) = g̃2 + 2λ+

2 (1 − g̃2)
. (42)

The quantities λ+ and g̃2 align closely with the average population growth rate and
cell phase proportion calculated for the PDE model in Section 2, respectively. The
parameter s from the PDE model has an analogue in the ODE model, found by noting
s = G2(0)/G1(0). However, the expressions for g̃2 and λ+ are independent of the
initial conditions. Instead, the initial proportion of cells in each phase will dictate how
long the system takes to converge to the steady state phase proportion and growth rate
(given by equations (39) and (40)). Whilst not shown here, the larger the difference
between the initial and equilibrium phase proportions, the longer it takes for the system
to evolve to its equilibrium value. In the next section, we will use the expressions to
compare the ODE and PDE models.

4 PDE-ODE Comparison

One way to compare the two models is to integrate the PDE (1) over the phase inter-
vals, φ ∈ [0, 1/2] and φ ∈ [1/2, 1]. This method is considered by Sundareshan and
Fundakowski (1984) under the assumption that the cell density is approximately con-
stant over each sub-interval of the cell cycle. This assumption is not valid for our two
compartment model where the cell density may vary greatly within a cell cycle phase
due to the sharp jump in population numbers caused by cell division. However, armed
with expressions for the long-term population growth rate and steady-state cell phase
proportions for the ODE model, and the average population growth rate and average
cell phase proportion over a single cell cycle for the PDE model, we seek to relate the
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ODE model parameters (k1, k2) to those of the PDE, (v, u, s). We will then use these
relationships to compare the models’ behaviour.

4.1 Relating Parameters

We compare the ODE and PDE models by equating the mean values of the cell pro-
portions (without loss of generality we can focus on just one proportion) and overall
growth rate over a cell cycle period. The quantities of interest from the ODE model
are λ+(k1, k2) and g̃2(k1, k2), where

λ+(k1, k2) =
−(k2 + k1) +

√
k21 + 6k1k2 + k22
2

, (43)

g̃2(k1, k2) =
−(k2 + k1) +

√
k21 + 6k1k2 + k22

2k2
. (44)

The corresponding quantities from the PDE model are β̄(v, u) and π̄2(v, u, s),
where

β̄(v, u) = 2uv log 2

u + v
, (45)

and π̄2(v, u, s) is defined by equations (29) (when v < u) and (30) (when v > u).
We want to find the values (k1, k2) for which we have

β̄(v, u) = λ+(k1, k2), (46)

and

π̄2(v, u, s) = g̃2(k1, k2), (47)

so that we can find a corresponding set of ODE parameters for a given set of PDE
parameters. We will refer to the ODE model with parameters derived from the PDE
model using equations (46) and (47) as the “corresponding" ODE model.

To get a sense of how k1 and k2 depend on the PDE parameters, we start by fixing
s and using equations (46) and (47) to determine k1 = k1(v, u) and k2 = k2(v, u).
Figure 5 shows how k1 and k2 vary for two fixed values of s. In each row of plots,
we set the minimum and maximum of the colour-bar to be the overall minimum and
maximum across both s-cases to more easily compare the plots. In both cases, the
range of values of k1 and k2 are similar, with the smaller value of s able to reach the
highest values of k1 and k2. In general, k1 increases with v, and k2 increases with u.
We see slight decreases in k1 by increasing u for a fixed v, and vice-versa for k2.

In order to investigate the variance in the matched ODE parameters with respect
to changes to each PDE input parameter, we perform a global sensitivity analysis
on the parameters k1 = k1(v, u, s) and k2 = k2(v, u, s). Using the Python package
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Fig. 5 When matching coefficients between models, the value of k2 seems to be most sensitive to changes
in the G2 phase velocity, u, whilst k1 appears to be most sensitive to changes in the G1 phase velocity, v.
Here, we display how the estimated values of k1 and k2 in the ODEmodel change as we vary the parameters
v and u in the PDE model, when s = 0.01 (panels (a) and (c)), and s = 100 (panels (b) and (d)).

SALib (Herman and Usher 2017; Iwanaga et al 2022), we calculate the Sobol indices
for each input parameter u, v and s and present the results in Figure 6. Briefly, the
Sobol indices describe how the variance in model outputs can be attributed to each
model input. Here, our model inputs are L1, L2 and s, and we calculate the Sobol
indices for two model outputs, the ODE parameters k1 and k2. The first order Sobol
indices (orange bars in Figure 6) show the contribution to the output variance when
each input parameter is varied alone. The total Sobol indices (blue bars in Figure
6) denote the contribution to the output variance from varying each input parameter,
including interactions between different input parameters. We also include a dummy
variable, D, which acts as a “negative control" (Marino et al 2008). As expected, the
Sobol indices of the dummy parameter are zero (see Figure 6). Thus, the Sobol indices
and dummy variable provide a measure of significant values for model parameters.

Using the fact that (2v)−1 and (2u)−1 represent the time taken for a cell to progress
through the G1 and G2 phases, respectively, we choose a range of values for u and
v so that our samples are consistent with typical cell timescales for the G1 and G2
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Fig. 6 Sobol indices for the ODE parameters k1 (panel (a)) and k2 (panel (b)) as functions of the PDE
parameters, (v, u, s), found using equations (46) and (47), show that variance in k1 and k2 is largely
controlled by L1, L2 and their pairwise interaction, and solely L2, respectively. A dummy parameter, D,
is included as a negative control. We allow the duration of the G1 and G2 phases (L1 and L2, respectively)
to vary from 1 hour to 22 hours, and log10(s) to vary between −5 and 5. The vertical black lines on each
bar represent the 95% confidence interval for each index.

phases. In both cases, we see that the value of log10(s) has little influence on the ODE
parameters.

In Figure 6(a), both L1 and L2 contribute to the variance of k1, with L1 having a
higher total and first order Sobol indices than L2. The interaction between L1 and L2
was the only second-order effect needed to account for the discrepancy between the
total and first order indices of both L1 and L2, with a second order Sobol index of
approximately 0.15 (the second-order indices formed by pairwise interactions of the
input parameters are not shown here as the majority are negligible).

Figure 6(b) demonstrates that the length of the G2 phase (defined by L2 = 1/(2u))
contributes almost all of the variance in the value of k2, with no significant contribution
from any second-order interactions. These results are consistent with those in panels
(a) and (b) of Figure 5, where k1 varies with u, but to a lesser extent than with v.

4.2 Multi-Valued Functions

Three degrees of freedom in the PDE model (namely v, u and s) determine the quan-
tities π̄2 and β̄ and, hence, the rate constants, k1 and k2, in the ODEmodel. Therefore,
we might expect that multiple sets of PDE parameters are able to generate a single
ODE parameter set. To investigate this, we fix a pair of ODE parameters (k1, k2), and
solve the inverse problem to find PDE parameter sets (v, u, s) for which the ODE
approximates the average behaviour of the PDE.

In deriving the expressions for the growth rates and G2 proportions, we found that
the growth rate is a function of k1 and k2 if taking the ODE approach (equation (40)),
and a function of only u and v if taking the PDE approach (equation (34)). Therefore,
fixing k1 and k2 fixes β̄, which then produces a fixed relationship between u and v,
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Fig. 7 Fixing the average growth rate of the population restricts (v, u) to a simple curve, whilst fixing the
average G2 proportion allows for cases in which two distinct initial phase proportions are possible for a
single (v, u) pair. (a) Contour in (v, u)-space that satisfies β̄(v, u) = λ+(k1 = 0.5, k2 = 0.5), found using
(43) and (48). (b) Contour in (v, log10(s))-space that satisfies π̄2(v, u, s) = g̃2(k1 = 0.5, k2 = 0.5), where
u = u(v) is defined by fixing β̄(v, u) = λ+(k1 = 0.5, k2 = 0.5).

namely

λ+(k1, k2) = β̄(v, u) = 2uv log 2

u + v
. (48)

Hence we see that fixing k1 and k2 constrains the values of u and v to lie on a single-
valued curve in (v, u)-space, defined by (48).

We present an example of this in Figure 7(a), where we fix β̄(v, u) = λ+(k1 =
0.5, k2 = 0.5) and find the corresponding (v, u) pairs using (48). With u = u(v) as
taken from Figure 7(a), Figure 7(b) presents the (log10(s), v) pairs that are required
to satisfy π̄2(v, u, s) = g̃2(k1 = 0.5, k2 = 0.5). We see there are regions in (v, u)

parameter space such that different initial conditions map to the same point in (k1, k2)
parameter space. More specifically, for some progression velocity pairs (v, u), we find
two distinct values of the initial cell ratio parameter s, (s1, s2), such that k1(v, u, s1) =
k1(v, u, s2) and k2(v, u, s1) = k2(v, u, s2). These distinct values of s alter the initial
distribution of the cells over the cell cycle in the PDE model, and hence alter the
time-evolution of the solution p(φ, t) together with producing different amplitudes of
oscillation for π2(t).

In summary, we find that there are regions of parameter space such that a single pair
of ODE parameters (k1, k2) can be obtained via two distinct sets of PDE parameters,
(v, u, s1) and (v, u, s2), where the initial condition varies, i.e. s1 �= s2. By design,
the long-time ODE behaviour matches the average PDE behaviour. This suggests that
only knowing the average behaviour cannot uniquely specify the PDE behaviour and,
in particular, the initial cell distribution. We conclude that, when applying phase-
dependent treatments, knowing the initial conditions of the PDE model is vital, and
we will demonstrate this in Section 4.4.
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Fig. 8 An example highlighting that there can be two values of s that give rise to a single (k1, k2) pair,
as illustrated by the two green dashed lines. We plot the ODE parameters, k1 (blue) and k2 (orange), as s
varies when u = 1/28 and v = 1/16. The blue dots correspond to k1 = 0.11455, and the orange dots are
k2 = 0.05541 (see Figure 9).

4.3 Realistic Values of Cell Cycle Progression

Having shown that, by suitable choice of the initial conditions (with control parameter
s), multiple sets of parameters (v, u, s) can give rise to the same values of (k1, k2),
we now focus on biologically realistic values of v and u.

Cell cycle length (and individual cell cycle phase length) varies between different
cells lines, with some variation present between cells of the same cell line (Weber et al
2014). Experimental data from different cell lines suggest that the cell cycle length of
human cells can range between 18-24 hours, with phase lengths also variable (Weber
et al 2014; Araujo et al 2016; Cotton et al 2024; Eidukevicius et al 2005; Cooper
2000). In line with this range of estimates, we fix η1 = 22 hours. Then β̄ = log(2)/22,
and 1/v + 1/u = 44 by equation (48), thus restricting u and v to the simple curve in
Figure 7(a). Estimates for the G1 phase length range from 4-6 hours in human HT1080
fibrosarcoma cells (Marcus et al 2015) to around 8 hours in primary human intestinal
epithelial cells (Cotton et al 2024) to around 11 hours for rapidly proliferating cells
(Cooper 2000). From this, we choose v = 1/16 and u = 1/28 to represent the G1
phase being 8 hours long, and the G2 phase being 14 hours long, respectively.

Figure 8 shows how k1 and k2 change as s varies using (42) and (41). We see that as
s varies within the range 10−5 < log10(s) < 105 the values of k1 and k2 do not vary
significantly: we find 0.110 < k1 < 0.124 and 0.053 < k2 < 0.057. We also identify
a range of values of s for which two values of s produce the same values of k1 and
similarly for k2. Recalling that k1 and k2 are defined such that λ+(k1, k2) = β̄(v, u)

and g̃2(k1, k2) = π̄2(v, u, s), we find that these regions must be identical, as explained
below.

Theorem 1 Suppose that u and v are constant. If ∃ s1 �= s2 such that k1(v, u, s1) =
k1(v, u, s2), then k2(v, u, s1) = k2(v, u, s2).
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Proof If u and v are fixed, then since β̄ is independent of s, and λ+(k1, k2) = β̄(v, u),
it follows that λ+ is also independent of s. Then by (42) and (41),

k2(v, u, s) = λ+(1 + 2k1(v, u, s))

2(k1(v, u, s) − λ+)
, (49)

from which we see that

k1(v, u, s1) = k1(v, u, s2) �⇒ k2(v, u, s1) = k2(v, u, s2), (50)

and so the claim holds. �
The reverse of this result for the case where s1 �= s2 are such that k2(v, u, s1) =
k2(v, u, s2) can be proved in a similar fashion.

4.4 Full Simulations

Having shown that a single set of ODE parameters can, for particular pairs (v, u),
correspond to two different values of s, the initial cell phase ratio, we now turn to look
at the dynamics of the PDE model. As an example, we fix v = 1/16 and u = 1/28,
and find two values of s, denoted by s1 < s2, such that k1(v, u, s) = 0.11455 and
k2(v, u, s) = 0.05541. We will use these different values of s to induce different
initial conditions for the ODE model. For each value of s, the corresponding initial
conditions for the ODE and PDE simulations are

G1(0) = 1

1 + s
, G2(0) = s

1 + s
(51)

and

p(φ, 0) =
{

2
1+s , if φ ≤ 0.5
2s
1+s , if φ > 0.5,

(52)

respectively.
In Figure 9, we plot the dynamics of the G2 phase proportions and the total cell

number density over a period of approximately 120 hours for two pairs of PDE and
ODE parameters. In the PDE simulations we take u = 1/28, v = 1/16, s1 = 10−0.605

and s2 = 102.645, while in both ODE simulations, we use k1 = 0.11455 and k2 =
0.05541.

In Figure 9(a), we plot the mean G2 proportion for PDE oscillations over a single
cell cycle (22 hours), found using (30). In Figure 9(b) we plot the cell density growth
curve for a cell population growing exponentially at rate β̄(u = 1/28, v = 1/16),
starting from a single cell. In each panel, these are presented as the “Mean value"
curves.

Figure 9(a) shows that the ODE solutions settle to a steady state after one cell cycle.
This steady state is identical to the mean of the PDE oscillations, by construction. For
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Fig. 9 Time-evolution of the proportion of cells in the G2 phase (a), and the total number of cells (b) for
two PDE-ODE pairs display different growth dynamics due to different initial phase proportions. Each PDE
simulation has u = 1/28, v = 1/16, while each ODE simulation has k1 = 0.11455 and k2 = 0.05541.
The value of s determines the initial phase ratio, where we have 1 cell in total initially (so N (0) = 1). See
text for the definition of Mean value.

the PDE oscillations, both values of s lead to oscillations with large peak-to-peak
amplitudes, A (which we will refer to as just the “amplitude" from now on); when
s = 10−0.605, A = 0.85−0.2 = 0.65, andwhen s = 102.645, A = 1.00−0.25 = 0.75.
We also note that the oscillations appear to be “out of phase" with each other. The
maximumamplitude of the oscillationswhen s = 102.645 occurs at the same time as the
minimum amplitude of the oscillations when s = 10−0.605. However, the maximum
amplitude of the oscillations when s = 10−0.605 and the minimum amplitude of
the oscillations when s = 102.645 are not aligned. Analytical manipulation of the
expressions for π2(t) given by (18)-(24) demonstrates that the extreme values of a
given oscillatory solution occur every η1 hours, starting from either t = 0, 1/2v
or 1/2u. Here, the maximum amplitude of the s = 102.645 case and the minimum
amplitude of the s = 10−0.605 case occur at integer multiples of η1. However, the
minimum amplitude of the s = 102.465 case occurs every η1 = 22 hours, starting
from t = 1/2v = 8 hours, whereas the maximum amplitude of the s = 10−0.605 case
occurs every 22 hours, starting from t = 1/2u = 14 hours. This difference will be
important when we consider the effect of treatment on these models, as the time in
the cell cycle at which treatment is applied may greatly impact subsequent tumour
reduction.

This result is lost in the ODE case, where the proportions settle to a steady state,
suggesting that the time of treatment application within a single cell cycle would
have no effect on treatment efficacy. This also highlights the importance of the initial
condition of the PDE model, and the identifiability of the parameter s, which we have
shown to take two distinct values in some regions of parameter space. If each value
of s in Figure 9 corresponds to data from a different patient, we see that the optimal
time of treatment application within a single cell cycle differs for each patient due to
the periodicity that propagates the differing initial conditions. Thus, in situations in
which some oscillatory behaviour is seen in cell cycle proportions over time, more
insight may be gained regarding optimum treatment plans when the PDE model is
implemented.
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When looking at the total number of cells in Figure 9(b), we note that the (ODE,
PDE) solutions lie either side of the mean PDE curve. The solutions for s = 10−0.605

lie below the mean curve, and the solutions for s = 102.645 lie above it. This is because
when s = 10−0.605 the initial cell density is concentrated in the first phase of the cell
cycle, and so it will take longer for the cells to double when compared to the case
with s = 102.645, where the initial cell density is concentrated in the second cell cycle
phase. Whilst the exponential growth of the ODE solutions prevents the curves from
intersecting themean growth curve, the PDE solutions intersect themean growth curve
every 22 hours (corresponding to the end of each complete cell cycle), demonstrating
that the PDE curves generate the same cell numbers as the simple mean growth curve
at the end of a complete cell cycle. At intermediate times, regions of slower and faster
growth push the PDE solution away from the mean curve.

Without any knowledge of the cell phase proportions as in Figure 9(b), the growth
curves of the PDE model provide insight into the underlying cell cycle. The periods
of slower growth suggest times at which the proportion of cells in the G2 phase is less
than when the population is experiencing a faster growth rate. In this case, where we
know the parameter values, this can be explained by the fact that the periods of slower
growth correspond to most of the cells being in the G1 phase, and so fewer cells are
passing through the end of the G2 phase in these periods. In general, we know from
(32) that N ′(t) is piecewise constant in time, with exactly two different growth rates
occurring within a single cell cycle, namely for t ∈ [Kη1, (K + 1)η1]. From this, we
find that if the initial growth rate is larger than the second growth rate occurring before
t = η1, then we must have that

p0
L1

<
sp0
L2

. (53)

Thus, knowing the initial cell distribution via the parameter s allows us to deduce an
inequality for the relationship between the two cell cycle phase lengths.

In contrast, the ODE population growth curves give little information about the
underlying cell cycle parameters. Hence, total population data alone from the PDE
model can provide insights into the cell cycle distribution, whereas the ODE model
may not.

4.5 Amplitude of Oscillations in Cell Phase Proportions

As the phase proportions in the ODE model settle to a steady state, we choose the
peak-to-peak amplitude of the oscillations in the phase proportions as a measure of
how well the ODE model fits the PDE model. Thus, for a given PDE parameter set,
the corresponding ODEmodel will be considered a better fit if the PDE displays small
oscillations in the phase proportions.

Periodicity in π̄2(t) allows us to restrict the amplitude measurements to a single
cell cycle. By minimising and maximising these expressions (see equations (18), (20),
(22) and (24)) with respect to time for t ∈ [0, η1], we can calculate the amplitude of
the oscillations analytically (results not shown for brevity).
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As before, we fix the cell cycle length so that η1 = 22 hours, which restricts v

and u so that 1/v + 1/u = 44. Figure 10 displays four heatmaps for the peak-to-peak
amplitude as we vary the initial proportion constant s, and the length of the G1 phase,
thus fixing the length of the G2 phase. As discussed in Section 4.3, the cell cycle length
and phase lengths are known to vary between different cell lines. Therefore, Figure 10
is intended to represent results from the PDE model and ODE model under different
cell lines, each with the same total cell cycle length of 22 hours but different phase
lengthswithin that. Figure 10(a) shows the amplitude of theG2 proportion oscillations,
and we see that we have two distinct regions of parameter space where the amplitude
is high (> 0.7), namely when G1 is less than 11 hours and most of the initial cells are
concentrated in G1, and when the length of G1 is greater than 11 hours and most of
the initial cells are concentrated in G2. In the first case, we find that having most of the
cells initially concentrated in G1 means that the G2 proportion is initially low, whilst
the short G1 phase length allows this majority to quickly pass to G2, causing the cells
to transiently congregate in the G2 phase, leading to a large G2 proportion. Thus, it
is to be expected that this case leads to a large G2 oscillation amplitude. A similar
argument explains the second case. In contrast, we find that as we increase the length
of the G1 phase, the initial cell distribution required to keep the oscillatory amplitude
small (< 0.2) leans more towards an initial G1 majority. This is to be expected, as s
is defined to be the ratio of the number of cells initially in the G2 phase to the number
of cells initially in the G1 phase. For a large value of s, the cells are initially largely
concentrated in G2, and so the G2 proportion is initially high. With a small G1 length
(and correspondingly, a large G2 length) we expect the proportion of cells in G2 to
remain high throughout, as the small proportion of cells that pass into G1 at any given
time will quickly progress back to G2, thus leading to a small amplitude. As the length
of the G1 phase increases, we would expect that we would need the balance of the
initial cell distribution to shift to being initialised in the G1 phase in order to reverse
this result.

Figure 10(b) and 10(c) display how the ODE parameters k1 and k2 change over the
same parameter space. As to be expected from the sensitivity analysis in Figure 6, we
see that any variations are largely independent of the value of s. Finally, in panel (d),
we present the average proportion of cells in the G2 phase, π̄2, over this parameter
space. Again, this value is largely independent of s, and decreases with an increasingly
long G1 phase.

Thus, we see that for a fixed cell cycle length and a given value of v, the initial cell
distribution factor, s, in the PDE model has little effect on the corresponding ODE
parameters and approximately fixes the average of the G2 proportion oscillations (and
the steady-state of the corresponding ODE model). However, the parameter s leads
to large variations in the oscillation amplitude of the PDE model, and therefore how
well the ODE model captures its dynamics. For example, for a small value of v (a
long G1 phase), the long-time behaviour of the ODE model will predict that the G2
proportion settles to a small value, but the PDE oscillations about this value will have
a large amplitude if most cells are initially in the G2 phase, and a small amplitude
if the initial cells are instead focused in the G1 phase. In this case, the ODE model
approximates the PDE dynamics well when s is small, and the approximation is poor
when s is large.
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Fig. 10 The relative length of each cell cycle phase largely controls both the PDE and ODE dynamics. Plots
of (a) the amplitude of the G2 oscillations in the PDE model, (b) the value of ODE parameter k1, (c) the
value of ODE parameter k2 and (d) the average proportion of cells in the G2 phase from the PDE model. In
each case, we fix η1 = 22 hours, and vary the length of the G1 phase (1/2v) and the initial cell distribution
factor s

Such considerations of the oscillatory amplitude are also important when investi-
gating how treatment may affect the cell population. When using the ODE model to
represent cell populations, the rapid approach to steady-state cell cycle phase propor-
tions suggests that after an initial transient, the effect of a cell-cycle phase-dependent
treatment will be independent of the time at which it is applied. In contrast, the peri-
odicity of the PDE cell cycle phase oscillations means that treatment efficacy could
depend significantly on the time at which it is applied.

For example, radiosensitivity is highest for cells in the G2/M phases of the cell
cycle (Pawlik and Keyomarsi 2004), and so if the PDE model is used to represent the
cell cycle, the timing of the treatment application should be optimised to ensure that
the proportion of cells within these phases is at its highest at the start of treatment.
Time-course data of cell cycle phase proportions of in vivo tumours are difficult to
obtain, and so any experimental data are largely from in vitro models. Even in this
simple PDE model, we see that all three parameters v, u and s affect the oscillatory
amplitude and period, and as such, predicting this amplitude for experimental results
without detailed time-course data is likely to prove difficult.

Further, one effect of radiotherapy is to slow cell cycle progression and cause cell
accumulation in the G2 phase post-treatment, which is dose-dependent and induces
oscillatory dynamics in the cell cycle phase proportions (Pawlik and Keyomarsi 2004;
Geldof et al 2003). As such, the PDEmodel presented here may be a useful and simple
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Fig. 11 The relative cell cycle phase lengths, and total cell cycle length, modulate the amplitude of the PDE
oscillations in an initial phase distribution-dependent manner. Plots of the oscillatory amplitude in the G2
phase proportion as the length of the G1 and G2 phases vary, for three different initial distribution factors,
where (a) s = 10, (b) s = 1 and (c) s = 0.1.

tool for modelling this accumulation, as well as for obtaining the optimal height of this
G2 accumulation, at which point further radiotherapy can be applied, as considered
experimentally by Geldof et al (2003).

Figure 11 shows how the amplitude of the G2 phase proportion varies as the lengths
of the G1 and G2 phases vary, for a decreasing initial proportion of G2 cells from left
to right. For example, fixing the length of the G1 phase and increasing the length of the
G2 phase has an initial-condition dependent effect on the resulting amplitude of the
oscillations. Once again, the initial conditions used in our simple PDEmodel are likely
too simplistic to represent a feasible cell cycle distribution, and the effects of more
complex initial distributions are not investigated further here. However, we see that
this simple model presents possibilities for future investigations using more complex
functional forms and explicit applications of treatment.

This gives some indication as to how the oscillatory amplitudes change if one of the
phases is shortened or elongated by anti-cancer treatment, such as the cell cycle arrest
and reduced proliferation rate induced by radiotherapy (Carlos-Reyes et al 2021).
Recent work has also shown clinical success with the use of cyclin-dependent kinase
inhibitors (CDKi) to target tumour proliferation (Suski et al 2021; Álvarez Fernández
and Malumbres 2020). CDKi have been shown to cause cell cycle arrest (the arrest
phase is dependent on the specific CDKi used), thus elongating the length of cell
cycle phases, and provides a promising avenue for future experimental and clinical
investigation.

4.6 Fitting the ODEModel to PDE Data

Throughout this work, we have constructed our corresponding ODE model for each
PDE model under the assumption that we know each of the three PDE parameters,
(v, u, s), in order to match the long-term ODE behaviour with the average PDE
behaviour. In reality, experimental data can only provide us with snapshots of the
behaviour. We now briefly turn our attention to fitting the ODE model to the PDE
model without this complete parameter knowledge.
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We use our analytical expressions for N (t) and πG2(t) (equations (17) - (24)) to
simulate the PDE model under a given parameter set (v, u, s) at a set of discrete times
(t1, t2, ..., tn). This allows us to generate data points from the PDE model that we
use as synthetic data for ODE fitting purposes. We then look at how the fitted ODE
parameters compare to the “analytically matched" ODE parameters considered until
now.

Denoting the two sets of data by �π2 = (y1, y2, y3, ..., yn) for the proportion of cells
in the G2 phase at n increasing values of t , and �N = (z1, z2, z3, ..., zn) for the total
number of cells at the same values of t , we use non-linear least squares to fit these data
to the ODE model. We assume that the first data point is taken at t = 0, and so we
know the value of s in the initial conditions for the ODE model. Therefore, we seek
to find the set of parameters �K = (k1, k2) for the linear ODE system (35) (subject to
initial conditions G1(0) = (1 − y1)z1, G2(0) = y1z1) that best fit the PDE data. We
use a non-linear least squares fitting algorithm to fit the solutions of the ODE model
for the total cell number and G2 phase proportion to the discrete PDE data points. As
we are fitting the ODE model to two different quantities that take values on different
scales (the total cell number can vary between 1 and 103 for the chosen parameters,
whilst the G2 phase proportion is fixed to lie between 0 and 1), we take a log-transform
of the least-squares fitting function. Thus, the best-fit set of ODE parameters �K is the
vector that minimises the loss-function

SLn =
n∑

k=1

(ln(zk) − ln(N (tk, �K )))2 +
n∑

k=1

(ln(yk) − ln(πG2(tk, �K )))2, (54)

and we use the Python package Pints (Clerx et al 2019) to perform the fitting.
Figure 12 shows the results of this fitting when the simulated PDE uses parameter

values v = 1/16, u = 1/28 and s = 103, to mimic a realistic cell cycle duration
as in Section 4.3. This large value of s is chosen to obtain large oscillations in the
G2 proportions, as discussed above, but is otherwise an arbitrary choice. We choose
to sample the PDE curves at three different time intervals, namely every 7, 22 and
30 hours. Out of the three sampling frequencies, we find that the 7 hour intervals
create the closest ODE fit to the dynamics of the “analytically matched" ODE model,
whilst the 22 hour intervals create the worst fit. These three examples demonstrate the
importance of the sampling frequency if we assume that the PDEmodel is the “ground
truth".

Whilst the 7 hour sampling produces the closest fit to the “analytically matched"
ODE, we find that the 30 hour sampling produces only a slightly worse match. In
contrast, the 22 hour sampling produces a fitted ODE model that matches the “ana-
lytically matched" ODE very poorly. This can be explained by looking at the location
of the data points in Figure 12(b). The length of the cell cycle is 22 hours in this
case, and so the periodicity of πG2(t) means that sampling the G2 proportion every
22 hours only records data when the proportion is at its maximum value, and so does
not capture the large oscillation in πG2(t). On the other hand, the data points taken
every 7 and 30 hours do a much better job of capturing the range of dynamics in the
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Fig. 12 The frequency of data sampling from the PDE impacts the goodness of fit between the fitted ODE
and the matched ODE. In each plot, the scattered points represent data from the PDEmodel (shown in grey),
which are used in the least-squares method to optimise the ODE model fit. The data points correspond to
the PDE system every 7, 22 and 30 hours for the purple, green and pink points, respectively, with u = 1/28,
v = 1/16 and s = 103. The dashed lines display the optimal fit to the ODE model using least-squares
with the log form for the residuals (see text for details). The blue curve is the solution to the ODE model
using the analytical matching process discussed previously. Panel (a) shows the log-transformed population
count of the underlying PDE model, and the various fitted and matched ODE systems, and (b) displays the
corresponding proportion of cells in the G2 phase.

oscillations of πG2(t), and thus create a better representation of the overall dynamics
of the underlying PDE.

We repeated this fitting procedure for samples taken every 1 hour, and every 2
hours, and found little difference between the resulting ODE models, and the ODE
model fitted to the data sampled every 7 hours (results not shown).
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Therefore, we find that if our underlying data have oscillatory behaviour in the cell
cycle phase proportions, then the frequency at which we collect the data can impact
the range of this oscillatory behaviour that is seen. Thus, when fitting the ODE model
to the data, we must be aware that the ODE model might not accurately capture the
average behaviour of the underlying oscillations. One possible solution to this may
be sampling at irregular intervals in an attempt to capture as much of the underlying
oscillatory behaviour as possible, although we refrain from considering this approach
here for brevity.

In this section, we have defined a method of “matching" the ODEmodel to the PDE
model via expressions for the key quantities of growth rate and cell cycle proportions.
This allows us to obtain an ODE model with a long-term growth rate and cell cycle
phase proportions that matches the corresponding average behaviour of a given PDE.
Given the analytical expressions for each of these quantities in each type of model, we
found that searching for a given set of ODE parameters (k1, k2) determined a simple
relationship for the PDE parameters (v, u) by matching the growth rates of the two
models. We also saw that the problem is under-specified due to the inclusion of the
initial cell cycle phase distribution parameter s in the PDEmodel quantities. We found
that this leads to regions of (v, u) space where it is possible to obtain two different
initial distribution factors, s, that generate identical ODE parameter sets.

Furthermore, we restricted our PDE parameters (v, u) to biologically realistic val-
ues, and explored the consequences on the derived values of the ODE parameters
(k1, k2), and how altering the value of s can maintain the mean (long-term) growth
rate and cell cycle phase proportion for the ODE (PDE) models, yet lead to dramati-
cally different behaviour in the full underlying PDE dynamics.

We also introduced the amplitude of the PDE phase proportion oscillations to rep-
resent a measure of agreement between the ODE and PDE models. We found that this
amplitude is dependent on each of the parameters (v, u, s) and can be used to consider
the impact of treatment such as radiotherapy on a population of cells.

Finally, we considered how, in the absence of exact parameter values to complete
the analytical “matching" process between the two models, we can fit the ODE model
to a discrete set of synthetic PDE data. This illustrated how the oscillatory behaviour
of the PDE model requires careful consideration of the frequency of data collection
in order to produce a good fit to the average underlying behaviour by the ODE model.

5 Discussion

When modelling the cell cycle mathematically, there is a choice to make regarding
whether to place cell populations into well-mixed compartments, each representing a
different cell cycle phase, or to consider the cell cycle as a continuum through which
a cell progresses at a given velocity. These two views lead to different modelling
structures. Here, we analysed the simplest form of the continuummodel as a structured
PDE, and then compared the insights gained to those from awell-mixed compartment-
based ODE system.

In Section 2 we introduced the PDE model, taken from work by Rubinow (1968)
and specified simple functional forms for the cell cycle progression velocities and

123



   93 Page 30 of 35 R. E. Nixson et al.

initial conditions. Integration of the solution produced expressions for the proportion
of cells in each of the two considered phases and the population growth rate as functions
of time. We found that these quantities are periodic with period equal to a single cell
cycle. Further integration to average these results over the period generated expressions
for the average growth rate and proportion of cells in the G2 phase as functions of
the progression velocities (v, u), and the relative number of cells initially in each
compartment, s.

Linear compartment-based ODE systems that represent progression through the
cell cycle often have cell phase proportions that settle to a stable steady-state, and
population growth rates that are dominated by the largest eigenvalue of the linear
system. This provides an avenue for matching the averaged results of the PDE system
to the long-time behaviour of a corresponding linear ODE system. In Section 3, we
defined this linear ODE system, and solved for the analytical expressions of this
steady-state and long-term growth rate in terms of the model parameters.

In order to investigate cases in which the PDE model produced additional insight
into the cell cycle that could not be captured by the ODE, Section 4 focused on relating
and comparing the two model systems. We started by linking the model parameters
together via the growth rates and G2 cell proportions so that the long-time ODE
dynamics represent the average of the oscillatoryPDEdynamics. Further consideration
of these relationships included a sensitivity analysis, from which we found that the
parameters controlling G1 progression in each model were closely linked, with the
same result for the G2 parameters.

The inclusion of a simple uniform-density initial condition in the PDEmodel caused
the parameter matching to be under-specified, from which we found that two different
initial configurations of cell-cycle distribution in the PDE model could generate a
single set of “averaged" ODE system parameters. As the long-time ODE behaviour
considered here is independent of the initial conditions, perfectly matching the mean
of the PDE results to the long-time ODE results still leads to identifiability issues with
regards to the initial conditions of both the PDE (we may have two possible values of
s) and the ODE (we gain no information about the initial cell distribution). These two
PDE parametrisations have distinct growth dynamics, both in the amplitude of cell
cycle proportion oscillations, and the overall population growth rate at a given time.
When simulating both the PDE andODEmodels for a givenmatched parameter set, we
find that the PDE can produce more complex dynamics for the cell cycle distribution
and growth rates at a given time via the oscillatory behaviour inherent in the model.

As discussed throughout, many cancer treatments have cell-cycle specific effects
on cells. We have seen here that in a cell population experiencing non-monotonic
fluctuations in the proportion of cells in a given cell cycle phase, the simple two-
compartment ODE model is incapable of capturing these fluctuations. On the other
hand, the structured PDE model captures these oscillations fully, even using the sim-
plest piecewise-continuous functional forms for the initial conditions and cell cycle
progression velocities. Therefore, the PDE model is better equipped for consider-
ing the effects of these cell-cycle specific treatments in these fluctuating cases. This
demonstrates that for parameter sets leading to large PDE oscillatory amplitudes, the
mean is not a good measure of the system behaviour, and as such the ODE model
provides a poor approximation in the context of treatment application.
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Further work may consider the effects of imposing explicit treatment on the PDE
model in a cell-cycle specific manner. We have found that the time at which treatment
is applied in the PDE model has the ability to have significant impact on treatment
efficacy due to the range of cell phase proportion amplitudes possible in the parameter
space considered here. Hence, it may be interesting to find analytical results for cell
population reduction under treatment application at different times along a single
period of phase proportion oscillation, and investigate the range of different outcomes
predicted by this model. This could be accomplished by the addition of a death term of
the form −λ(φ, t)p(φ, t) to the right-hand side of equation (1), as an extension to the
time-independent death rate−λ(φ) in Rubinow (1968). Whilst we have seen here that
the cell-cycle fluctuations present in the PDE model cannot be captured by the ODE
model, it would be interesting to investigate how the averaged effects of treatment on
the PDE model compare to the results of treatment in the ODE model. For example,
should we still expect the long-term ODE model behaviour to represent an average
of the PDE model? This would be made more complex if treatment is assumed to
be effective over a window of time. For example, if the treatment is effective for a
sufficient amount of time after initial application, could it be possible that results
predicted by the PDE model have closer agreement with those from the ODE model
due to the treatment being effective for a larger portion of a single PDE oscillation?

Another extension to this comparison would be to consider a system of non-linear
ODEs, rather than a linear model. By assuming, for example, that the progression
rates between phases depend on population density and/or intracellular protein levels
(Falcó et al 2025; Adam 1980; Tyson and Novák 2001, 2022), we could provide a
more realistic description of the biology within an ODE framework. In addition, we
could derive a non-linear ODE system from the PDE system presented here. Both
approaches are likely to be more faithful to the underlying biology, but it would be
more challenging to compare them to PDE models using analytical methods.

Other future work could focus on the identifiability of the PDEmodel (Wieland et al
2021; Renardy et al 2022). Given the analytical tractability of the simple PDE model
presented here, a natural next step would be to consider the structural identifiability of
the parameters (v, u, s)using themeasurable outputs of cell phase proportions and total
cell density. Furthermore, given the oscillatory behaviour of the cell-cycle proportions
resulting from this PDE model, we could also assess the practical identifiability of the
parameters by trying to ascertain the parameter values from noisy data.

Following from this linking of the two model types, further work could also focus
on fitting the PDEmodel to experimental data. As mentioned previously, this has been
considered for a variety of cell cycle models, including Tyson et al (2012); Gabriel
et al (2012); Ubezio (2024); Celora et al (2022). More specifically, work by Tyson et al
(2012) and Gabriel et al (2012) consider data from single cells which quantify their
inter-mitotic time, and as such, their methods rely on having the detailed data on the
scale of individual cells. However, such work would provide an excellent framework
for studying the impact of stochasticity of inter-mitotic times in individual cells.When
considering cell cycle progression for a population of cells, studies find that cells
desynchronise and populations eventually settle to have steady proportions within
each phase (Nowak et al 2023). Work by Vittadello et al (2019) also shows oscillatory
behaviour in the ratio of the number of cells in one cell cycle phase compared to the
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other phases during the first few cell cycle lengths. An ODEmodel consisting of many
compartments is proposed and fitted to these data with success. Mathematical models
of this initial synchronised oscillatory behaviour followed by a formation of steady
cell proportions have been proposed, including both stochastic models (Olofsson and
McDonald 2010) and deterministic structured-PDEmodels (Chiorino et al 2001). This
deterministic structured-PDE model assumes that a cell of given age a > 0 divides
at a rate determined by a probability density function for the cell cycle length. Whilst
capturing both the initial oscillatory behaviour and later steady behaviour, the analysis
of the PDE model is not analytically tractable.

Therefore, whilst the ODE model considered here might be better at capturing the
long-time behaviour of a cell population, the fit of the structured PDE model to the
oscillatory data collected by Vittadello et al (2019) could be considered. Capturing
a good fit using this simple PDE model would allow for analytical tractability when
modelling these early oscillatory stages of population growth. Obtaining a good fit to
these data may require a more complex form of the initial distribution (though perhaps
one that still produces analytically tractable results) than the piecewise-constant form
used here, and so we leave this for future work.
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