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Abstract

Chase-and-run dynamics, in which one population pursues another that flees from
it, are found throughout nature, from predator-prey interactions in ecosystems to the
collective motion of cells during development. Intriguingly, in many of these systems,
the movement is not straight; instead, ‘runners’ veer off at an angle from their pursuers.
This angled movement often exhibits a consistent left-right asymmetry, known as
lateralisation or chirality. Inspired by such phenomena in zebrafish skin patterns and
evasive animal motion, we explore how chirality shapes the emergence of patterns in
nonlocal (integro-differential) advection-diffusion models. We extend such models to
allow movement at arbitrary angles, uncovering a rich landscape of behaviours. We
find that chirality can enhance pattern formation, suppress oscillations, and give rise to
entirely new dynamical structures, such as rotating pulses of chasers and runners. We
also uncover how chase-and-run dynamics can cause populations to mix or separate.
Through linear stability analysis, we identify physical mechanisms that drive some of
these effects, whilst also exposing striking limitations of this theory in capturing more
complex dynamics. Our findings suggest that chirality could have roles in ecological
and cellular patterning beyond simply breaking left-right symmetry.
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1 Introduction

Across biology, organisms and cells alike move in response to others around them,
giving rise to striking population-level patterns. From territorial ranges (Potts and
Lewis 2014) to swarming locusts (Bazazi et al. 2008) to the development of tissues
and organs (Hillen and Painter 2009; Armstrong et al. 2006), these dynamics emerge
from simple rules of interaction. Theoretical models can bridge these scales, revealing
when and how individual-level behaviours give rise to macroscopic structure. Yet our
understanding is far from complete. Even between just two species, there is a wide
variety of possible interaction dynamics.

For example, movement-inducing interactions between different species can be
mutually attracting, mutually avoidant, or ‘chase-and-run’, in which individuals of the
first species are attracted towards individuals of the second species, whilst individuals
of the second species are repelled away from individuals of the first. Chase-and-run
dynamics, also called ‘pursue-and-avoid’, ‘cops-and-robbers’, or ‘chase-and-escape’,
are often studied in the context of ecosystems with predators and prey (Moore and
Biewener 2015). One example includes North American elk, which have been observed
to alter their browsing patterns and spatial distribution to avoid wolves (White et al.
1998; Ripple and Larsen 2000). Over the last two decades, ecologists have adopted the
idea that predator-avoidant movement in prey and prey-seeking movement in preda-
tors can drive spatial patterning across a landscape (Gaynor et al. 2019). Additionally,
chase-and-run dynamics can occur at cellular scales, where they are also thought
to contribute to pattern formation. Examples include stripe formation in zebrafish
(Yamanaka and Kondo 2014) and cell migration for neural crest development (Theve-
neau et al. 2013). Szab6 and Mayor (2015) argue that chase-and-run may be a common
mechanism present in many cellular pattern forming processes, possibly including kid-
ney morphogenesis, development of the lateral line in zebrafish, and cancer invasion.

In response to this growing interest, Painter et al. (2024) recently studied chase-
and-run interactions within a nonlocal advection-diffusion model. They showed that
these interactions can generate a rich range of behaviour, including stationary patterns,
spatio-temporal oscillations, and ‘population chase-and-run’ — where an aggregate of
chasers continually chases an aggregate of runners. This work is part of a broader field
examining nonlocal advection-diffusion models, which use integro-partial differential
equations to describe agents that interact across a distance to induce movement. Such
models have been applied to various biological phenomena, including swarms of
animals, which rely on visual cues across a distance (Mogilner and Edelstein-Keshet
1999); cell aggregation, where adhesion occurs across the length of a cell diameter and
longer ranged interactions can be mediated by pseudopodia (Armstrong et al. 2006;
Carrillo et al. 2019; Painter et al. 2015; Jewell et al. 2023); and territorial patterns
formed by animals communicating through scent markings across an ecosystem (Potts
and Lewis 2019). For a recent review of these models, see Painter et al. (2024).
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An assumption present in all the models mentioned above is that agents only move
directly towards or directly away from each other — advection is only induced parallel
to their separation or parallel to their concentration gradient. What happens when we
relax this assumption? What happens when interactions generate advection at some
general angle from the source of the signal? These questions are relevant to chase-
and-run mechanisms within both ecology and developmental biology.

In animal behaviour, escape responses often involve movement at an angle rather
than directly away from a threat. In many vertebrates, such behaviour can exhibit con-
sistent left—right biases, a phenomenon known as ‘behavioural lateralisation’. Such
asymmetries are well-documented in fish species, both at the individual and popula-
tion level, and extend beyond escape responses to include foraging, social interactions,
and mating behaviours (Miletto Petrazzini et al. 2020; Gobbo et al. 2025). For exam-
ple, Cantalupo et al. (1995) observed that individual immature girardinus falcatus
displayed a preference for escaping either rightwards or leftwards, with rightwards
bias being more common. Ghirlanda and Vallortigara (2004) suggest such population-
level bias could offer an evolutionary advantage by improving coordination. In our
work, we will use the term ‘chirality’ to describe consistent left—right asymmetries in
movement.

A notable example of chiral movement from developmental biology is that of the
pigment cells of zebrafish skin. The characteristic stripes of zebrafish are thought to
arise from interactions between pigment cells, which migrate in response to contact
with pseudopodia from other pigment cells (Kondo et al. 2021). In vitro experiments
by Yamanaka and Kondo (2014) showed that melanophores (black pigment cells)
move away from xanthophores (yellow pigment cells), whilst xanthophores move
towards melanophores. Interestingly, their movements are not parallel to their sepa-
ration. Melanophores move consistently anticlockwise at an average angle of roughly
70° relative to xanthophores, whilst xanthophores move clockwise roughly 20° relative
to melanophores. Fig. 1 illustrates this chiral chase-and-run mechanism.

The function of chirality in this cellular system and its impact on self-organisation
remains an open question. In some biological systems, cell chirality can lead to the
emergence of left-right asymmetry in a body plan (Nonaka et al. 1998; Shibazaki et al.
2004; Taniguchi et al. 2011); however, zebrafish stripes are essentially left-right sym-
metric (Yamanaka and Kondo 2021). Yamanaka and Kondo (2021) argue that chirality
is a property common to many cell types and may have functions beyond creating an
asymmetric body plan. They further hypothesise that chirality may contribute to the
alignment of parallel zebrafish stripes, although this has not been tested with experi-
ment or modelling. Models by Chen et al. (2012) have shown that anisotropy relative
to fixed directions on a domain is sufficient for creating aligned stripes rather than
labyrinthine patterns. However, this type of anisotropy is distinct from the chirality of
zebrafish cells, which is relative to the direction of separation between each interacting
cell, rather than relative to a fixed direction along the medium on which the cells live.
Whilst sophisticated agent based models by Volkening and Sandstede (2018); Owen
et al. (2020); Cleveland et al. (2023); and Volkening and Sandstede (2015) can pre-
cisely reproduce patterns seen in wildtype and mutant zebrafish, none of these models
incorporate chirality in cell movement.
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a b

Fig. 1 Schematics based on Fig. 3 of Yamanaka and Kondo (2014). a The mean direction of movement
between an interacting xanthophore (yellow pigment cell, labelled ¢) and melanophore (black pigment cell,
labelled p) of wildtype zebrafish in vitro. The mean angles observed by Yamanaka and Kondo (2014) were
acp A~ —20° and ape & 70°. b Typical movements resulting from these interactions (Color figure online).

With all this is mind, we will generalise nonlocal advection-diffusion models to
allow for chiral movement-interactions and, focusing on chase-and-run dynamics,
study how chirality affects pattern forming behaviour. Rather than considering a spe-
cific biological system, we take a general approach, with a stylised model, and aim to
gain insight on the possible roles of chirality and chase-and-run across biology.

Although other models of agents with chiral movement exist, such as those by
Kreienkamp and Klapp (2022); Kruk et al. (2021, 2020); Liebchen and Levis (2017,
2022), these models require the definition of an orientation or polarisation coordinate,
usually looking at self-propulsion rather than interaction, and they are often based
on Vicsek-type models, which are significantly different to our model. An exception
to this is Woolley (2017), who studies a local PDE model derived as a limiting case
of a chiral integro-PDE model. He shows that chirality can significantly impact the
capacity for pattern formation and give rise to patterns not seen in non-chiral models.
Our work naturally extends this approach by looking at fully nonlocal models.

We begin by formulating the models in Section 2. In Section 3, we conduct a linear
stability analysis to determine when patterns can autonomously form from a homo-
geneous state, and identify where chirality alters these conditions. Section 4 provides
an intuitive geometric explanation for these results. We then interpret the results in
Section 5, highlighting several key insights on the interplay between chirality and
chase-and-run dynamics in driving pattern formation and influencing oscillations.
These insights are tested and extended through numerical simulations in Section 6,
where we also examine nonlinear phenomena. We then turn to investigate the impact
of chase-and-run interactions on how two species are co-located. Using linear anal-
ysis, Section7 derives simple predictive criteria for species mixing or separation.
Section 8 uses numerical simulations to highlight where these predictions succeed,
and also cases where they breakdown, exploring the nonlinear processes behind these
breakdowns. In Section 9 we showcase additional emergent phenomena, including
population chase-and-run and travelling holes, and explore how these are affected by
chirality. Finally, in Section 10, we discuss the implications of our findings.
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2 Model formulation
2.1 Single-species without chirality

To build intuition for our full two-species chiral models, we begin with a simpler case:
nonlocal advection-diffusion models with only a single species and without chirality.
Here, a non-dimensional model for a population with density p (x, f) at positionx € R?
and at time ¢ € [0, oo) is governed by

% _g2, . /szs) (x + 5., 1)d? 1
m o= <p¢(p)€2 § (E g(p(x +s,1)) S>, (

with the Laplacian term representing diffusion, and the second term on the right-hand
side representing advection driven by nonlocal interactions within the population.
The population at x interacts with those at each point x + s. Here, § is the unit vector
in the s direction. For generality, instead of assuming that the advection is simply
directly proportional to the density, p(x + s, ), we allow it to vary as some non-
negative, non-decreasing function g(p). The magnitude of interaction also depends
on the separation distance, s = |s|, through the function €2(-). This function, called
the ‘interaction kernel’, is typically non-increasing and non-negative, meaning that
interactions get weaker with distance and do not change direction with distance. The
kernel is normalised such that the interaction strength is parameterised solely by u € R,
with © > 0 encoding attraction and u < 0 encoding repulsion. The characteristic
interaction range is parameterised by § € R. (. We include a saturation function, ¢ (p),
which is non-negative and decreases with density, representing impeded movement
due to volume-filling.

Our analysis below focuses on infinite domains, although imposing a finite peri-
odic domain would simply restrict the allowed pattern wavenumbers. In all cases, we
assume the interaction kernel decays sufficiently at large distances to ensure integrals
converge on an infinite domain and that wrap-around effects remain negligible on a
periodic domain.

Another commonly studied type of nonlocal advection-diffusion model is given by
the non-dimensional equation

0
L= V(p¢(p> V/ ()g(p(x+sr>)d2) ®)

where € is the interaction kernel for this model. We refer to Equation (1) as a ‘direct
sensing’ model, and Equation (2) as a ‘gradient sensing’ model. In direct sensing
models, advection is induced directly in response to the presence of each individual,
and hence is directed parallel to the separation of the individuals, i.e., in the direction
of the unit vector §. The net advection is then the vector sum (integral) of these
interactions. In contrast, for gradient sensing models, advection is induced in response
to the gradient of a nonlocal measure of the population density.

Broadly speaking, a direct sensing framework is more often used when interactions
involve one-to-one contact, such as for membrane adhesion between cells (Painter et al.
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2015; Jewell et al. 2023). The gradient sensing framework is more commonly used to
study animal swarming behaviours (Mogilner and Edelstein-Keshet 1999; Georgiou
et al. 2021). However, both models overlap in application and qualitative behaviour,
with both types being used to model cellular and ecological systems (Armstrong et al.
20006; Painter et al. 2024; Potts 2025; Potts and Lewis 2019; Carrillo et al. 2019). In
fact, if @ = 4 Q then there is a direct equivalence between these frameworks, which
can be seen by use of the divergence theorem, given suitable conditions at any domain
boundary (Painter et al. 2024). Nevertheless, in line with Painter et al. (2024), which
has a more detailed discussion of these models, we will consider them separately,
as they have quite different phenomenological interpretations. We will show that our
results apply in both frameworks.

Consistent with all of the work cited above, we assume an infinite domain for our
analysis and a finite domain with periodic boundary conditions for numerical simu-
lations. Extending such models to other boundary conditions is technically intricate
and beyond the scope of this work, although some progress has been made by Eckardt
et al. (2020); Hillen and Buttenschon (2020); Ahn et al. (2021). Another common
assumption that we inherit is that the system is mass conserving, as the dynamics are
driven purely by transport, rather than proliferation and death.

2.2 Two-species with chirality

We generalise Equations (1) and (2) by introducing chirality, allowing advection to be
induced at any angle, «, relative to the separation of individuals or the concentration
gradient. This is achieved using a rotation matrix, R(«). For direct sensing models,

we replace § with the rotated vector

g(oz)f _ <C9Sa —sina) ;. 3)

SiIn@ CoOS«o

For gradient sensing models, we rotate the gradient vector of the nonlocal measure of
the population such that

V/ Q <f> g(p(x +5,1))d’s — R() <V/ Q <i> e(p(x +s, t))d2s> .
R? & 24 2 £

“

Inboth cases, —90° < o < 90°, so that the distinction between attraction and repulsion
is still governed by the sign of the interaction strength, 1.

Finally, to investigate chase-and-run dynamics, we extend the models to two
species, incorporating self-interactions between members of the same species and
cross-interactions between members of different species. For generality, we assume
that each of these four interactions can have its own interaction strength, interaction
length, kernel, angle, and volume-filling function.
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In the case of direct sensing, the density of a populations of chasers, c(x, t), and
the density of a population of runners, p(x, t), therefore evolves as

% = V2 - V-(c@(c, p>[‘;§ /R R@)$ Qe (51) gee(c(x + 5, 1)d%s
+ M;‘p E(acp)s: Qep ( ) 8ep(p(x +, t))dz :|)
g:(;p RZ - Ecp (5)
ap % R s
o = DV2,0 - V-<p¢p(c, p)[ggj /RZ g(app)s Qpp (%) &pp(p(x +s, t))dzs

+ l;gj e g(apc)s: Qpe (‘;?) gpelc(x +s, t))dzsi|>,

where D is the ratio of diffusivity between the two species.
In the case of gradient sensing, the governing equations are given by

gec _ Vie— V~(c¢)c(c, p)[’“‘"" g(aww/ Qe ( )g“(c(x +s,1))d%s
ot Scc - R2 Ecc
+ 22 Ra)V / ( )gcp(mx 5. 0)d%s ])
%_cp - R2 Scp ©)
[/ Hop S 2
=DV p =V | pp,(c, p) R(app)v Qyp gop(p(x +5,1))d"s
ot Epp Eop

l;:j R(otpc)V/Rz <épc)gpc(c(x+s £))d2s ])

For both types of models, chase-and-run dynamics are characterised by ¢, > 0
and pp- < 0. Fig. 1 illustrates an example of the type of dynamics that these models
aim to capture.

3 Linear analysis of pattern formation
3.1 Only the parallel component of advection affects linear stability

To find the conditions for pattern formation in these models, we perform a linear
stability analysis, starting with the single species direct sensing model defined by
Equation (1) and including the chiral rotation matrix defined by Equation(3). Our
approach follows the method presented in Section 3 of Jewell et al. (2023). Firstly, we
linearise about the homogeneous steady-state, P, which is determined from the total
mass of the system, dictated by the initial conditions. We take p(x, 1) = P + p(x, 1),
where |p(x,1)| < 1 is a small heterogeneous perturbation. Retaining only leading
order terms yields

@ Springer



160 Page 80f36 T.J. Jewell et al.

% —Vz“—Pd)(P)—‘ (5(01)/ s9(5> ,5(x+s,t)d2s>. )
8t - R2 %'

Secondly, we expand into independent linear modes of the form j = pge’** e, with
growth rate A and wave-vector k = kle, with k a unit vector. On an infinite domain,
the wavenumber, k, is unrestricted. Consideration of a periodic finite domain simply
imposes a discrete restriction on the wavenumber, so that natural numbers of the
wavelength span the domain. In both cases, the dispersion relation is given by

Ak) = — qu(P)—‘ B ik R(a)/ SQ< )eik~sd2s
(®)
S, P¢(P)—’ k(k R(a)k)/ <_> s J1 (ks)ds,

where in the second line we have evaluated the angular integral, leaving only the radial
integral over s from the original 2D integral. In general, the 2D Fourier transform of
a function § Q () is directed along k and has magnitude proportional to the 1% order
Hankel transform of Q(s). Here, J; denotes the 1% order Bessel function of the first
kind. Further details of this calculation can be found in Appendix B, as well as Section
3 of Jewell et al. (2023).

Crucially, Equation (8) differs from the dispersion relation of the non-chiral model
only through the inclusion of the factor k- R (a)l%. This simple result holds for any
constant matrix R, making it useful for the linear analysis of models with various
forms of spatial anisotropy. For instance, in certain biological systems, movement
may be more favourable in the y direction than in the x direction, which could be
encoded by a non-identity diagonal matrix. In the case of chirality, R corresponds to
a rotation matrix, and thus -

AT ~
A Ak cosa —sina\ (k)
k- g(a)k = (lgy) (sinoz cos ) (/€y> = cos(a). &)

This indicates that chirality affects linear stability solely through the cosine of the
advection angle. This result similarly applies to the gradient sensing model, where the
linearised equation is given by

2—5 = V25— P¢>(P)—‘ Ky. <R(a)V/ o (é) 5lx +s,t)d2s>. (10)
Expanding into linear modes yields
ak) = k% + 27 P¢>(P)a—g‘ gy (I%-g(a)l})f 9 (5) s Jo(ks)ds, (11)
ple & = 0 §

where Jo(ks) is a 0™ order Bessel function of the first kind, and the integral transform
corresponds to a 0™ order Hankel transform. Once again, chirality only affects the
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dispersion relation through the cosine of the angle, as k- R (oz)l:: = cos(a). These
results are consistent with the stability conditions found for the local model of Woolley
(2017), whose angular terms also only appear through the cosine.

Thus, for these chiral models, only the component of the induced advection
that is parallel to the line of separation contributes to linear stability. In Section4,
we provide an intuitive geometric interpretation of this result. Notably, this result also
extends to two-species models.

3.2 Two species dispersion relation

For the two species models, we can follow a similar process, starting with either
Equations (5) or (6), for the direct sensing or gradient sensing models, respectively.
First, we linearise the governing equations about the homogeneous steady-state, which
is determined by the total mass from the initial conditions. We set

cx.n\ _ (C) | (Ex.1)
(p(x, r)) = (P) + (5(::, r)) : (12)

Next, we expand the perturbation into linear modes of the form

C(x, 1)\ _ ikx [ Gc
() = (i) 1

where Z—f encodes the relative amplitude of the chaser density to the runner density in
the mode. Substituting this into the linearised equations yields the dispersion relation

ac\ _ (—k*+ Acc(k) Acp(k) ac\ ae
’ (ap> B ( Ape(k) — Dk + App(k)) (ap> - g(k) (ap> : (14)

Here, each A, is the contribution from the nonlocal interaction of species v on species
u, where u, v € {c, p} with corresponding homogeneous states U, V € {C, P}.
For the direct sensing model,

_ 08uv | HMuv * S
Ay (k) = cos(ayy) 2nU@, (C, P) 5k Qv | — ) s Ji(ks) ds,
av 14 Euv 0 ’guv
(15)
and for the gradient sensing model,
0 oo
Ay (k) = cos(y) 27Uy (C, Py 51| Huv k2/ S (i) s Jo(ks) ds,
v 1V &y 0 Suv
(16)

by analogy with Equations (8) and (11), respectively. Both models share similar disper-
sion relations, with the only notable difference being the order of the Hankel transform
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of the interaction kernel, in their definitions of A,,. The link between the two frame-
works can be seen by choosing €2, = %fluv and integrating Equation (15) by parts,
which will yield Equation (16). Crucially, in both equations, chirality only features
through the cosine of the advection angle.

The growth rates, A(k), are the eigenvalues of F (k), and are thus given by

rx(k) = % (—(1 + D)k + (A + App) \/4AcpApc +[(1 = D)k + (App — Au,-)]2> .

a7

Equation (17) is the dispersion relation for our two-species chiral models. It reveals
whether patterns can autonomously form from small spatially heterogeneous perturba-
tions about a spatially uniform steady-state. Patterns can form when these perturbations
can grow, which requires that Re(A;) > 0 for some k > 0. Furthermore, we expect
these patterns to be stationary at early time if Im(A;) = 0, which occurs if and only
if

4 AcpApe+ (1= DI+ (Ap, — M) = 0. (18)

If instead this discriminant is negative, then Im(11) # 0, and we expect patterns that
initially oscillate in time. At early times, the amplitude of each mode in the perturbation
is small, and so the dynamics are accurately captured by a linear approximation.
Accordingly, early times are often referred to as the ‘linear regime’.

To gain insight from these equations, we will assume that each A, (k) shares the
same sign as [, for values of k that are ‘relevant for pattern formation’ — typically
those corresponding to the largest positive values of A (k). From Equations (15) and

98uv
av

from our core model assumptions, and (b) the Hankel transforms of the interaction
kernels are positive at these key values of k. We argue in Appendix C that this latter
requirement is satisfied in many biologically relevant cases.

(16), we see that this assumption requires that: (a) ¢, (C, P) > 0, which follows

4 Geometric interpretation of linear analysis

In this section, we provide an intuitive argument, based on simple geometry, for why
only the parallel component of the induced advection affects linear stability and capac-
ity for pattern formation. We show that if a chiral interaction generates movement in
a direction perpendicular to the separation of the two interacting agents, then this
perpendicular movement does not drive any growth or decay of aggregations of these
agents. In other words, we illustrate why chirality only enters the dispersion relations
through the cosine of the interaction angle.

@ Springer



Chase-and-Run and Chirality in Nonlocal Page110f36 160

4.1 Direct sensing

Consider a single species distributed homogeneously in space with density P. Then,
as shown in Fig.2a, consider a small perturbation in this density with amplitude §
that varies in space sinusoidally with wave-vector k. If the perturbation grows, there
is pattern formation. If it decays, the state returns to being spatially homogeneous.
We can determine which outcome will occur by considering the advection induced
at an arbitrary point, such as the red ‘x’ in Fig.2. Advection at ‘x’ is induced by
nonlocal interactions with agents at surrounding points. Consider points that are at
some arbitrary distance, s, from ‘x’. These are represented by the red circle in Fig. 2.

Now consider the dark yellow and blue points in Fig.2, which are at a distance s
and are at an arbitrary angle 6 and —6 relative to the direction of heterogeneity of the
perturbation, k. The advection induced at ‘X’ by each point is shown as the arrow
with corresponding colour in Fig.2b and c¢. The advection induced by both points
will have the same magnitude, because there is an equal density of agents at both
points. Thus, when advection is induced parallel to separation, we see that the overall
net advection from both points is directed parallel to k. In contrast, when advection
is induced perpendicular to separation, the overall net advection from both points is
directed perpendicular to k. The angle 6 is arbitrary, and so all points at distance s (on
the red circle) can be paired up in this way, such that the two points induce the same
magnitude of advection and their net advection is parallel to k in the parallel case and
perpendicular to k in the perpendicular case. The red ‘x’ point and the distance ‘s’
are also arbitrary, so this argument applies to all points interacting at all distances.

Overall, this means that the component of induced advection that is perpendicular to
separation only drives movement along directions where the density of agents does not
vary, i.e. ‘up or down the stripe’. It therefore has no affect on the density distribution
of agents, and thus cannot affect linear stability or pattern formation. In contrast, the
component of induced advection that is parallel to separation only drives movement in
the direction of heterogeneity in a perturbation. Agents will therefore move to regions
with differing densities, leading to either growth or decay in the perturbation, and thus
affecting linear stability and pattern formation.

4.2 Gradient sensing and assumptions

The argument presented above refers to the direct sensing model. Nevertheless, the
conclusions also hold for the gradient sensing model. This can be shown directly, or
by simply noting the relationship between the gradient and direct sensing models. For
the former, consider the region within a circle around an arbitrary point, such as the red
circle around the red “x” in Fig. 2. In the gradient sensing model, advection depends on
the density gradient averaged across such a region. By symmetry, density only varies
in the k direction, and so the gradient must point in this direction. Similarly to in the
direct sensing model, advection that is induced parallel to this gradient is thus directed
parallel to k, affecting linear stability. Once again, advection induced perpendicular
to the gradient is directed perpendicular to k, and does not affect linear stability.
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a b _ c
Pis Component of induced Component of induced advection
+ advection that is parallel to that is perpendicular to separation
separation

‘ P-4 f+~>=/k' \+f=\'ﬁ
T

Fig.2 Schematic illustrating how the parallel component of a chiral interaction affects linear stability and
pattern formation, whereas the perpendicular component does not. a A small sinusoidal perturbation of the
density of a single-species with amplitude § and wave-vector k. We consider the advection at an arbitrary
point (red ‘x’) induced by interactions with points at distance s (red circle). Points (dark yellow and blue)
with opposite angles to the k direction are paired up, as they have the same density and so induce the
same magnitude of advection. b Parallel interactions create a net advection parallel to the k direction,
thereby changing the density distribution, affecting linear stability. ¢ Perpendicular interactions create a net
advection perpendicular to the k direction, and so only cause movement in directions that do not change
the density distribution, and so do not affect linear stability (Color figure online).

The above arguments rely on having a density perturbation that only varies in one
direction. This is justified because linear modes are orthogonal for arbitrarily small
perturbations, allowing us to treat each mode independently, and each mode indeed
only varies in one direction.

4.3 Further insights

Beyond linearity, these arguments also tell us about the role of chiral interactions
even in large amplitude patterns. A classical stripe pattern indeed only varies in one
direction. We therefore can deduce that the parallel component of interaction is able
to hold the stripe together. In contrast, the perpendicular component of interaction
induces movement of agents along the stripe (assuming there is no force to oppose this
movement, such as volume-filling). This implies that the equilibrium can be dynamic:
the density of agents along the stripe is unchanging, but individual agents may be
travelling along the stripe. The same arguments can be adapted to a spot pattern,
implying that agents travel around the spot at a constant radius, without changing the
density distribution.

This also suggests that the choice of boundary conditions could significantly alter
the available patterns. With a periodic boundary, a stripe can maintain dynamic equi-
librium as there are always agents available from one end of the stripe and there is
always space for them to move to at the other end. With no flux boundary conditions,
this is no longer true. This may suggest that, in systems with chiral interactions, simple
stripe patterns become less viable on a closed finite domain.
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5 Insights on pattern formation

Before presenting numerical simulations, it is useful to first highlight the key con-
ceptual insights from the linear stability analysis. This provides a framework for
understanding how chirality and chase-and-run dynamics influence pattern formation
and sets the stage for interpreting the subsequent full nonlinear dynamics. In partic-
ular, the linear stability analysis in Section 3 tells us that pattern formation occurs if
Re(A4) > 0 forsome k > 0, where A (k) is specified by Equation (17). Additionally,
we expect patterns to be stationary (rather than oscillating in time) if Condition (18)
is satisfied, that is, if Im(A4 (k)) = 0.

We know that each nonlocal interaction only affects A via cos(c,,y), i.e. through its
parallel component of induced advection. Therefore, the impact of any interaction
on the capacity for pattern formation, and on whether the pattern is stationary
or oscillatory, can be suppressed by making the interaction more perpendicu-
lar. Thus, chirality can promote pattern formation by inhibiting pattern-suppressing
interactions. In the extreme case, any interaction that induces purely perpendicular
movement (&, = 90°) will have no effect on linear stability.

Chase-and-run interactions are defined by ., > 0 and ). < 0, which means
that A¢pA e < 0. From Equation (17), these interactions therefore can only decrease
Re(X), thereby suppressing pattern formation. Additionally, Condition (18) implies
that these interactions promote temporal oscillations in patterns which are able to
form. In the context of developmental biology, both effects are typically detrimental
to the creation of stationary structures within an organism.

Chirality presents a possible mechanism for suppressing these ‘detrimental’ effects
of chase-and-run dynamics. If the runner or chaser species were to move more chirally,
increasing the angle a,. or a.,, then the magnitude of the A.,A e term would be
reduced, which both promotes pattern formation and suppresses oscillations. This
effect is illustrated in the phase diagram in Fig.3, where increasing o, shifts the
system out of regimes with either a stable homogeneous state or a spatio-temporal
instability and into a regime with a stationary (non-temporal) instability.

However, while chirality suppresses one mechanism of temporal oscillations —
namely, those arising through linear interactions — it does not eliminate all possi-
ble sources of oscillations. When the amplitude of the pattern is sufficiently large,
nonlinear effects can sometimes introduce oscillations. The converse is also true: non-
linear effects can sometimes destroy oscillations, leading to a stationary steady-state.
Thus, chirality can be said to promote, but not necessarily guarantee, stationary pattern
formation.

Another limitation is that chirality cannot reverse the effects of an interaction —
it can only weaken them. For example, chirality can mitigate the pattern-suppressing
influence of chase-and-run interactions, but it cannot cause such interactions to actively
promote patterning. An additional mechanism, such as self-species interactions, is still
necessary to drive the instability required for pattern formation.

Interestingly, a mechanism which acts in direct opposition to the effects of
chase-and-run interactions is differential self-interaction. Differential self-interaction,
where self-interactions between chasers differ in magnitude and/or direction to self-
interactions between runners, is encoded in the term [(1 — D)k% + (App — AP
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9()° 750 @ Spatio-temporal Instability
® No Pattern
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Fig. 3 Classification of the (D, ay¢) parameter space in polar coordinates, based on the predictions of
Equation (17), on a domain of size L = 8. Increasing the magnitude of the chiral running angle, apc,
can shift the system from a linearly stable homogeneous state (Re[A(k)] < 0, blue) or a spatio-temporal
instability (Re[A(k)] > 0, Im[A(k)] # O, red) to a stationary instability (Re[A(k)] > O, Im[A(k)] = O,
green). Black o, x, » markers indicate parameter values tested in numerical simulations and their patterning
outcome. For this figure, opp = a¢e = acp = 0, with all other parameters given in Table 1 of Appendix A
(Color figure online).

in Equations (17) and (18) (note that we include diffusion in this consideration of
self-interaction). It is strictly positive, whereas chase-and-run terms, A, A ., are
strictly negative. Differential self-interaction thus promotes pattern formation where
chase-and-run suppresses it. Furthermore, the balance of these two effects determines
whether emergent patterns are stationary or oscillatory (in the linear regime), as given
by Condition (18). This condition depends only on the magnitude of the differential
self-interaction, and not on whether it is the chaser or the runner that has the stronger
interaction.

An advantage of our linear analysis is that its insights are fairly general. It applies
to both the direct sensing model and the gradient sensing model. It also requires
minimal assumptions about the details of the volume-filling, interaction kernels, and
guv functions. However, recent work by Krause et al. (2024) and Oliver Huidobro and
Endre (2024) has shown that predictions from linear analysis do not always extend to
the nonlinear regime, where pattern amplitudes are large enough for nonlinear effects
to become significant. In some examples from these studies, patterns predicted by
linear theory are only transient, with the dynamics eventually settling on a different
homogeneous steady-state. In our case, however, such behaviour is unlikely to occur,
as Equations (5) and (6) have only one viable homogeneous state, dictated by mass
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conservation. Nevertheless, in Section 6, we test our insights from linear analysis using
numerical simulations of the full nonlinear systems.

6 Simulations of pattern formation

To test the predictions from our linear analysis, we simulate the full nonlinear integro-
PDEs, namely Equation (5) for the direct sensing model, and Equation (6) for the
gradient sensing model. These simulations allow us to assess how well the conceptual
insights from the linear analysis extend into the fully nonlinear regime and to observe
phenomena that arise beyond the scope of linear theory.

6.1 Choice of nonlinear functions

For all simulations in this study, we specify the volume-filling functions as ¢.(c, p) =
$p(c.p) = 1 —c — p, and the g,y functions as gee(c) = gpe(c) = ¢, gep(p) =
gop(p) = p.For the interaction kernels, we consider two commonly studied functions:
the exponential kernel,

o)=Lt 19
(8)=5" 4

and the tophat kernel,

s %, s <¢&
o(p)-fi

In different examples, the interaction kernel is taken as either tophat or exponential, for
both the direct sensing model (£2) and the gradient sensing model ( fZ). For simulations
using the exponential kernel, the kernel’s spatial extent is cut-off at half the domain
length (%) in all directions. This ensures that any two points only interact with each
other once, rather than wrapping round the domain to interact from multiple directions.
We have confirmed that this choice has a negligible impact on the linear stability
analysis for all the examples in this study, as the domain length L is always suitably
larger than the decay scale of the exponential &.

6.2 Numerical scheme

As aproxy for the infinite domain considered in our linear analysis, we choose periodic
boundary conditions on a square domain, [0, L]z. The initial conditions are taken as
a homogeneous state (C, P), where C and P are typically of order O(10~1), with a
perturbation of random Gaussian noise with zero mean and standard deviation 1073,
For the numerical integration, we first discretise space into a grid of 100 x 100 mesh
points, and then integrate the 100> ODEs in time using SciPy’s BDF1-5 implicit
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variable-order scheme. The nonlocal term is computed using a fast Fourier transform
convolution method. See Jewell (2025) for further details of the numerical scheme.

6.3 Results

Fig.4 shows examples of systems in which parallel chase-and-run dynamics prevent
pattern formation, while the same parameters with chiral chase-and-run lead to pattern
formation. This is predicted by the dispersion relations (a, b) and is confirmed by
simulations, where patterns only emerge under chiral dynamics (c-h). For the chiral
simulations, the chasing and running angles are set to oy = —20° and o, = 70°,
although any sufficiently large angles would enable pattern formation. As evidenced
in Figs.4 and 3, this is a general phenomenon holding across different model types
(direct and gradient sensing), kernel functions (tophat and exponential), as well as
different combinations of self-attraction and self-repulsion in the chasers and runners.
These results support our linear analysis prediction that chirality promotes pattern
formation in chase-and-run systems.

We also provide evidence for the second key prediction: chirality can suppress
temporal oscillations. Fig. 5 shows cases where parallel chase-and-run dynamics yield
dispersion relations with Re(A4) > 0 (a) and Im(A4) # 0 (c), suggesting patterns that
oscillate in time. Using chiral chase-and-run, with all other parameters fixed, results
in Re(A4) > 0 (b) but Im(14) = 0 (d), predicting stationary patterns.

Simulations of parallel chase-and-run in these cases all exhibited initial oscilla-
tions, with structures forming, breaking apart or translating across the domain. Some,
like Fig. 5 e, showed persistent oscillations. Others, such as Fig. 6, displayed transient
oscillations that eventually collapsed into stationary spot or stripe patterns. In contrast,
the chiral systems in Fig.5 showed no oscillations. Instead, as seen in Fig.5f, struc-
tures formed, remained intact with minimal movement, and then, only after reaching a
large amplitude (c, p ~ O(1071)), coalesced into a single spot or stripe that remained
stable seemingly indefinitely.

Overall, these simulations confirm that chirality both enables pattern formation
and suppresses one mechanism of temporal oscillations, as predicted by linear theory.
However, cases where oscillations predicted by linear analysis disappeared at large
pattern amplitudes, such as in Fig. 6, highlight how such linear analysis can fail to
capture long time behaviour.

Another notable result from these simulations is that every stationary late-time
pattern in Figs. 4, 5, and 6 consists of only a single aggregate per species. This is
consistent with the results of Potts and Painter (2024) and Salmaniw et al. (2025),
who showed that, in the absence of growth dynamics, steady-state solutions in a
similar nonlocal model with a single species in 1D should have only a single peak.
More generally, there is evidence that mass-conserving systems often evolve toward
a single aggregate steady-state, even in local models (Ishihara et al. 2007; Otsuji et al.
2007). In our models, the final aggregates of the two species can either be separated
(Fig.4c, e, f, g and Fig. 6) or mixed (Fig.4 d, h, and Fig.5 f). In the next section, we
explore whether this outcome can be predicted by linear theory.
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Fig.4 Examplesin which patterns fail to form with parallel chase-and-run dynamics but emerge when chase-
and-run is chiral (a¢p = —20° and & = 70°). This behaviour occurs across various model sensing types,
kernels, and parameters (see Key). Dispersion curves show that the homogeneous steady-state is linearly
stable for parallel chase-and-run (a) but unstable for chiral chase-and-run (b). Accordingly, simulations
of cases in a remained homogeneous (not shown), while those of b formed patterns. Heatmaps of these
patterns at late times are shown in ¢-h, with simulations run to t = 500. Parameter values are in Table 1 of
Appendix A. Heatmaps use the 2D colourmap in i, where high chaser density is yellow, high runner density
is blue, and both species overlapping is green (Color figure online).

7 Linear analysis of separation or mixing of species

Our simulations and linear theory both indicate that chirality can promote stationary
pattern formation by reducing the tendency of chase-and-run dynamics to suppress
it. This raises an important question: do chase-and-run dynamics have any function
beyond simply suppressing pattern formation? In the following sections, we look
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Fig.5 Examples in which patterns oscillate in time with parallel chase-and-run dynamics but are stationary
when chase-and-run is chiral (o¢p = —20° and ap = 70°). This behaviour occurs across various model
sensing types, kernels, and parameters (see Key). Dispersion curves show that the homogeneous steady-state
is linearly unstable in all cases (a, b), but the imaginary part of XA is non-zero for parallel chase-and-run
(¢) and zero for chiral chase-and-run (d). An example simulation of parallel chase-and-run (e) exhibits
persistent oscillations, whereas the same system with chirality (f) reaches a stationary state that is stable for
the remainder of the simulation. e and f use the colourmap from Fig.41i, but in e, colours are rescaled for
visibility (¢min, Pmin = 0.05 and cmax, pmax = 0.54). Parameter values for each case (i—vi) are in Table
1 of Appendix A. Videos of these simulations are available at Jewell (2025).
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Temporal oscillations, small amplitude ~ O(103 - 107)
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Fig. 6 Simulation of parallel chase-and-run dynamics, initially exhibiting temporal oscillations before
transitioning into a spot pattern. The spots then merge into a single larger spot for each species, reaching a
state that is stationary at late times. In this case, linear theory predicts a complex growth rate (Im(x) # 0),
explaining the initial oscillation but failing to capture the long time behaviour. During the oscillatory and
transition stages (r = 0 to t = 41), pattern amplitudes are small, (’)(10_3) to 0(10_2), so colours from the
colourmap in Fig.41 are rescaled for visibility. After the pattern collapses into spots (t = 46), amplitudes
become large, (9(10_1), and the standard [0, 1]2 colourmap range is used. Parameters match those of Fig. 5
case (i), and are listed in Table 1 of Appendix A. A Video of this simulation is available at Jewell (2025).

t=39.0 t=41.0

beyond whether patterns can form, and start to examine their characteristics. For
example, in a stationary pattern, are the chasers and runners separated (out of phase) or
mixed (in phase)? On zebrafish skin, melanophores are separated from xanthophores,
creating distinct black and yellow stripes. Analogously, in predator prey systems, there
is a question of when different species are predominantly interspersed or separated,
with schooling of fish an example of the latter. How do chase-and-run dynamics
influence the outcome of segregation or mixing?

To understand the conditions under which separation or mixing occurs, we can
once again apply linear analysis and use the dispersion relation from Equation (14).
However, rather than focusing on the eigenvalues (growth rates), A, we will look at

. . a .
the corresponding eigenvectors, ac . If a. and a, have the same sign, then the

0
two species will be in phase within the initial pattern, thereby predicting mixing.
Conversely, if a. and a,, have opposite sign, then the two species will be out of phase,
predicting separation (Murray 2003).
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The conditions can be found by rearranging Equations (14) and (17) to give

_ =Dk +(App—Aec) + A

ap, 2he, ac, 21
D— D2+ (Aee — App) + A
. ( ) (Ace op) 0 22)
2A pe

where A = \/4ApApe + [(1 — D)K2 + (App — Ace)]® > O is taken as the positive
root, as this will correspond to the larger A and faster growing perturbation. Since we
focus on stationary patterns, we assume that A € R, which requires sufficiently large
differential self-interaction, as discussed in Section 5. For complex A, the resulting
pattern would exhibit spatio-temporal oscillations, with the phase difference between
chasers and runners oscillating over time, and so whether they are separated or mixed
would change over time.

In the stationary case, using the fact that A., > 0 and A, < 0, and that A > O,
we can infer the following conditions on the phase relationship:

If App — Dk* > A — k2, then by Equation (21), ¢ and p are in phase.
If App — Dk?* < A, — k?, then by Equation (22), ¢ and p are out of phase.

In other words, according to linear theory, if the runners self-aggregate faster
than the chasers, then the two species will be separated. Conversely, if the chasers
self-aggregate faster than the runners, then the two species will be mixed.

Note that A, — Dk? and A.. — k? are measures of the self-aggregation of
runners and chasers, respectively, at wavenumber k. For each species, the self-
aggregation is increased by attractive nonlocal self-interactions and decreased by
repulsive nonlocal self-interactions and diffusion.

We can build a rough intuitive understanding of this prediction as follows: the species
that aggregates more slowly will form its pattern in response to the already-established
pattern of the faster-aggregating species. This means that the slower aggregator dictates
whether the two species are mixed or separated. If chasers aggregate more slowly,
they will move towards the pre-formed clusters of runners, leading to a mixed state.
Conversely, if runners aggregate more slowly, they will move away from the already-
formed chaser clusters, resulting in separation.

This prediction implies that the magnitude of cross-interactions have no effect on
the outcome of mixing or separation, which is arguably counter-intuitive. For example,
it implies that even an extremely high chasing strength, 1i.,, would not lead to the
chasers ‘catching’ the runners and the two species mixing. Being cautious of the
limitations of linear theory (Krause et al. 2024; Oliver Huidobro and Endre 2024), we
will check these predictions against simulations.
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Fig. 7 Simulations of chase-and-run with self-attracting chasers and runners. In a and ¢, stronger chaser
self-attraction (ee > fipp) leads to species separation at early times, as predicted by linear theory. This
persists in a but not in ¢, where cross-species chasing is much higher than running (|icp| > |@pcl), leading
to mixing that starts to appear around ¢ = 2.4 and is maintained into late times. Conversely, in b and d,
stronger runner self-attraction (ipp > fec) causes mixing at early times. This persists in b but not in d,
where cross-species running is much higher than chasing (|i4pc| > |@cpl), leading to separation at around
t = 1.2 and a separated state at late times. The colourmap from Fig.41i is used throughout, with colours
rescaled only for + = 0.2 heatmaps to display amplitudes of order O(10~3). All simulations use the direct
sensing model, although gradient sensing simulations show the same qualitative behaviour. In all cases,
acp = —20°, acp = 70°; other parameters are given in Table 1 of Appendix A. Videos of these simulations
are available at Jewell (2025).
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8 Simulations of separation or mixing of species
8.1 Chase-and-run

The linear analysis in Section 7 provides predictions for whether chasers and runners
will mix or separate in stationary patterns, based on their relative self-aggregation
strengths. To test these predictions, we perform simulations under various conditions
and examine the resulting phase relationships between species.

In all cases, we find that the phase relationships predicted by linear theory hold
at early times, before nonlinear effects become significant. Furthermore, when one
species is self-repulsive, the predictions also seem to remain valid even into later
times. For example, in Fig.4 d and h, the chasers self-repel, and thus aggregate slower
than the runners, which leads to mixing. In contrast, for Fig. 4 e, the runners self-repel,
leading to separation.

When both species self-attract, the story is more complicated. In Fig.4 ¢, f, and
g, both species are self-attractive, but runners have a higher diffusivity (and therefore
aggregate more slowly), resulting in species separation at early times that persists until
late times. This behaviour aligns with the predictions from Section 7. However, when
the magnitude of cross-interactions are sufficiently asymmetric — i.e. the chasing,
[thepl, is much faster than the running, |w,c|, or vice versa — we see that phase
relationships can change at later times, as shown in Fig.7.

In Fig.7, at early times, all simulations follow the expected trends: in a and c,
stronger chaser self-attraction (t¢e > [Lpp) leads to separation, whilst in b and d,
stronger runner self-attraction ((pp > piec) leads to mixing. However, at later times,
in ¢ and d, the phase relationship changes. In Fig.7c, although chasers still self-
attract more strongly, the cross-species chasing strength, |uc,|, is much larger than
the running strength, || This enables the chasers to effectively ‘catch’ the runners,
when pattern amplitudes are sufficiently large, ultimately resulting in a mixed state.
Conversely, in Fig.7d, where running is much stronger than chasing, the runners
eventually ‘escape’ from the chasers, leading to a final separated state despite initially
being mixed.

We conjecture that mixed states are more robust to nonlinear effects than separated
states. Anecdotally, we observe in our simulations that systems which linear theory
predicts to be mixed typically require a much greater excess of running over chasing
strength to become separated than the excess of chasing over running strength needed
to drive mixing from a separated state. We speculate on two possible explanations.
First, volume-filling may promote mixing, as discussed in the next section. Second, in
a mixed configuration, where a runner spot sits atop a chaser spot, the radial outward
‘force’ from running must overcome the runner’s self-attraction, which acts radially
inward. In contrast, in a separated state, chasers feel a directed attraction toward a
nearby runner spot without any comparable opposing force, making mixing potentially
easier to initiate. A systematic investigation of this phenomenon is beyond the scope
of this study and left for future work. Understanding when and why structures laid
down in the linear regime persist into the nonlinear regime would help clarify when
linear theory remains predictive.
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Fig.8 Late-time stationary patterns of simulations of two species with zero cross-interactions and parallel
attractive self-interactions, for a range of initial densities, P and C. The two species share all the same
parameters and are essentially identical. As we might expect, at early times, the distributions of the two
species did not look obviously correlated. However, despite interacting only through volume-filling, the
two species can ultimately mix, leading to an in phase pattern at late times for a, ¢, and d. For each set
of parameters, we ran simulations with 5 different realisations of the Gaussian noise initial conditions. We
observed the same qualitative behaviour for every realisation when P = C = 0.1 and P = C = 0.4 (used
in a and d, respectively). However, for P = C = 0.25 (b and c¢), 2 realisations lead to separated spots
(b) and 3 to a mixed stripe (¢). The colourmap from Fig.41i is used throughout. All simulations use the
direct sensing model, although gradient sensing simulations exhibit the same behaviour. These systems are
nonchiral, with a¢e = app = acp = ape = 0; other parameters are given in Table 1 of Appendix A. Videos
of these simulations are available at Jewell (2025).

In summary, we find that whilst linear theory often correctly predicts whether
species will mix or separate, it underestimates the influence of cross-species interac-
tions. As a result, when these interactions are sufficiently strong or imbalanced, they
can drive outcomes on longer timescales that the linear theory fails to predict. In the
next section, we go a step further, examining how a mechanism that plays almost no
role in the linear theory can nonetheless have a powerful impact on species mixing
and separation.

8.2 Volume-filling can drive mixing

Another arguably counter-intuitive phenomenon regarding separation and mixing is
observed when considering two species that have zero cross-interactions (ppc =
tep = 0). In such cases, the only influence that one species can have on the other
is through volume-filling effects, which are present through the terms ¢.(c, p) =
¢o(c, p) = 1 —c — p in Equations (5) and (6). The linear theory in Section 7 pre-
dicts that having zero cross-interaction would lead to the location of one species being
uncorrelated with the location of the other. We might naively guess that volume-filling,
which is a purely nonlinear effect, could introduce bias towards species separation.
Instead, we see simulations in which the two species become perfectly in phase and
mixed in the late-time pattern, as shown in Fig. 8.

For systems with small initial densities (Fig. 8 a) and high initial densities (Fig. 8 d),
we always observed mixing. Curiously, for intermediate initial densities, some reali-
sations of the Gaussian noise initial conditions lead to mixing (Fig. 8 ¢), whilst other
realisations lead to separation (Fig.8b). As is the case with phenomena described in
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other sections, linear theory is consistently correct at early times: the species distri-
butions from the simulations in Fig.8 appear uncorrelated at early times. They only
become in phase later, when pattern amplitudes are larger.

A related phenomenon was observed by Bailo et al. (2023) in a model of nonlo-
cal two-species cell-cell adhesion. At densities near carrying capacity, volume-filling
greatly reduces mobility, and they showed this could effectively ‘freeze’ a species-
mixed initial condition, preventing other dynamics from driving separation. In our
simulations in Fig. 8, however, volume-filling seems to play an even more active role,
not just maintaining mixing, but actively driving the two species into phase alignment.
One conjectured explanation is that where both species happen to overlap, the total
density will be closer to carrying capacity, reducing local mobility. Meanwhile, indi-
viduals from lower-density regions, which are still mobile, could be drawn towards
these locations by the attractive interactions. Since motion slows only upon arrival,
this could create a self-reinforcing accumulation of both species in the same location,
gradually promoting in phase alignment and a mixed state.

A final remark on Fig. 8 is that it also demonstrates a pattern transition as the initial
density increases: from spots to stripes to holes. The initial densities at which this
transition occurs is dependent on domain size.

A more comprehensive investigation into the precise ways that volume-filling influ-
ences species separation and mixing is left for future work. What emerges clearly from
our results, however, is that volume-filling highlights a notable limitation of linear
theory in predicting the spatial co-location of two species. Unlike cross-species inter-
actions, whose effects are present but underestimated, volume-filling appears in the
linear analysis only as a constant prefactor and plays virtually no dynamic role. Yet
despite this minimal role in linear theory, it can drive species-mixing and significantly
reshape the long-term behaviour of these systems.

9 Travelling pulses
9.1 Population-level chase-and-run

In this final section, we explore how chirality can influence travelling pulse behaviour
in the models. One such form of travelling pulse is population-level chase-and-run, a
spatio-temporal pattern where aggregates of chasers continually pursue aggregates of
runners across the domain. This behaviour was recently studied by Painter et al. (2024),
who showed that it occurs robustly when chasers have a sufficiently larger interaction
range for sensing runners, &.,, than runners do for sensing chasers, &,.. As with the
other patterns investigated in our work, these pulses can emerge spontaneously from
small heterogeneous perturbations about a homogeneous state. In their study, Painter
et al. (2024) used a nonlocal direct sensing model, similar to Equation(5), with a
tophat kernel in one and two dimensions.

Our simulations demonstrate that their conclusions are robust to some changes in
model details. We find similar population-level chase-and-run behaviour in the gradient
sensing model and also when using exponential kernels. Some examples are shown in
Fig.9. However, we also observe that this behaviour breaks down if the initial densities,
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P and C, are sufficiently high that the resulting aggregates are sufficiently large to
self-interact across the periodic boundary. In these cases, the ordered population-level
chase-and-run breaks down into more complex spatio-temporal behaviour. That said,
it is not clear that this limitation would still apply on an infinite domain or with non-
periodic boundaries.

Furthermore, we find that chirality, introduced through a non-zero running angle,
can significantly alter the nature of population-level chase-and-run. For moderate
angles, as in Fig.9b, the chaser and runner aggregates follow curved, rather than
straight, trajectories. For larger angles, such as in ¢, the runner aggregate turns more
sharply and can effectively orbit the chaser aggregate, which shifts its position less.
When the angle becomes sufficiently large, as in d, the runners can no longer escape
quickly enough. The chasers then catch the runners, resulting in a stationary, species-
mixed pattern. This is consistent with our earlier findings in Sections 5 and 6, where
we showed that chirality can suppress spatio-temporal behaviour and promote the
formation of stationary structures.

We have only observed population-level chase-and-run behaviour emerging from
systems with a Turing-wave bifurcation, that is, when Re[A (k)] > 0 and Im[XA(k)] # O,
k > 0. However, the converse does not hold: in Fig. 9 d, the pattern becomes stationary
due to the large angle o, = 80°, and although the imaginary component of the growth
rate is reduced compared to the non-chiral case, it is still non-zero. A sufficiently larger
angle would indeed eliminate this imaginary component, resulting in a standard Turing
bifurcation, and likely a stationary pattern. However, 9 d shows that the transition from
population-level chase-and-run to stationary pattern can occur at smaller angles than
this bifurcation point. This highlights a nonlinear influence of chirality on patterning.

9.2 Travelling holes

As well as population-level chase-and-run, these models can also produce another form
of travelling pulse, which we refer to as ‘travelling holes’. These holes are localised
regions of near-zero density for both species surrounded by a background of high,
nearly uniform density. Like population-level chase-and-run, these patterns are driven
by chase-and-run interactions and the holes can travel persistently across the domain.
In contrast to population-level chase-and-run, we observe travelling holes arising in
systems where the linear growth rate A(k) is purely real, meaning that linear analysis
predicts a standard Turing bifurcation and the emergence of stationary patterns. Their
existence shows that nonlinear effects can generate spatio-temporal oscillations that
are not predicted by linear analysis. Whilst previous studies have shown examples
of models where linear theory fails to predict oscillations (Painter and Hillen 2011;
Painter et al. 2015), those oscillations were driven by reaction kinetics. In contrast,
the travelling holes observed in our work emerge solely from movement dynamics.
Unlike population-level chase-and-run pulses, travelling holes do not require asym-
metry between interaction ranges. We observe them even when all interaction ranges
are equal. They are observed to emerge when the magnitude of the chasing strength,
[ttepl, is much larger than that of the running strength, |u |, and when the initial
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Fig.9 Simulations with population chase-and-run with chirality. When cross-species running has a shorter
interaction range than cross-species chasing (¢ < &cp), chasers form an aggregate that continually pursues
an aggregate of runners (Painter et al. 2024). Here, &.c = &pp = &cp = 2, whilst &, = 1. a Without
chirality (apc = 0) this pulse travels in a straight line. b Introducing chirality (apc = 40°) induces
population chase-and-run along a curved path. ¢ Larger angles can cause the runner aggregate to orbit the
chasers, which move less. d Even larger angles lead to chasers ‘catching’ runners, yielding a stationary
mixed state. Arrows in the first panel of a-c roughly indicate the direction of movement. The colourmap
from Fig.41iis used. All simulations shown use the direct sensing model, although simulations with gradient
sensing yield the same qualitative behaviour. In all cases, a¢e = app = acp = 0°; other parameters are
given in Table 1 of Appendix A. Videos of these simulations are available at Jewell (2025).
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t=2.0

1

0.0

“00 15 30 T00 5 3.0
T T

3.0

Fig. 10 Two simulations (a,b) exhibiting travelling holes. In both cases, a single runner spot initially
forms, encircled by both species and separated by a thin low-density gap in both populations (see first two
panels of a). This gap then merges into a single hole that moves across the domain. After some transient
movement: in the non-chiral case (a), the hole moves in a straight line; with chirality (b), it follows a curved
trajectory. In both cases, this motion persist into late times. There is a higher density of chasers at the front
of the hole (in the direction of motion), and a higher density of runners at the back. The colourmap from
Fig.41i is used throughout. In both cases, the initial density is near carry capacity (P = C = 0.48), and
Qcc = Qpp = dcp = 0°; other parameters are given in Table 1 of Appendix A. Videos of these simulations
are available at Jewell (2025).

densities are close to carrying capacity. However, the precise conditions under which
these patterns form remain unclear and are not within the scope of the present study.

Fig. 10 shows examples of travelling holes. The structure of the holes is heteroge-
neous: there is a higher density of chasers at the front, in the direction of motion, and a
higher density of runners at the back. This structure reflects the underlying dynamics,
with chasers pursuing populations ahead and runners moving away from populations
behind.

In both the simulations in Fig. 10, an initial pattern forms in which a spot of runners
appears, surrounded by a background of chasers and runners. This is consistent with the
linear prediction that species will separate when the chaser self-attraction is stronger
than the runner self-attraction (see Section 7). A thin low-density gap separates the
runner spot from the surrounding chasers. As nonlinear effects take over, this gap
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merges into a single, low-density hole which then travels across the domain, settling
into a straight-line trajectory, when chirality is not present. With a non-zero running
angle, and thus chirality, the holes still form, but their paths become curved rather
than straight, as shown in Fig 10b. Therefore, for both travelling holes and population-
level chase-and-run, chirality at the individual level leads to chiral movement at the
population and aggregate level.

10 Discussion

Chase-and-run dynamics are observed across many biological systems, from predator-
prey interactions in ecology (White et al. 1998; Ripple and Larsen 2000; Gaynor et al.
2019) to cellular systems in biology (Theveneau et al. 2013; Szab6 and Mayor 2015). In
some cases, these dynamics involve chiral movement such as in zebrafish pigment cells
(Yamanaka and Kondo 2014), or in prey species that exhibit behavioural lateralisation,
evading predators by moving away at an angle (Miletto Petrazzini et al. 2020; Gobbo
et al. 2025; Cantalupo et al. 1995). In this work, we have explored how chirality can
affect pattern formation in chase-and-run systems by generalising nonlocal advection-
diffusion models, including both direct and gradient sensing frameworks, to allow for
movement at any angle relative to the separation of the interacting populations.

Through linear stability analysis and numerical simulations, we found that chiral-
ity can have a substantial impact on the capacity for pattern formation. Because the
perpendicular component of motion does not affect the linear stability of a heteroge-
neous perturbation, the impact of any interaction on the capacity for pattern formation
can be reduced by increasing the angle of motion. In this way, introducing chirality
is predicted, and has been numerically observed, to inhibit the pattern-suppressing
effects of chase-and-run interactions. This can enable systems with chiral chase-and-
run interactions to form patterns where equivalent systems with parallel chase-and-run
cannot. Similarly, chirality can suppress one mechanism of generating spatio-temporal
oscillations, and thereby promote stationary patterns. The shapes of these stationary
patterns do not necessarily appear chiral themselves, in that they are left-right symmet-
ric. Overall, our results support the hypothesis of Yamanaka and Kondo (2021) that
chirality has the potential to play roles in cellular systems beyond breaking left-right
symmetry in emergent structures.

That said, we have observed examples of spatio-temporal behaviour in numerical
simulations where chiral interactions at the individual level resulted in chiral movement
at the population level. For example, the population-level chase-and-run pulses studied
by Painter et al. (2024) and the travelling hole patterns observed in our simulations
both followed curved paths when chirality was introduced. These findings suggest that
organisms that exhibit intrinsic chirality may form structures that also move chirally
at the population-level.

Our linear stability analysis reliably predicted early-time behaviour, and although
it remained accurate into late-times in many cases, there are some notable exceptions.
It accurately identified the conditions for pattern formation from small perturbations
about a homogeneous state. However, it sometimes failed to predict spatio-temporal
oscillations at later times: we saw examples showing that the linear growth rate having
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a non-zero imaginary component is neither a sufficient nor a necessary condition for
spatio-temporal oscillations at late times.

Linear analysis provided simple conditions for whether runners and chasers would
be mixed or separated in a stationary pattern: if the runners self-aggregate faster
than the chasers, then the two are predicted to be separated, and if the converse is
true, then they will be mixed. These predictions were accurate into late-times for
our simulations, other than in cases where both species were self-attracting and there
was a large difference in the magnitude of the cross-interactions. Surprisingly, we
also saw that volume-filling, despite having little effect in linear theory, can drive in
phase mixing. Although there is no clear a priori reason why linear analysis should
successfully be able to predict separation or mixing in the nonlinear regime, the fact
that it fails may still be unexpected given that it typically succeeds in more commonly
studied local Turing models (Woolley et al. 2021). This highlights the importance of
studying more complex models, like these nonlocal models, to test whether or not
assumptions inherited from simpler frameworks apply in more complex biological
systems.

The above limitations of the linear analysis may potentially point towards subcriti-
cal bifurcations in these systems. In systems with subcriticality, dynamics can jump to
a high-amplitude solution branch, and these solutions may exhibit behaviour that devi-
ates significantly from linear predictions (Krause et al. 2024). We have implemented
preliminary simulations varying a model parameter near a Turing bifurcation point,
and seen little change in the amplitude of the pattern produced, which indeed sug-
gests a subcritical bifurcation. Additionally, Giunta et al. (2024) and Salmaniw et al.
(2025) have shown analytically that similar nonlocal models can exhibit subcritical
bifurcations.

Our results emphasise the need for analytical tools which go beyond local lin-
ear stability analyses in order to understand complex biological systems in the
long-term. Approaches such as weakly-nonlinear analysis (Giunta et al. 2024) and
Crandall-Rabinowitz analysis (Salmaniw et al. 2025) can provide further insights,
such as deducing the bifurcation structure in these systems, and characterising solution
branches, but only in regions of the parameter space close to bifurcations points. Energy
minimisation methods (Giunta et al. 2022; Potts 2025) are also powerful tools for iden-
tifying steady-states, even far from bifurcations, though their application depends on
the ability to define an appropriate energy functional — something that is not always
possible for these models.

A natural question arising from our results is how the perpendicular component of
motion affects dynamics beyond the linear regime. Whilst it has no impact on linear
instability, our simulations show that it clearly influences the nonlinear evolution of
the system. The influence of chirality at the weakly nonlinear level could be explored,
as well as whether chirality changes the bifurcation structure of these systems.

Another valuable extension to this work would be to include more biological details,
in order to explore a specific biological system. For example, in zebrafish, although it
has been shown that the interactions between melanophores and xanthophores alone
are sufficient for the formation of stripes on fins and spots on bodies (Kondo et al.
2021; Mahalwar et al. 2014; Watanabe and Kondo 2015; Volkening et al. 2020),
Volkening and Sandstede (2018) have shown that a third pigment cell type, iridophores,
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contributes to robust stripe formation on the body. Moreover, there exist multiple sub-
types of each pigment cell type, whose different interactions may all be important
for the specific details of the pattern. This suggests that insight may be gained by
extending our models to three or more species and also considering reaction-kinetics,
as has already been implemented in ABM models (Owen et al. 2020; Volkening and
Sandstede 2018).

As mathematical models grow more faithful to specific biological systems, we face
a trade-off between incorporating detail and maintaining interpretability. It becomes
increasingly important to identify which features are vital to retain. Exploring simpler,
more general models, such as in this study, can help with this. Our work suggests that
chirality is indeed an important feature, influencing pattern formation in unexpected
ways.

Appendix A Parameter values

Table 1 Parameters used for the dispersion curves and simulations in each figure

Figure Model Type Kernel C P D all & Wee  Mep  Mpe  Mpp L

3 direct tophat 0.25 0.25 (0,5 1 50 50 =50 50 8
4c direct tophat 025 025 4 1 50 50 =50 50 8
4d direct tophat 025 025 1 1 -50 50 -50 50 8
4e direct tophat 025 025 1 1 50 50 -50 -50 8
4f gradient exponential 0.25 0.25 4 0.5 40 40 —40 40 8
4g gradient tophat 025 025 4 1 20 20 =20 20 8
4h gradient tophat 025 025 1 1 -20 20 =20 20 8
5i& 6 direct tophat 025 025 1 1 20 20 =20 50 8
5ii direct tophat 025 025 1 1 50 20 =20 20 8
Siii gradient tophat 025 025 1 1 8 8 -8 20 8
Siv gradient tophat 025 025 1 1 20 8 -8 8 8
Sv direct exponential 0.25 0.25 1 0.5 20 20 -—-20 50 8
Svi direct exponential 0.25 0.25 1 0.5 50 20 20 20 8
7a direct exponential 0.1 0.1 1 04 300 40 —120 150 3
7b direct exponential 0.1 0.1 1 04 150 40 —120 300 3
Tc direct exponential 0.1 0.1 1 04 300 400 =30 150 3
7d direct exponential 0.1 0.1 1 0.4 150 20 —500 300 3
8a direct exponential 0.1 0.1 1 0.4 100 0 0 100 4
8b & c direct exponential 0.25 0.25 1 0.4 100 0 0 100 4
8d direct exponential 04 04 1 04 100 0 0 100 4
9 a-d direct exponential 0.05 0.05 1 see caption 100 100 —100 100 10
10 direct exponential 0.48 0.48 1 0.4 600 400 -—-30 300 3
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Appendix B Hankel transform derivation

Here we show the derivation of the Hankel transform in the dispersion relation, illus-
trating the steps between the first and second line of Equation (8). The first line of this
equation is

98| ©

M) = —k* — PH(P) 3 | 22

ikk-R@) | §9 (5) eksd2s, (Bl
= " Jr2 &

where, as a reminder, s = |s| and k = |k|, with § = ¢ and k= %

To evaluate the integral in Equation (1), we convert to polar coordinates in s with
new variables (s, 6;), where 6; is chosen without loss to be the angle between s and k.
This means that § = cos(@s)lz + sin(@s)l; 1, Where k 1 is the unit vector perpendicular
to k. The integral then becomes
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Using the change of variables §; = 6’ — 7, we can see that the second angular integral
evaluates to zero:
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where the second equality arises from the integrand being an anti-symmetric function
integrated across symmetric limits. Equation (2) thus simplifies to
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where in the third line we used the standard integral form of the 0™ order Bessel
function of the first kind, Jy, and in the fourth line we used the fact that %Jo x) =
—Ji(x). Substituting this result back into the dispersion relation yields
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which is the second line of Equation (8), as required. For further discussion of the
role of Bessel functions and Hankel transforms in the linear stability analysis of these
models, see Section 3 of Jewell et al. (2023).

Appendix C Kernel assumptions

In order for A,, (k) to share the same sign as u,, for values of k that are ‘relevant
for pattern formation’ — typically those corresponding to the largest positive values of

M(k), we require that: (a) ¢,(C, P )% > 0, which follows from our core model

assumptions, and (b) the Hankel transforms of the interaction kernels are positive at
these key values of k.

Condition (b) automatically holds for any kernel whose Hankel transform is always
positive. Cho et al. (2024) outline some sufficiency conditions for this. For the direct

sensing model, the primary condition is that /s (%) is non-negative and decreasing.

One way of satisfying this condition is by making a ‘splattergun’ assumption: as we
increase distance, s, then in 2D space, interactions are spread out over a circle of
increasingly large circumference 2rs, and so we might expect the interaction kernel

to decay at least as fast as %, analogously to how light intensity and some physical

forces decay as YLZ in 3D space. For the gradient sensing model, in order for the

0™ order Hankel transform to always be positive, there is the same condition that

NS (%) is non-negative and decreasing, as well as an additional requirement that

-5 %fz (g) is non-negative and decreasing. Biologically speaking, all of the above
conditions correspond to interactions that do not change direction with distance, and
get sufficiently weaker as distance increases. Cho et al. (2024) also stipulate that certain
integrals of the kernel remain finite and that the kernel vanishes at infinity, both of
which are naturally satisfied in biological contexts.

The above conditions are sufficient but not necessary, and many commonly studied
kernels that do not satisfy them still have Hankel transforms that are always positive.
In direct sensing models, for instance, both the exponential kernel and the Gaussian-

532
derivative kernel, (%) x 53_0'5(5) , used by Painter et al. (2015); Jewell et al.

(2023); Salmaniw et al. (2025), have positive 1% order Hankel transforms. Similarly,

for gradient sensing models, the exponential kernel and the Gaussian kernel, <§) x

¢ 05% Used by Potts (2025); Fagan et al. (2017); Wang and Salmaniw (2023), both
have positive 0" order Hankel transforms. Even in the case of the tophat kernel, where
the Hankel transform can be negative for some values of k, the values of k for which this
occurs often do not correspond to those with the highest values of A(k), as discussed
by Jewell et al. (2023). Essentially, the negative values of the transform have smaller
magnitude than the positive values, and also occur at higher values of k, where the
diffusion term, —k2, is larger, further reducing A.

All of this is to say, that in a biological context, condition (b), and its corollary that
sgn(A,y (k)) = sgn(uyy) for relevant values of k, are both reasonable assumptions.
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These assumptions are useful for understanding the fypical effect of chase-and-run
dynamics on pattern formation. Whilst relaxing these assumptions allows for a richer
variety of phenomena, exploring them lies outside the scope of this work and is covered
in Jewell et al. (2023) for non-chiral interactions.
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