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6 Discrete Mathematics and its
Application to Ecology

by PHILIP MAINI
Centre for Mathematical Biology, Mathematical Institute, Universityof Oxford

1. Introduction

In this chapter we will illustrate how simple mathematical ideas can be used to
understand how a population grows. We first consider the well-known problem
which generates the Fibonacci sequence. Consider a population of rabbits.
Suppose that every pair of rabbits can reproduce only twice, when they are one-
and two-months old, and that each time they produce exactly one new pair of
rabbits. Assume that all newborn rabbits survive. The problem here is to see if
we can predict how many newborn rabbits there will be in a certain generation
given an initial newborn rabbit population.

Before beginning, we need to use a convenient notation. Let us define the
quantity Nm to be the number of newborn pairs in generation m. Suppose that
we begin with one newborn pair. Then we say that No, the number of newborn
pairs in the zero generation (the Adam and Eve of rabbits), is one. Now, after
one month, this pair of rabbits gives birth to one pair of rabbits. Therefore, we
have that NI, the number of newborn pairs in the first generation, is one. At the
end of the second month, Adam and Eve give birth to their second newborn pair
and then will no longer give birth to any more rabbits. But, the pair of rabbits in
the first generation also give birth to a pair of newborns (Adam and Eve's
'grandbunnies'). Therefore, N2, the number of newborn pairs in the second
generation, will be 1 + 1 = 2. In the third generation, newborn pairs will arise
from those pairs that were newborns in the second generation (N2), and from
those newborns in the first generation (NI), Therefore the number of newborns
in the third generation, N3, will be N2 + NI = 2 + 1 = 3. The number in the
fourth generation, N4, will be N3 + N2 = 3 + 2 = 5 (see Fig. 1). We can now
prove the following theorem.

Theorem 1 (The Rabbit Problem)
If

Nm = number of newborn pairs in generation m

then

Nm+l =Nm +Nm-l' (1)
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Proof
The number of newborn rabbits in the (m + nth generation will come either
from one-month old parents who were born in the mth generation or from
two-month old parents who were born in the (m - nth generation (see Fig. 1).
Hence result. 0

To see how this ties in with the above discussion, let us suppose that No = 1
(this means that we begin with one pair of newborns in the zero generation).
Then, we know that NI = 1. Now, if we put m = 1 into equation (1), we have
that N2 = NI + No, that is, Nz = 1 + 1 = 2, which is the number of newborns in
the second generation. Now putting m = 2 into equation (1), we have that
N3 = N2 + NI = 2 + 1 = 3, the number of newborns in the third generation. For
m = 3, we have N4 = 3 + 2 = 5, the number of newborns in the fourth genera-
tion. Continuing like this we have that N5 = 5 + 3 = 8, N6 = 8 + 5 = 13, N7 =
13 + 8 = 21, etc.

The sequence of numbers 1,1,2,3,5,8, 13,21, . .. is known as the Fibonacci
sequence. Equation (1) is an example of a recu"ence relation and this type of
relation is very common in ecological studies. A mathematical formulation of
such a problem is known as a mathematical model of the problem. The numbers
generated by the Fibonacci sequence are known as the Fibonacci numbers and
occur widely in nature. For example, the numbers of spirals running in opposite
directions on a ripening sunflower or a pine cone are often consecutive
Fibonacci numbers.

We now move on to what appears, to begin with, to be a very different
problem. We call it the Beetle Problem. Suppose that beetles of one generation
produce the larvae (immature form of an insect which eventually becomes the
insect) of the next generation and then die so that only the larvae survive.
Assume that all the larvae survive. The problem here is, can we predict the
number of larvae in a certain generation? In this case, we define Nm to be the
number (in some units) of larvae in generation m. Suppose that the average

number of larvae produced per beetle is 2. Let us assume that in generation 0,
No is 1. It is important to note here that setting NI to be one does not
necessarily mean that in the first generation there is one beetle. This is because
we have not specified our units. For example, if the unit was thousands, then
No = 1 would mean that there were one thousand beetles in generation O. Note
that No = ! would not mean half a beetle, but would mean 500 (one half of a
thousand) beetles.

Assuming that No = 1, we have that NI, the number of beetles in the first
generation, is 2 X 1 = 2. The beetles in the second generation arise from the
larvae produced by the first generation, so Nz is 2 X NI = 4. In the same way,
N3 = 2 X 4 = 8 etc. In fact, we can now prove the following theorem.

Theorem 2 (The Beetle Problem)
If

Nm = number of beetles (in some units) in generation m

r = average number of larvae produced per beetle

then

Nm = Norm (2)

w~
W~
W~

Proof
The generation m beetles come from the (m - nth generation. Now each
beetle in the (m -nth generation produced r larvae, so Nm= rNm_I'Applying
the same argument to the (m - nth generation, we have Nm-I = rNm_z. So we
can write Nm= rZNm_z'If we carry on this reasoning we deduce that Nm= Norm
~~n 0

For our example, r = 2 and No = 1. The formula then says that NI = No X 2 =
2, Nz = No X 4 = 4, N3 = No X 8 = 8, etc.

Notice that if we want to calculate the number of beetles in a certain

generation, then all we need to know is No and r and we have immediately that
Nm = Norm. However, for the rabbit problem, to find Nm, we need to know
Nm-I and Nm-z. But to calculate these values, we need to know Nm-3' etc.
Therefore, if m is very large, then the calculations involved for the beetle
problem are easier than those for the rabbit problem. However, in question 6 of
Worksheet 1 we will see that there is an easier way to calculate Nm for the
rabbit problem, when m is large.

1. Consider the Fibonacci numbers 1,1,2,3,5,8,13,21,34,55,89,144,233,...
(a) Calculate (to 3 decimal places) the fractions obtained from dividing each

b b h
.

b h . 1 Z 3 5 8 13 21 34 55 89 144 233
num er y t e prevIous num er, t at IS, T, T, 2' 3' 5' g, 13' 21' 34"'55' 89' 144'
(b) What do you notice about the values you calculated in (a)?
(c) The calculations in (a) and (b) suggest that for two consecutive numbers

N

Nm+ I' Nm, in the Fibonacci sequence, ~::= r for large m. What is thatNm

value of r?

I
W~

I I
W~

11 &i~W~ .
I

w~

I

W~
I

w~
W~

w~
Fig. 1. Proof of Theorem 1 (see text for details)
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5. Calculate Np Nz, N3, N4 and Ns (each to 2 decimal places) for equation (3)
in the case where r = 3.1, No = 0.70. What do you think are the values of
N6, N7, Ns, Ng,...?

6. In question 1, we made an approximate calculation for r. We can make a
Nm+ I Nm

more exact calculation as follows. Suppose that - = - = r.
Nm Nm - I

(a) From equation (1) show t;at Nm+ I = ( 1 + ~ )Nm.
(b) From (a), show that 1 + - = r.

r
(c) From (b), calculate r.

-
I

2. The logistic map

In Worksheet 1, question 3, we saw that the models presented in Section 1 have
their limitations, and we introduced a new model

Nm+ 1= rNm(1.0 - Nm).

This model is called the logistic model, or the logistic map. Before we analyse
this model further we need the following definition.

(4)

Fig. 2. The Beetle problem for the case r = 2. Note the differences between this figureand Fig. 1

(d) Is the Rabbit problem really that different from the Beetle problem?
2. From equation (2) calculate NI, Nz, N3 and N4 in the following cases.

(a) No = 2.0, r= 2.0.
(b) No = 2.0, r = 0.5.

3. From equation (2) what size will Nm be for m large in the following cases.(a) r > 1.0.
(b) r = 1.0.
(c) r < 1.0.

(d) Do you think that equations (1) and (2) are good mathematical models?

For the following exercises assume that the recurrence relation has the form

Nm+1= rNm(1.0 - Nm). (3)

(Note that if Nm is small, equation (3) looks a bit like equation (2».

4. Calculate NI, Nz, N3 and N4 in the following cases.
(a) No= 0.6, r = 0.5.
(b) No = 0.4, r = 2.0.
(c) No = 0.6, r = 2.0.
(d) No = 0.5, r = 2.0.

(e) In (b), (c) and (d) what do you think the value of Nm would be for m very
large?

(f) Is this a better mathematical model than equations (1) and (2)?

Definition
If the successive values calculated from a recurrence relation tend towards some
fixed value, we call this value the steady state value. It has the property that
Nm+ 1 = Nm = N*, the steady state value, for large m.

The steady states for equation (4) are given by
r-1

N* = 0 or N* = -.
r

(5)

For 0 < r < 1 the second steady state does not make sense because it is negative
and if we start off with 0 ~ No ~ 1 in equation (4) then 0 ~ Nm ~ 1 for every m.
So the only sensible solution is the first solution of equation (5) (compare this
with Worksheet 1, question 4(a». For 1 < r < 3 the second solution makes sense
and it appears from Worksheet 1, question 4(e), that this is the steady state, at
least for r = 2.0. Hence, although there are now two possibilities for the steady
state, we have moved off the first solution onto the second. This is called a
bifurcation. For r = 3.1, the second solution of equation (5) is still a sensible
steady state but Works heet 1, question 5 suggests that we have a 2-cycle solution.
We may summarize these results on the bifurcation diagram in Fig. 3. Note that
we have been careful not to go too far beyond r = 3 in case there are yet more
surprises in store!

We can get an idea of what the solution to equation (4) will look like by using
a graphical technique called cobwebbing. The technique is illustrated in Fig. 4
and the results represented graphically in Fig. 5.
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Fig. 3. Bifurcation diagram for equation (4) showing how the steady state N* varies
with r. The dashed lines are unstable solutions
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Fig. 5. Graphical representation of the solution obtained by the cobwebbing technique
illustrated in Fig. 4 (Compare this solution with'that from Worksheet 1, question 4)

We draw the curve of equation (4) (with r = 0.5) and also the straight line
Nm+ I = Nm.We first find the value 0.6 along the horizontal axis.This is No.Now
NI = 0.5 X NoG - No)' But this is exactly the length of the vertical straight line
from the point No to the curve. If we then draw from there a line parallel to the
horizontal axis, then the distance this line is above the horizontal axis is always

NI, If we drop a perpendicular line onto the horizontal axis from the point
where this line intersects the Nm+I = Nm line, we have that the distance from
this point to the origin is also NI, That is, given No, we have been able to
calculate, graphically, the value of NI, In a similar way we can now go on to
calculate N2, N3,..., etc.1.0

Nm+1

0.8

0.6

0.4

0.2

0.0
0.2 0.4 0.6

No
0.8 1.0

N2 NI N m

Fig. 4. Illustration of the cobwebbing technique for equation (4) with No = 0.6, r = 0.5

N =Nm+J m

0.0 0.6 0.80.2 0.4
Nm

Fig. 6. Cobweb for Worksheet 2, question 1

1.0

Nm+1

0.8

0.6

0.4

0.2
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Worksheet 2

1. Use Fig. 6 to cobweb the solution to equation (4) for the case No = 0.7,
r= 2.0.

2. Illustrate your results to question 1 graphically. Does this solution cycle or
does it go to a steady state?

3. Use your calculator to find Nj, Nz, N3, N4, Ns, N6, N7, and N8 (each to 3
decimal places) for equation (4) in the case No = 0.501, r = 3.5. Draw the
cobweb diagram on the following figure (Fig. 7).

1.0

Nm+l

0.8

0.6

0.4

0.2

Nm+l=3.5Nm(1.0-Nm)

0.0 0.2 0.4 0.6 0.8 1.0
N

III

Fig. 7. Cobweb for Worksheet 2, question 3

4. Illustrate your results to question 3 graphically.
5. From equation (4), what is the equation for Nm+z in terms of Nm? What are

the steady states of this equation?

3. Chaos

From Worksheet 2, question 3, we saw that if r = 3.5, then equation (4) has a
4-cycle solution. As r increases further, we get an 8-cycle solution and then a
16-cycle solution, etc. We can represent these results (Fig. 8) on the bifurcation
diagram we began to draw in Fig. 3.

If we increase r beyond a critical value re :::::3.83 we lose the periodic structure
of the solution. Figure 9 illustrates the case when r = 3.9. In this case the
solution does not have a periodic structure. It is said to be chaotic. If we were to
change the value of No slightly we would get a completely different looking
solution. Another chapter in this book, 'A Little Bit of Chaos', introduces you to
other aspects of chaos.

Discrete Mathematics and its Application to Ecology

1.0

N*

0.8

0.6

0.4

0.2

0.0 0.5

97

4.01.0 1.5 2.5 3.0 3.52.0
r

Fig. 8. The completed bifurcation diagram illustrating, schematically, the cascade of
period doubling bifurcations

Equation (4) is a good model for insect growth - many insect populations
either reach a steady state or oscillate in a 2-cycle (see Fig. 10).

Nm

1.0

0.8

0.6

5 10 15 20 25

0.4

0.2

m

Fig. 9. The solution to equation (4) for the case r = 3.9, No = 0.2. Note that for some
generations the population gets very large then crashes back in the following generation
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1.5

1.0 1.0

0.5

I I I I " I I

V\.A-~
0.5

0.0

(a)

0.0

(b)

105 5 10

Fig. 10. Examples of population growth of two types of beetles. The vertical axis is the

number of beetles(thousands),the horizontalaxisisthe generation number. (Redrawn
from Hassel (1976))

Note that for r> 4 the model predicts negative populations and thus is not
realistic in this case. You may want to do a few iterations or draw some cobweb
maps to see why (hint: start off with r = 4.1, No = 0.5).

The analysis of the model equation (4) suggests that if we let r get too large
then we will get cycling populations with very large numbers or chaotic popula-
tions with the possibility of very large numbers. Therefore, in order to control
the population numbers, we really need to keep r < 3.83 and preferably much
smaller. We can decrease r by, for example, releasing sterile insects into the
population, so that the average birth rate per insect decreases.

We can write down more complicated relations, or iterated maps. For example,
we could have

rNm
b

Nm+ 1 = 0.0 + aNm)
(6)

where r, a and b are positive constants. Figure 11 shows the results from
equation (6) for the case r = 20, a = 0.01, No = 0.01 and different values of b.

4. Summary

In this chapter we have illustrated how mathematical models can be used to
study population growth. The analysis of these models determines if the assump-
tions we made in forming the model are sensible. If not, we have to reformulate
the model. This helps us to understand more deeply the processes of population
growth that we are trying to model and also predicts how the population will
react if we carry out certain experiments. The role of a predictive mathematical
model is very important. For example, it can aid our understanding of how
certain diseases spread within a population and help us to choose the best
control strategy. Mathematical models are important not only in ecology, but
also in the fields of biology, physics, chemistry and medicine.
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Fig. 11. The solution to equation (6) for the case r = 20, a = 0.01, No = 0.01 and
different values of b: (a) b = 0.5, (b) b = 2.5, (c) b = 5.0. The solution shown in (a) is very
similar to the behaviour of growing bacteria and of yeast

Solutions to Worksheet 1

1. (a) 1, 2, 1.500, 1.667, 1.600, 1.625, 1.615, 1.619, 1.618, 1.618, 1.618, 1.618.
(b) The values calculated in (a) tend to 1.618 to 3 decimal places. (In fact,

1 + /5
this is the golden mean ).2
Nm+l

(c) -::::: r, where r:::::1.618to 3 decimal places.
Nm

(d) The Rabbit problem, for large rn, is a special case of the Beetle problem
with r = 1.618 to 3 decimal places.

2. (a) 4.0, 8.0, 16.0, 32.0.
(b) 1.0, 0.5, 0.25, 0.125.

3. (a) Nm will be very large.
(b) N", = No.
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(c) Nm will be very small.
(d) Equation (1) predicts that the population of rabbits will grow forever;
equation (2) predicts that the population of beetles will either grow and grow
(if r> 1.0), or die down to zero (if r < 1.0) or stay at its initial value (if
r = 1.0). Neither of these models is very good because populations do not
behave in this way. For example, death has been ignored.

4. (a) 0.120, 0.053, 0.025, 0.012 to 3 decimal places.
(b) 0.480, 0.499, 0.500, 0.500 to 3 decimal places.
(c) 0.480, 0.499, 0.500, 0.500 to 3 decimal places.
(d) 0.500, 0.500, 0.500, 0.500.
(e) Nm tends to 0.5 for large m.
(f) This seems a better model because for certain r-values the population
reaches a steady value.

5. 0.65, 0.71, 0.65, 0.71, 0.65, 0.71, 0.65, 0.71,. ..
6. (a) From the assumption, Nm-I = Nmlr, therefore equation (1) becomes

Nm+ I = Nm +Nmlr.
(b) From (a), we have Nm+1= (1 + 1/r)Nm. The assumption says that
Nm+I = rNm. Therefore 1 + 1/r = r.
(c) From (b), rZ - r - 1 = O. Therefore 2r = 1 :i: {5. The negative solution
does not make sense because r is assumed positive, therefore r = (1 + {5)/2.

Solutions to Worksheet 2

1.

1.0

0.8

Nm+l

0.6

0.4 t /1: ___m,Y--~r ,'" ,'" ,'" ,'" ,'" ,'"

t' ", ", ", ", ", ", ", ", ", "

0.2

0.0
0.2 0.4 \ 0.6 0.8 1.0

NI NZ N3 NO Nm

Fig.12 Cobweb diagram for Worksheet 2, question 1
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2.
1.0

~

Nm

0.8

.
0.6

./-.-.---.-.-.--.---0.4

0.2

2 4 6 8 10 12 14
m

Fig. 13 Graphical representation of the solution obtained by the cobwebbing tech-
nique for Worksheet 2, question 1. The solution goes to a steady state

3. 0.875, 0.383, 0.827, 0.501, 0.875, 0.383, 0.827, 0.501

1.0

0.8

Nm+!

0.6

0.4 V, l :\
t

'T "

: um_~m--m_--~u i" ," ," ,
" ," ," ,
" ," ," ,
" ," ,
" ,, , .,

0.2

,,
: \N +J=3.5N (I.O-N ),m m m
,
,
,,

0.0
0.2 0.4 0.6

NZ NO Nm

0.8

N3 NI

Fig 14 Cobweb diagram for Worksheet 2, question 3
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4. 1.0

Nm

0.8

0.6

0.4

0.2

2 4 6 8 10 12 14m

Fig 15 Graphical representation of the solution obtained by the cobwebbing tech-
nique for Worksheet 2, question 3

5. From equation (4) we can write Nm+2 = rNm+10.0 - Nm+ 1)' Using equation (3) again,
we have Nm+1= rNmO.O- Nm),so we can write

Nm+2= r2NmO.0 - N",)(1.0 - rNm(1.0 - Nm)).

The steady states of equation (7) are given by Nm+2= Nm = N*. Thus we have

N* = r2N*(1.0 - N*)(1.0 - rN*(I.O - N*))
which has solution N* = 0 or

(7)

(8)

(

1

)

1 1
(N*)3 - 2(N*)2 + 1 + - N* + - - - = O.

r r3 r

1
We know that 1 - - is also a steady state so we can factor this out from equation (9)r
to get

(9)

(N*-1+~)((N*)2-(1+~)N*+~+ :2)=0. (10)

Thus the two further solutions are given by the roots of ((N*)2 - 0 +
l/r)N* + 1/r - 1/r3) = 0, that is, 2N* = 1 + 1/r:t [0 + 1/r)2 - (4Ir)(1 + 1/r)]I/2.
This may be written as 2N* = 1 + (l/r):t O/r)[(r - 1)2 - 4]1/2. Note that this solu-
tion will make sense only if r> 3, so we have a 2-cycle solution possible if r> 3.
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