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Streaming instability of slime mold amoebae: An analytical model
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During the aggregation of amoebae of the cellular slime mouldDictyostelium, the interaction of chemical
waves of the signaling molecule cAMP with cAMP-directed cell movement causes the breakup of a uniform
cell layer into branching patterns of cell streams. Recent numerical and experimental investigations emphasize
the pivotal role of the cell-density dependence of the chemical wave speed for the occurrence of the streaming
instability. A simple, analytically tractable, model ofDictyosteliumaggregation is developed to test this idea.
The interaction of cAMP waves with cAMP-directed cell movement is studied in the form of coupled dynam-
ics of wave front geometries and cell density. Comparing the resulting explicit instability criterion and disper-
sion relation for cell streaming with the previous findings of model simulations and numerical stability analy-
ses, a unifying interpretation of the streaming instability as a cAMP wave-driven chemotactic instability is
proposed.@S1063-651X~97!14408-7#

PACS number~s!: 87.22.2q
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I. INTRODUCTION

Spontaneous symmetry breaking under nonequilibri
conditions is characteristic of a wide variety of physical a
chemical systems; it is found in areas as diverse as fl
flow, nonlinear optics, and oscillations and waves in che
cal reactions@1#. On the other hand, conclusive evidence
such processes to underly spatial patterning in biological
tems is relatively rare~cf. @2#!. The amoeboid microorganism
Dictyostelium discoideumhas long been considered a par
digm for the study of biological pattern formation, and r
cently a mechanism of self-organized patterning akin
those in inanimate systems has been implicated in a mor
logical transition in its life cycle. When switching from un
cellular to a multicellular mode of existence, cell aggrega
emerge from an initially uniform layer of single cells, form
ing a pattern of dense cell streams which coalesce into
gregation centers@Fig. 1~a!#. A range of mathematical mod
els based on experimentally established single-cell prope
has been employed to investigate the mechanism of
streaming @3–8#. Numerical simulations of these mode
demonstrate that aggregation via cell streaming is the re
of an interaction of reaction-diffusion waves of an interc
lular signaling molecule, cyclic adenosin
3858-monophosphate~cAMP!, with chemically directed cell
movement~chemotaxis!.

In the simulations, it appears that this interaction cau
an instability of wave propagation through the uniform c
layer that underlies the formation of the stream patte
Vasiev et al. @4# suggest that the dependence of the cAM
wave speed on cell density plays a crucial role in the ins
bility mechanism. This assertion is substantiated by rec
results of Van Osset al. @7# that show failure of cell stream
ing in the absence of such a dependence in the model
provide experimental evidence of its existence in thein vivo
system. However, the model results are not conclusive
they are obtained from numerical simulations only, and
potential influence of various factors is difficult to discern

In order to expose the instability mechanism, linear s
561063-651X/97/56~2!/2074~7!/$10.00
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bility analysis of traveling wave solutions to aggregati
models has been attempted in@5,9#; owing to the structure of
the underlying models, both are essentially numerical. Ap
from the common conclusion that there is a ‘‘cell streami
instability’’ transverse to the direction of wave propagatio
the predictions of the two analyses are quite different. Lev
and Reynolds@9# find a rather complicated spectrum o
growth rates of the unstable modes,v(k2), with a maximum
for the homogeneous modek50 and a region of complex
growth rates for large enough wave numbersk, predicting
modes oscillatory in time as well as in space. In contra
Höfer et al. @5# obtain a real dispersion relationv(k2) with a
single maximum at nonzerok. Despite a number of approxi
mations made, the predicted dominant wave number c
pares quantitatively with the dominant wave number of
emerging stream pattern in model simulations. However,
findings in@4,7# appear not to be captured by the analysis
@5#, as no provision is made for the cell density depende
of the cAMP wave speed.

The purpose of the present paper is twofold. First,
translate the suggestion by Vasievet al. @4# and Van Oss
et al. @7# into a comparatively simple model of the cAM
wave cell interaction. The model is developed as an appr
mation to existing models of aggregation, with the advanta
of allowing both traveling wave solutions and their stabili
to be established analytically. Second, we use the exp
results on the parameter dependence of the streaming i
bility obtained to reexamine the previous interpretations
the instability mechanism suggested by simulation stud
and ~numerical! linear stability analyses.

Following a brief review of the cell biology and the ex
isting models ofDictyosteliumaggregation in Sec. II, in Sec
III we derive the model of the cAMP wave cell interactio
The derivation exploits a geometrical representation of
cAMP waves as cAMP concentration contours, which
coupled with the dynamics of chemotaxis. The explicit line
stability analysis of its traveling wave solutions is carried o
in Sec. IV. In Sec. V, these results are contrasted with
numerical results obtained on aggregation in the differ
models and the framework and results of the previous sta
2074 © 1997 The American Physical Society
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FIG. 1. Aggregation pattern ofDictyostelium discoideum in vivo~a! and in a model simulation~b!. ~a! Left: initial stage~cell density is
essentially homogeneous, and white regions correspond to moving amoebae, marking the position of cAMP wave fronts; in darke
amoebae are stationary!. Middle and right: developed cell streams;60 and;120 min later, respectively~dark regions in this photograph ar
depleted of amoebae!. The size of the field shown is approximately 1.5 cm31.5 cm ~courtesy of P. Newell!. ~b! Simulation of systems
~1!–~3!. Upper panel: cell densityn ~black, low; white, high!. Lower panel: corresponding cAMP concentration contoursu. Domain size 0.8
cm30.8 cm; snapshots taken at 15, 80, and 140 min. Parameters and functional forms:a(n)5n/(1.22n) for 0,n,1 anda(n)55 for
n.1, l f (u,v)590(0.2v1v2)(0.0141u2)/(11u2), D51, g(u,v)52.5@12(11u)v#, m50.012,x(v)50.5, for space, time, cell density
and concentration scales of 200mm, 4 min, 7.53105 cells/cm2, and 0.5mM, respectively~for details, see@16#!. Initial conditions were a
uniform cell distribution of 0.7, randomly perturbed by up to65% at each mesh point, and a planar cAMP wave with a free tip. Note
persistence of the resulting spiral wave geometry even after breakup of the continuous front contour. Numerical scheme: ADI for d
first-order upwind scheme for chemotaxis, reaction terms explicit, 2013201 mesh points.
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ity analyses. The comparison yields a unifying picture of
streaming instability.

II. BIOLOGY AND MODELS OF AGGREGATION

Dictyostelium discoideumbelongs to a group of microor
ganisms that show aggregation of single cells to form ce
lar aggregates at some phase in their life cycles@10#. In
e

-

Dictyostelium, multicellular development is induced by lac
of nutrients and leads, via the aggregation of up to 105 cells,
to the formation of a motile sluglike organism, eventua
transforming into a fruiting body.

The process of aggregation has been described in d
~cf. @11# and references therein!. Following starvation, amoe
bae acquire the ability to respond to extracellular stimulat
by cAMP with intracellular synthesis and secretion of cAM
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~‘‘autocatalysis’’! and also with chemotactic movement t
wards increasing cAMP concentration. Concomitan
cAMP-degrading enzymes are expressed and secreted. A
onset of aggregation, concentric and spiral waves of cA
are observed in the layer of amoebae. In the cAMP gradie
of the wave fronts, cell movement towards the centers of
wave patterns takes place, alternating with a stationary ph
in the wave backs and in between waves@12,13#. Typical
cAMP wave speedsc are significantly larger than the max
mum cell speedw0 ~c'200–600mm/min, w0'20–30mm/
min!, and consequently, the initially uniform cell densi
away from the aggregation centers remains practically un
turbed by chemotaxis@14#. However, cell movement subse
quently ceases to be ‘‘slaved’’ by the cAMP waves. Rath
than simply collecting at the aggregation centers, amoe
organize in a pattern of branching cell streams, in which th
establish cell-cell contacts—a crucial process for postag
gative development@15#. This breakup of the cell layer be
comes visible after the passage of about 10–20 cAMP w
fronts, with a typical wave period of 5–8 min@Fig. 1~a!#.

A minimal mechanistic model of the aggregation proce
includes~i! the local kinetics and diffusion of the extern
signal, extracellular cAMP,~ii ! the motile cell response to
wards cAMP, and~iii ! the cell-internal dynamics of sensin
cAMP, involving fast processes of signal relay to cAMP sy
thesis and motile machinery that can be eliminated adiab
cally, and slow processes changing the sensitivity of
amoeba towards the cAMP signal~desensitization!. Denoting
by u(x,y,t), v(x,y,t), andn(x,y,t) the concentration of ex
tracellular cAMP, the fraction of active cAMP cell mem
brane receptors per cell and the cell density~number of cells
per area!, respectively, the model can be cast in the form@5#

]u

]t
5la~n! f ~u,v !1D¹2u, ~1!

]v
]t

5g~u,v !, ~2!

]n

]t
5m¹2n2“•@x~v !n¹u#, ~3!

where“[(]/]x,]/]y). Briefly, f (u,v) is the rate of cAMP
synthesis and degradation per cell; it depends on cAMP
on the sensitivity of the cell towards cAMP stimulatio

FIG. 2. Sketch of phase plane of the local kinetics of Eqs.~1!
and ~2!, with n5n0 . The solid portionsU6 of the f -nullcline are
stable, in the sense that nearby trajectories remain close. The da
portion is unstable.
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measured byv. The total production per unit area depen
on the cell density, witha(n) being an increasing function
of n @4,5,16#. Upon sensing of cAMP, amoebae exhibit d
sensitization through conversion of the cAMP receptor in
inactive form ~and similar effects on other molecular com
ponents of the cAMP sensing system! @17–19#. The kinetics
of desensitization and the recovery of the active form
given by g(u,v); l'100 is the ratio of the characteristi
rates for cAMP synthesis and receptor desensitization.
dynamics of the cell distribution is governed by th
advection-diffusion equation~3! @20#, accounting for random
cell movement with ‘‘diffusivity’’ m, and chemotactic move
ment in response to cAMP with velocityw5x(v)“u. Here
again the response depends on the cellular sensitivity w
x(v) being an increasing function ofv @21,22#. The studies
of Vasievet al. @4# and Höfer et al. @5,6# employ models of
the types ~1!–~3!, the first one with standard Fitzhugh
Nagumo excitable dynamics and the latter two with a si
plified version of the cAMP kinetics derived from a detaile
model of cAMP signaling@23#.

An alternative approach consists in replacing Eq.~3! by
the dynamics of discrete, particle like, cells equipped w
internal cAMP dynamics and a chemotactic movement r
@3,7,8#. In some of this work, the dynamics of cAMP sign
transduction have been modeled in more detail than Eqs~1!
and ~2!, by introducing evolution equations for a great
number of intracellular variables.

These aggregation models were preceded by models
cusing exclusively on the cAMP wave phenomena@23–26#.
Neglecting the cell density dynamics, the cAMP dynam
were considered on an idealized stationary cell layer~a rea-
sonable approximation for the very beginning of aggre
tion!, and therefore these investigations serve as a refere
point for the analysis of Eqs.~1!–~3!. Specifically, it was
shown that a systematic reduction of a detailed biochem
model yields the two-variable system~1! and ~2! ~with n
5n0 , a constant! @23#. The kineticsf (u,v) andg(u,v) aris-
ing in this reduced model are of standard excitable type~Fig.
2. Below we will exploit this general property of Eqs.~1! and
~2! without resorting to detailed algebraic expression
f (u,v) andg(u,v).

In numerical simulations based on those biochemical r
laws and parameter estimates from experimental data,
finds concentric waves emanating from a periodic pacema
and spiral wave solutions that closely match the cAM
waves observed at the beginning of aggregation in exp
ments @24#. These wave patterns appear to be sta
asymptotic states of the dynamics, as is observed in a ho
other excitable media of physical or chemical origin@27#.
However, the recent simulations of the aggregation mo
~1!–~3! and related models exhibit a slow transient, relat
to the time scale of wave propagation, in the course of wh
the cell distribution undergoes a breakup transverse to
cAMP wave fronts, accompanied by distortion and break
of the cAMP waves. A representative example is depicted
Fig. 1~b!. It clearly shows how the breakup leads to the fo
mation of the cell stream pattern seenin vivo. Thus the nu-
merical results strongly suggest that thecombineddynamics
of cAMP waves and cell movement give rise to an instabil

hed
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56 2077STREAMING INSTABILITY OF SLIME MOLD AMOEBAE: AN . . .
which causes the growth of small initial perturbations of t
uniform cell distribution@in the case of Fig. 1~b!# or the
other variables.

Linear stability analysis of periodic wave solutions
Eqs. ~1!–~3! should expose such an instability. Before pr
ceeding to construct a specific model incorporating the w
speed hypothesis of@4,7#, we outline the principle of such a
analysis~e.g.,@28#!. For simplicity, we focus on the stability
of planar periodic waves of the aggregation model@far from
the center of the wave pattern, both concentric waves or
nating from a periodic pacemaker and spiral waves will
pear as~locally! planar periodic waves#. Consider a system
of evolution equations]u/]t5F(¹2u,“u,u) on an infinite
two-dimensional domain (x,y)P(2`,`)3(2`,`). Let
U(z) denote a planar periodic traveling wave solution w
periodL and wave speedc; z5x2ct denotes the appropri
ate traveling coordinate frame. Consider a small perturba
aboutU, of the forma(z)exp$vt1iky%. Then the evolution of
a will be governed by the linear system, arising from t
linearization of F about U, da/dz5A„U(z);v,k…a, where
A(z1L)5A(z). We require the perturbation to remain fi
nite asz→6`; standard theory then shows thata(z;v,k)
itself must beL periodic. If there exists such a period
solution for a pair (v,k) with v.0, then the underlying
wave solutionU is unstable towards a mode with wave num
berk in the transverse direction. If no periodic solutions ex
for any positivew, thenU is ~usually! stable@29#. Let Q(z)
denote a fundamental solution of the linear system. Then
existence of a periodic solution requires the period-adva
mappingM5Q(z1L)Q(z)21 to have at least one eigen
value ~Floquet multiplier! of unity.

In general, analytical expressions for the monodromy m
trix M will not be available, and for Eqs.~1!–~3! not even
the unperturbed stateU(z) can be obtained explicitly. Henc
the above procedure, though applicable in principle, can o
be carried out using repeated numerical integration, so
the parameter dependence of a potential instability can
easily be established~cf. @6#!. ~Problems of similar nature ar
encountered in the analysis of transverse front or pulse in
bilities in chemical systems, and various attempts to circu
vent these have been made@30,31#.! We now derive a sim-
plified model from Eqs. ~1!–~3! which allows explicit
stability calculations for its periodic wave solutions.

III. GEOMETRICAL MODEL
OF WAVE CELL INTERACTION

Intuitively, the interaction of cell movement dynamic
and cAMP waves involves two crucial effects. First, prop
gation speed and amplitude of the cAMP waves will depe
on the local cell density. This may be important, as sm
deviations from the average uniform density will always
present. Second, these inhomogeneities will in turn feed b
into cell movement~determining the cell distribution!, as
cells will be attracted by the local peaks in the cAMP lan
scape. To describe this interaction, the details of theu and
and v fields are not strictly necessary; in principle, th
knowledge of theu-concentration contours of the wav
fronts and their cell density dependence would be sufficie
Exploiting the disparate time scales of theu andv kinetics,
the problem of wave motion can be reduced to the motion
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interfaces with rapidly changing values ofu ~wave fronts and
wave backs!, joining regions of practically constant, high, o
low values ofu ~U1 andU2 in Fig. 2! @32#. For the motion
of the wave fronts, one obtains a parabolic eikonal equat
in two dimensions, it reads

cn5c2DK. ~4!

Here c, cn and K denote the speed of a planar front, th
normal speed of a curved front and the local curvature,
spectively. To construct a model of aggregation, we use
~4! in place of Eqs.~1! and~2! and couple it with the chemo
taxis equation~3! via a modified ‘‘chemotaxis rule.’’ The
cell-density dependence of cAMP synthesis,@a(n)#, will re-
sult in a ‘‘constitutive relation’’c(n).

For wave fronts that are close to a planar front, we c
orient the coordinate system such that the front position
described byx5 x̄(y,t); we write x̄ to distinguish the front
position from the independent space variable. In this ca
using the standard expressions for curvature and normal
curve „x(t),y(t)…, the eikonal equation~4! can be recast in
the form

x̄t5
Dx̄yy

11 x̄y
2 1cA11 x̄y

2. ~5!

Clearly, this is solved by a planar wave,x̄(t)5x01ct. In the
original derivation, Eq.~5! describes the narrow, ‘‘boundar
layer’’ wave front, with a typical width of orderl21 in the
appropriate scaling. Here we will relax this interpretation a
assumeall u contours to obey Eq.~5!. This trivially holds for
a planar front, and as we will be concerned with small p
turbations around planar waves, this assumption appears
sonable. Thus Eq.~5! now defines a continuous field ofu
contours. To make this idea explicit, we interpretx0 as a
parameter specifying the concentration contour, and thus
each contour we havex̄5 x̄(x0 ,y,t). Specifically, we may
choose the parametrizationx05x. Introducing the traveling
framez5x1ct, we transform from (x,y,t) to (z,y,t) coor-
dinates, to obtain

x̄t52cx̄z1
Dx̄yy

11 x̄y
2 1cA11 x̄y

2. ~6!

This equation has the plane wave solutionx̄5z, representing
a continuum of parallel contour lines, parametrized by
traveling wave coordinate, which are stationary in thez
frame.

The evolution of the cell density is governed by Eq.~3!.
In the present model, we replace the specific choice of
chemotactic cell velocity,w5x(v)“u, with a similar
‘‘chemotaxis rule’’ using the cAMP front contours. Trans
formation of Eq.~3! to (z,y,t) coordinates yields

nt5m~nzz1nyy!2cnz2~]z ,]y!•~nw!. ~7!

The orienting influence of the cAMP gradient and the pe
odic character of cell movement are encapsulated in the
lowing definition forw. When a specific cAMP contourx̄f ,
marking the beginning of a wave front, reaches a location
the field of amoebae, the amoebae at this location star
move with constant speedw0 for a fixed time intervalDt,
being equal to the duration of the wave front, perpendicu
to the cAMP contours:
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w„x̄~z,y,t !…5H w0

A11 x̄y
2 S 1

2 x̄y
D for x̄f<z, x̄f1cDt,

0 otherwise.
~8!

Finally, the local wave speed in Eq.~6! will be a function
of the cell density,

c5c~n!. ~9!

In models of the type~1!–~3!, c(n) is monotonically increas-
ing. However, in more complex models employing detai
intracellular dynamics, one can find more complicated re
tionships, typically showing an increasingc(n) for small
densities with a slight decrease or an approximately cons
region for higher values ofn @7,25#. The experimental result
in @7# show an increase with cell density. However, wa
speed was only measured for two different densities and
is difficult to infer a continuous relationshipc(n).

Equations~6!–~9! constitute the model of the cell wav
interaction. It is possible to obtain order-of-magnitude e
mates of the parameters from the experimental literature.
have c'400mm/min, w0'20mm/min, D'104 mm2/min,
andm'70mm2/min ~cf. @6#!; with space and time scales o
200 mm and 5 min, respectively, this givesc0510, w0
50.5, D51, andm51022.

Planar periodic traveling waves (X,N) are y- and
t-independent solutions of system~6!–~9!. Neglecting fast-
decaying exponentials associated with the smallness om,
they take the form

X~z!5z~mod L!,
~10!

N~z!5H n1[n0 /~11w0 /c! for 0<z~mod L!,z1 ,

n0 for z1<z~mod L!,L,

wherez15cDt, andL denotes the spatial period. The loc
tions of the wave fronts are taken to bez5 j L, j 50,61,
62, . . . . Inaddition, define

W~z!5H w0 for 0<z~mod L!,z1 ,

0 for z1<z~mod L!,L.
~11!

Clearly, the uniform density is only insignificantly perturbe
by the wave fronts.

IV. INSTABILITY OF PLANAR WAVES

Now introduce the perturbation of the planar wa
solution x̄(z,y,t)5X(z)1 x̂ exp$vt1iky%, n(z,y,t)5N(z)
1n̂(z,y,t)exp$vt1iky%. Relation ~9! is simply expandedc
5c0(n0)1c1(n0)n̂, where we take the coordinate frame
move with c0 , z5x1c0t. From direct simulations of Eqs
~1!–~3!, we can estimatec1'5 for the parameter set of Fig
1~b! @16#. In a first approximation, we assume that c
movement still sets in atz5 j L, irrespective of perturbation
of the fronts. Under this assumption, we obtain the followi
linear system for (x̂,n̂):

d

dj
S x̂
~11W~j!/c0!n̂D5S 2v2k2D c1

k2W~j!N~j! 2v2k2m D S x̂
n̂D ,

~12!
-

nt

it

i-
e

l

where we have rescaledz5c0j. Noting thatm/c0
2!1, we

have neglected the term

2
m

c0
2

d2

dj2 S 0
n̂D

on the right-hand side of Eq.~12!. It can be shown that this
perturbation, albeit singular, retains the solutions relevant
the stability of underlying wave solutions in the perturb
system~12! @28#. In addition, we verified in sample calcula
tions that the effect of the perturbation on the solutions
Eq. ~12! is indeed small@16#.

Equation ~12! has the principal structuredu/dj5A1u
for jPI j

1 and du/dj5A2u(j) for jPI j
2 , where I j

1

5„j L,( j 1a)L…, I j
25„( j 1a)L,( j 11)L…, j 50,1,2, . . . ,

a[z1 /L, and A6 are constant regular matrices. This sp
cial, piecewise constant, case of a linear system with perio
coefficients can be treated analytically as follows. Denote
fundamental solutions for theI 6 intervals byQ6. They have

the form Q6(j)5Z6diag$eli
6j%C6, whereZ6 and l i

6 are
the matrices of eigenvectors and corresponding eigenval
respectively;C6 are constant matrices. The fundamen
solution for a complete periodL can be found by match
ing these at j5( j 1a)L, requiring Q1

„( j 1a)L…
5Q2

„( j 1a)L…. From this one obtains the monodromy m
trix M5Q(z1L)Q(z)21, as

M5~Z1C1!21Z2diag$el i
2

~ j 11!L%

3@Z2diag$el i
2

~ j 1a!L%#21Z1diag$el i
1

~ j 1a!L%C1. ~13!

For Eq.~12! there exists a straightforward corresponden
between the spectrum of~maximal! growth ratesv(k2) and
the spectrum of maximal Floquet multipliers,s(v,k2),
which allows the stability properties of system to be est
lished in a compact manner. Realizing that the monodro
matrix has the structureM5M0exp$2vL%, whereM0 is the
monodromy matrix corresponding tov50, one can easily
show that

v~k2!5L21lns~0,k2!. ~14!

Hence all we need to calculate is the spectrum ofM0 from
Eqs.~10! and~13!. One of the two eigenvalues lies always
the interval~21,1!, while the modulus of the other,

s~0,k2!5 1
2 @ trM01~ tr2M024 detM0!1/2#, ~15!

can be greater than 1. One obtains trM05@k2(l1
12l2

1)(m

2D)#21@(l1
11k2D)(l2

11k2m)(e(l1
1

2k2m)aL1e(l2
1

2k2D)aL)

2(l1
11k2m)(l2

11k2D)(e(l1
1

2k2D)aL 1 e(l2
1

2k2m)aL)],
detM05exp$2k2(m1D)L%, and l1,2

1 5 1
2 $2k2(D1m)

6@k4(D2m)214k2c1w0n1#1/2%. Inserting these expression
in Eq. ~15!, one can show that a positive growth ratev(k2)
is obtained if and only if

trM0.11detM0 . ~16!

This implies that an instability is associated withs passing
through 1 and, consequentlyv(k2) being always real, pre-
dicting the growth of a stationary pattern transverse to
wave fronts. The homogeneous modek50 is always a neu-
tral mode, due to the conservation of total cell number. Th
we can expect an instability to set in at large wavelengt
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and expanding Eq.~16! aboutk250, one finds that the peri
odic waves are unstable towards large wavelengths
c1n1w0.0 and stable forc1n1w0<0. Hence, in this simpli-
fied model, the presence of chemotactic cell movement c
bined with a ‘‘positive’’ dependence of cAMP wave spe
on cell density,c15dc(n)/dn.0, always leads to an insta
bility. This result is a clear confirmation of the assertion
@4,7#.

The actual range of unstable modes and associated gr
rates can be inferred from the dispersion relationv(k2). For
sufficiently large cAMP wave periodsL@@k2(D1m)#21, it
is well approximated by

v~k2!'
a

2
@2k2~D13m!1Ak4~D2m!214k2c1n1w0#;

~17!

sample calculations show that even for smallk andL5O~1!
Eq. ~17! is rather close to the actual dispersion relation~cf.
Fig. 3!. @In Eq. ~17! was assumed thatm,D as estimated
above; the relation form.D is found by interchangingm
and D.# Relation ~17! predicts a range of unstable wav
numbers 0,k2,c1n1w0 /@2m(m1D)# with a single maxi-
mum; or, alternatively, a modek2.0 is unstable, if

c1w0n1.2k2m~m1D !, ~18!

and stable otherwise. Typical dispersion relations are sh
in Fig. 3.

For realistic parameter values~c155, n151, w050.5!,
we have a maximum growth rate of about 0.19~or
0.04 min21! and a dominant wave number of;3.7 ~or a
wavelength of 340mm!. Given a typical cell diameter o
about 10mm, the analysis thus predicts the formation
clusters of a few cells. This happens on a relatively slow ti
scale; the linear doubling time of the patterning amplitude
equivalent to the passage of three to four cAMP pulses.

V. DISCUSSION

A. Comparison with model simulations

The analysis can be thought of as investigating a situa
in which stable periodic waves exist~e.g., for w050! and
then a parameter is switched to render the waves unst
(w0.0). The natural situation of aggregation is of cour
somewhat different. Here the waves are ‘‘switched on’’ a
start to propagate from distinct sources, and the combi
dynamics of cAMP signaling and cell movement are u
stable from the outset. Therefore the instability develops
the wave patterns expand. It will become visible first in t
neighborhood of the aggregation centers, propagating
wards with the waves. This conjecture is borne out both
experiments and model simulations@Figs. 1~a! and 1~b!, re-
spectively#.

The stability analysis is confined to patterning perpe
dicular to the direction of wave propagation and does
address the issue of pattern selection on the two-dimensi
domain. However, it is intuitive that the distortions of th
wave fronts cause continuous cell streams to form. The p
ence of a dominant wave number provides a recipe fo
branching network of cell streams in the quasicircular geo
etry of an aggregation territory. Evidence of a dominant s
or

-

f

th

n

f
e
s

n

ble

d
d

-
s

t-
y

-
t
al

s-
a
-
-

tial wavelength of the emerging stream pattern has been
tained in model simulations@6,16#. The model simulations
appear to match the experimental results, but a quantita
analysis of the experimental patterns is lacking at presen

B. Comparison with previous stability analyses

Starting from a rather different set of assumptions,
model~6!–~9! yields essentially the same dispersion relati
as the previous analysis in@6#. The analysis of@6# did not
incorporate wave front curvature explicitly; it was based
following the amplitudes ofu, v, and n in Eqs. ~1!–~3!
perpendicular to the direction of wave propagtion as a p
turbation of the periodic planar wave is being introduce
The close correspondence between the results of the
analyses also extends to the instability criteria. By mean
a rough, qualitative, ‘‘caricature’’ of the numerical stabilit
calculations of Eqs.~1!–~3!, in @6# the following instability
criterion was derived: Periodic waves are unstable if

pn0x0.2m~k2D1gn0!. ~19!

Here p, n0 , x0 , andg denote a measure of the productio
rate of cAMP, the unperturbed initial cell density, th
chemotactic coefficient~being proportional to cell speed!,
and the degradation rate of cAMP; the meaning ofm andD
is the same as in the present model. Thus in both models
the competition between the combined effect of cAMP p
duction and chemotactic cell movement, on the one ha
and the dissipative effects of random cell movement a
cAMP diffusion @and cAMP degradation in Eq.~19!#, on the
other, that determines whether the streaming instability
curs.

The two approaches to stability analysis in the pres
paper and in@6# therefore emphasizecomplementaryfeatures
of the instability mechanism, and the exclusive focus
cAMP wave front curvature in@4,7# appears somewhat on
sided. For streaming to occur, it is important that loc
cAMP synthesis increase with cell density. This will man
fest itself both in local front curvature~i.e., propagation
speed! and cAMP amplitude.

It is not straightforward to see where the discrepancy w
the results in@9#, and in particular the very different shape
the dispersion relation, arises, since they are obtained b

FIG. 3. Dispersion relations,v(k2)5L21lns(0,k2), for L52,
a50.1,m50.01,D51, and in ascending orderc1n1w050, 0.5, 1.5,
and 2.5. The dashed curve shows the approximation~17! for
c1n1w052.5.
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numerical procedure. In addition, the detailed forms of
chemotaxis terms differ in the models of@9,6# and the
present model. In@9# separate dynamics are assumed forw in
the wave fronts,dw/dt52Gw1k“u, while in @6# w}“u
in the wave fronts. Here Eq.~8! corresponds essentially t
w5w0“u/i“ui . Hence in all three models the direction
cell movement follows the cAMP gradient, but in the prese
model the speed is constant rather than gradient depen
~This latter assumption in the present model is forced by
contour description of the cAMP waves which retains t
direction but not the magnitude of the chemical gradients
constant ‘‘intrinsic’’ speed may actually be more realis
biologically.! This may account for differences in deta
However, the agreement of the results of the present ana
with that of @6# together with the evidence from model sim
lations argues strongly in favor of a generic single-hump
dispersion relation.

C. Conclusion

The ‘‘pattern’’ of the instability criteria~18! and~19! em-
phasizes the connection of the streaming instability with
chemotactic instability found in a simpler system by Kel
and Segel@33#. @In the Keller-Segel system, actively movin
particles, such as cells~described by a continuous density!,
v

n-

. J

on

-

v-

s

e

t
nt.
e

a

sis

d

e

collect in clusters separated by a characteristic distance
responding chemotactically to a signal they emit in a co
tinuous fashion.# In this sense, the streaming instability is
chemical-wave-driven chemotactic instability. This is furth
underlined by another feature of aggregation, namely,
progressive ‘‘coarsening’’ of the initial pattern, seen bothin
vivo and in model simulation~cf. Fig. 1!. Such a coarsening
has also been observed in simulations of a discrete-par
analog of the Keller-Segel system@34#. Similar phenomena
are found in other types of aggregative patterning, such
dendritic growth@35#.

Recently, there have been experimental studies of o
microbial systems in which chemotactic instabilities a
likely to be involved in the formation of collective cell pa
terns @36–38#. Moreover, the modeling approach present
here may be applied to other excitable systems in wh
wave propagation alters the state of the medium.
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