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One of the central issues in developmental biology is the formation of spatial pattern in the embryo. A number of theories have
been proposed to account for this phenomenon. The most widely studied is reaction di†usion theory, which proposes that a
chemical pre-pattern is Ðrst set up due to a system of reacting and di†using chemicals, and cells respond to this pre-pattern by
di†erentiating accordingly. Such patterns, known as Turing structures, were Ðrst identiÐed in chemical systems only recently. This
article reviews the application of reaction di†usion theory to chemical systems and then considers a number of biological applica-
tions.

One of the central issues in developmental biology is the
understanding of the emergence of structure and form from
the almost uniform mass of dividing cells that constitutes the
early embryo. Although genes play a key role, genetics says
nothing about the actual mechanisms which bring together
the constituent parts into a coherent patternÈknowing the
dictionary does not mean that we know Shakespeare.

In his seminal paper, Turing1 demonstrated, theoretically,
that a system of reacting and di†using chemicals could spon-
taneously evolve to spatially heterogeneous patterns from an
initially uniform state in response to inÐnitesimal pertur-
bations. Remarkably, he showed that di†usion could drive a
chemical system to instability, leading to spatial pattern where
no prior pattern existed. He speciÐcally considered a system of
two chemicals, in which one was an activator and the other an
inhibitor. That is, one chemical, the activator, stimulated and
enhanced the production of the other chemical, which, in turn,
depleted or inhibited the formation of the activator. He
showed that if the di†usion of the inhibitor was greater than
that of the activator, then di†usion-driven instability could
result. This is counter-intuitive, as one usually thinks of di†u-
sion as a homogenizing process.

To gain an intuitive understanding of di†usion-driven insta-
bility, let us consider the following analogy : suppose that we
have the simple autocatalytic process A ] B] 2B in an
unstirred reactor initially full of chemical A but with no
chemical B. Then, obviously, there will be no reaction. If we
now seed the reaction domain with some B at various local
sites and if A can di†use but B is immobilised, reaction will
only occur where there has been seeding, with high concentra-
tions of B building up at these points. Eventually, A would
disappear and we would be left with “spots Ï of B. If, however,
there is a supply of A across the domain (perhaps by forma-
tion from a precursor) and also a decay step for B to limit its
growth, then it may be possible to get a balance between
supply and di†usion away of A balancing the decay of B in
the spots, to give steady-state, long-lived pattern, with high A
concentrations in between the spots and high B concentration
in the spots. The exact pattern of spots would still depend on
the precise initial seeding, but Turing makes two remarkable
predictions : Ðrst, that this structure develops spontaneously
even from an initially almost homogeneous distribution of A
and B provided that A di†uses more rapidly than B and,
second, that the Ðnal pattern does not necessarily depend on
the initial perturbation if B has a non-zero di†usivityÈthe
spots adjust their position to the demands of the local “ supply
and demandÏ due to di†usion and reaction.

A general reaction di†usion (RD) system has the form

Lu
Lt

\ D+2u ] f (u, p) (1)

where u is a vector representing chemical concentrations.
Boundary conditions are usually taken as zero Ñux, that is, the
domain boundary is assumed impermeable to the chemicals.
Typically, one considers a two-chemical system, in which case

where and are chemical concentrations. Theu \ (u1, u2), u1 u2Ðrst term on the right-hand side represents di†usion, with D a
matrix of di†usion coefficients, assumed constant, and the
second term represents chemical reactions, with kinetic
parameters p, for example, rate constants, production and
degradation terms. The form of f depends on the system being
studied (see later) but here we give an illustrative example due
to Schnakenberg :2

Consider the series of reactions

X½ A, 2X] Y] 3X, B] Y (2)

Using the law of mass action, we have that the production of
X occurs at the rate

k2 a [ k1u1 ] k3 u12u2 (3)

while that of Y is

k4 b [ k3 u12u2 (4)

where a and b are the concentrations of X, Y, A and B,u1, u2 ,
respectively, and . . . , are rate constants. Assuming thatk1, k4X and Y di†use with di†usion coefficients and respec-D1 D2 ,
tively, and that A and B are in abundance so that a and b can
be assumed approximately constant, the reaction di†usion
system satisÐed by and isu1 u2

Lu1
Lt

\ D1+2u1 ] k2 a [ k1u1] k3 u12u2

Lu2
Lt

\ D2+2u2 ] k4 b [ k3 u12u2

A uniform steady state of a general RD system is the vector
of concentrations constant in space and time, satisfyingu0 ,

p) \ 0. Turing showed that, under certain conditions onf (u0 ,
the kinetic parameters and di†usion coefficients, such a steady
state, stable in the absence of di†usion, could be driven
unstable in the presence of di†usion and evolve to a spatially
patterned state as a certain parameterÈthe bifurcation, or
control, parameterÈwas varied. Turing was interested in mor-
phogenesis, the formation of structure, so he proposed that
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this chemical pattern could serve as a pre-pattern to which
cells would respond in such a way that a spatial structure
would form. For example, if one of the chemicals was a plant
growth hormone, then the pre-pattern could result in pat-
terned growth. More generally, these chemicals (termed
morphogens) could trigger a genetic switch causing cell di†er-
entiation.

Since TuringÏs paper there has been a vast literature on
both the theoretical and practical aspects of RD systems (see,
for example, ref. 3È8). Turing models have been applied to
such diverse areas as ecology,9 semiconductor physics,10
material sciences,11,12 hydrodynamics,13 astrophysics14 and
even economics.15

In this partial review we focus only on two speciÐc areas of
application, namely chemistry and biology. The application of
TuringÏs theory to these areas has come in for much criticism,
for three main reasons : Ðrst, there was no conclusive proof
that Turing patterns actually existed in nature ; second, there
is no deÐnitive proof of the existence of morphogens ; third,
the solutions tend to be very sensitive to perturbations and
thus the model appears unrealistic when applied to many
examples in morphogenesis where the patterning process is
robust. Although the evidence for the existence of morphogens
is still tenuous, Turing structures have now been found in
chemistry, and di†erent types of boundary conditions have
been shown to increase the stability of model solutions. We
begin by a brief survey of recent work on the identiÐcation of
Turing patterns in chemistry.

Spatial and spatiotemporal patterns in chemistry
Time-dependent patterns in chemical systems have been
studied for many years. The best known oscillatory reaction is
the BelousovÈZhabotinsky reaction, Ðrst reported by
Belousov16 in an unpublished paper which appeared in the
book edited by Field and Burger17 (see Plate 1). This is an
example of a chemical oscillator. BrieÑy, bromate ions oxidise
malonic acid in a reaction catalysed by cerium, which has the
states Ce3` and Ce4`. Sustained periodic oscillations are
observed in the cerium ions. If, instead, one uses the catalyst
Fe2` and Fe3` and phenanthroline, the periodic oscillations
are visualized as colour changes between reddish-orange and
blue19 (see Plate 1). In this system, the activator is andHBrO2the inhibitor is Br~. The model and detailed analysis can be
found in ref. 20 (see also ref. 21È23). This system also exhibits
a number of di†erent types of wave structures, such as propa-
gating fronts, spiral waves, target patterns and toroidal
scrolls.24h30

Until recently, however, attempts to obtain experimental
evidence of Turing structures had proved unsuccessful. A key
reason for the failure to Ðnd Turing patterns in experiments
was due to the need for signiÐcant variation in di†usion coeffi-
cients of the reactants. Turing structures require the inhibitor
to di†use at a much faster rate than the activator. Numerical
simulations of many of the model systems studied, such as the
Brusselator model or the reduced Oregonator model of the
BelousovÈZhabotinsky reaction,31,32 predict that Turing
structures are only generated when di†usion coefficients di†er
by at least one order of magnitude, that is, DHBrO2

@ DBr~ .
Experimentally obtained di†usion coefficients of the reactants,
however, show much less variation. More recently, it has been
shown33 that a di†usion induced instability can occur under
certain very special conditions with nearly equal di†usion
coefficients.

Note that thermodynamically closed systems must even-
tually approach their unique state of chemical equilibrium,
which will be spatially homogeneous. In such systems, any
pattern formation is necessarily transient.

The Ðrst experimental evidence of the existence of Turing
structures was presented by De KepperÏs group in Bord-

Plate 1 Spatiotemporal patterns in the BelousovÈZhabotinsky reac-
tion. (a) Target patterns, (b) spiral patterns (Reprinted from ref. 18
with kind permission from The Royal Society of Chemistry).

eaux.34,35 They used an open reactor system, wherein reac-
tants were continuously fed into the system, keeping it far
from equilibrium. The resultant sustained standing non-
equilibrium chemical patterns exhibit all the properties of
Turing structures. The veriÐcation of TuringÏs prediction,
nearly forty years after the original theory, has revived interest
and motivated greater study in the area.

The reaction that has received the greatest attention is the
chloriteÈiodideÈmalonic acidÈstarch (CIMA) reaction36 and
we now examine this is some detail.

The chlorite–iodide–malonic acid–starch reaction (CIMA
reaction)

The reactor consists of a block of hydrogel in contact with the
contents of two continuous-Ñow stirred tank reactors (CSTRs)
on opposite sides of the gel. Each of the reservoirs contains a
non-reacting subset of reagents which are continuously
pumped into the reaction. This keeps reactant concentrations
uniform and constant during the experiment. The gel inhibits
any convective motion so that the only motion involved is due
to di†usion of the chemicals. Full details of the experimental
setup to generate stationary patterns can be found in ref.
35È37.

A soluble starch colour indicator is included to visualise
concentration changes. Starch colour switches from yellow to
blue, which is monitored in transmitted light with a video
camera. Dark blue regions correspond to high concentrations
of the starchÈtriiodide complex whereas clear zones are char-
acterized by the presence of oxidised states only. Note that
starch was added simply to aid visualisation, but its binding
to the iodide ions turned out to be absolutely crucial, as it
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reduced the mobility of the latter and hence enhanced the
ratio of di†usion coefficients allowing Turing instability to
occur (see later).

Three geometries of reactors can be distinguished.
(1) The thin strip reactor. Used in the original experiments,

this is a narrow rectangular ribbon of a transparent chemi-
cally inert hydrogel with a thickness greater than Ðve times
the wavelength of the pattern. Reactors have been devised
with a thickness of the order of the pattern wavelength to
approximate a two-dimensional system.

(2) Ouyang and Swinney38 use a Ñat disk of gel sandwiched
between two porous glass disks.

(3) To study the inÑuence of geometry on the pattern selec-
tion mechanism, De Kepper et al.35 have designed a reactor
with an annular gel strip. Two di†erent experiments were per-
formed, one in the classical rectangular strip and the other in
the annular reactor. It was found that generation of the pat-
terns was not inÑuenced by the geometry of the reactor.

De Kepper et al.35 have observed the formation of a sta-
tionary three-dimensional pattern consisting of parallel lines
of periodic spots. This body-centred cubic structure is in
agreement with the theory developed in ref. 39. Using sym-
metry arguments, this theory demonstrated that the only
Turing structures that persist in three-dimensional space are
those with wave-vectors satisfying a deÐnite angular relation.
The body-centred cubic pattern is found to be the most stable.
Patterns develop spontaneously over a well deÐned range of
malonic acid concentration. The wavelength of 0.2 mm
appears intrinsic and is not related to geometric character-
istics of the system. The pattern is also inÑuenced by the tem-
perature, which controls the reaction rates.

Ouyang and Swinney37 obtained quasi two-dimensional
structures, maintained indeÐnitely in a non-equilibrium state.
The patterns develop spontaneously from the spatially
uniform state on variation of a control parameter (chemical
concentrations or temperature). These Turing patterns are
shown in Fig. 1. In these experiments, the concentrations of
iodide and malonic acid are chosen as control parameters and
other concentrations are kept constant. Initially, transient
yellow circles emerge and start to grow in a blue surrounding.
These structures dissolve and break into dot patterns demon-
strating a wide distribution of sizes. The dots evolve to a

Fig. 1 Di†erent types of stationary chemical (Turing) patterns in the
CIMA reaction (see ref. 37 for full details). Bars represent 1 mm.
(Reprinted with permission from Nature.)

quasi-stationary structure consisting of multiple domains of
yellow hexagons of di†erent orientations. These hexagons,
denoted are approximately uniform in size.H

p
,

Re-entrant hexagons, that is dark-blue hexagons formed in
a light background, designated by and distributed in aH0 ,
structure similar to a honeycomb lattice, have recently been
reported in ref. 40, but these patterns appear only transiently.

At high iodide or low malonic acid concentration the
domains are no longer composed of hexagons, but a station-
ary array of regularly spaced out stripes of equal width forms.
A stable mixed solution of the above two patterns can also
occur. These patterns can be qualitatively described as the
stretching of the regular hexagonal lattice along the direction
of the stripes. Distorted yellow dots are no longer uniform in
size or form. A transition from an initially uniform state to a
hexagonal pattern is also obtained through a temperature
change.

A rhombic pattern has been generated in ref. 41 using
special initial conditions. The photosensitive nature of the
CIMA reaction is exploited by imposing particular initial con-
ditions using illuminated, computer-generated photographs of
speciÐc spatial patterns. The desired perturbation is thus
created in the reaction medium and once this initial pattern
has settled down, the system is left to evolve freely. The ulti-
mate pattern that arises depends on the characteristic angle of
the imposed rhombic initial perturbation.

A more complex structure, referred to as a “black-eye Ï
pattern and illustrated in Fig. 2, appears well beyond the
primary instability of a hexagonal array through increase in
the malonic acid concentration.41

This black-eye pattern is thought to be the result of a reso-
nant interaction between the basic modes of a hexagonal
array. It can be seen as the superposition of two di†erent hex-
agonal lattices : one of large yellow spots and another com-
posed of small dark blue dots. At a higher concentration of
malonic acid, the black-eye pattern becomes unstable and a
transition to regularly spaced stripes of equal width occurs.

The spatial patterns produced by this reaction are funda-
mentally di†erent to the more widely known target and spiral
“patterns Ï. The latter are not really patterns but are actually
wave structures. We now brieÑy consider two other types of
patterns.

Fig. 2 An example of the “black-eye Ï patterns generated in ref. 41.
(Reprinted with kind permission from ref. 41.)
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The polyacrylamide–Methylene Blue–sulÐde–oxygen system

Turing-like patterns have been observed in the
polyacrylamideÈMethylene BlueÈsulÐdeÈoxygen (PAÈMBO)
reaction.42 As this is a closed setup only transient patterns are
possible and the system Ðnally relaxes to its equilibrium state.
Details of this reaction and corresponding mathematical
models can be found in ref. 43È45.

BrieÑy, this reaction exploits the oscillating properties of the
Methylene BlueÈsulÐdeÈoxygen (MBO) system, which has
been studied by Burger and Field.43 The reaction of this oscil-
lator is the Methylene Blue catalysed oxidation of HS~ by O2in water at pH \ 12. The monomer Methylene Blue exhibits
two stable forms : the blue MB` and the colourless reduced
form MBH. The redox reaction linking these two forms can
be represented in two steps :

MB`] e~½ MB0

MB0] e~] H`½ MBH

Resch et al.44 determined a mechanism for the MBO, com-
posed of fourteen reactions involving several radical and
anionic compounds. A reduced model consisting of eight
chemical reactions and Ðve variables has been proposed by
Zhang and Field.45

The experiment is performed in a Petri dish and is closed
with respect to all chemical species except oxygen. This e†ect
means that only transient patterns are possibleÈthe system
relaxes to its equilibrium state. Transient patterns show a hex-
agonal colourless lattice in a dark-blue surround. Removal of
the gel from the Petri dish allows the surfaces contact with the
Methylene Blue solution and oxygen. This allows oxygen to
di†use from below into the gel. Short-lived blue hexagons
appear in a light-blue background. The pattern relatively
quickly disintegrates to the homogeneous state. Colourless
spots eventually re-emerge from this uniform state after
another 50 min. If the gel is not removed from the Petri dish,
the colourless hexagons break up to form short stripes and
zigzag patterns. This spontaneous transition from hexagonal
to zigzags originates through modiÐcation of the reactants
concentrations which inevitably occurs in a closed system.
The zigzag pattern is found to coexist with the hexagonal
structure. Experimental results are shown in Fig. 3.42

The hexacyanoferrate(II)–iodate–sulÐte reaction

Lee et al.46 have observed non-Turing stationary patterns in
the hexacyanoferrate(II)ÈiodateÈsulÐte (FIS) reaction, using an
experimental technique similar to that used for the CIMA
reaction. These patterns develop through propagation of
chemical fronts from the initial perturbation. The fronts pro-
pagate towards one another but stop when they reach a criti-

Fig. 3 Transient Turing-like patterns in the PAÈMBO system (see
ref. 42 for full details). (Reprinted with kind permission from ref. 42.)

cal distance. A typical pattern is shown in Fig. 4. The patterns
have no long-range regularity, making them fundamentally
di†erent to patterns developed through a Turing bifurcation.

The reaction also exhibits “ self-replicating Ï spots.47 In a
pattern of this form a spot will grow, divide into two and the
two spots move away. As they Ðll the domain, some spots
decay. In addition to spots, growing annuli have also been
observed.47 A brief mathematical analysis of this phenomenon
has been carried out in ref. 48 for the GrayÈScott model.49h51

More recently, Haim et al.52 have observed oscillating spots
in the FIS reaction. This behaviour is thought to arise
through the interactions of the chemical front with the reactor
boundary. Mathematical analysis of a bistable RD model
exhibiting patterning phenomena similar to that observed in
the FIS reaction supports this suggestion.

Lengyel and Epstein53 have given an account of some of the
difficulties in creating Turing patterns in experimental systems
and how new systems can be designed to create such patterns.
Recently they have examined the challenge of obtaining

Fig. 4 Time asymptotic patterns for the FIS reaction. Dark regions correspond to low hexacyanoferrate(II) concentration and light regions to
high hexacyanoferrate(II) concentration.46 (Reprinted with kind permission from ref. 46.)
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Turing patterns in a closed system at room temperature.54
Such a system would be of signiÐcance in lecture demonstra-
tions of Turing systems and complimentary to the BelousovÈ
Zhabotiinsky reaction, which is comparatively easy to
demonstrate.

Modelling spatial and spatiotemporal phenomena
Turing considered linear reaction kinetics. Although this is
unrealistic chemically, and predicts unbounded growth in
chemical concentrations, it enabled him to carry out a mathe-
matical analysis and predict the types of patterning pheno-
mena that the model could exhibit. There are two types of
patterns : spatial patterns, wherein a spatially heterogeneous
pattern emerges with a deÐned wavelength ; and spatio-
temporal patterns, in which the pattern varies periodically in
time, as well as having a deÐned spatial wavelength. Such pat-
terns emerge when the uniform steady state loses stability as a
control bifurcation parameter passes through a critical value.
At that critical value, the wavelength of the pattern and its
period (in the case of spatiotemporal patterns) can be calcu-
lated in terms of the parameters of the model. Which type of
pattern emerges depends on the parameter space being con-
sidered.

Since TuringÏs paper, several RD models have been con-
sidered with non-linear kinetic terms. These models are more
realistic in that their solutions evolve to bounded values, and
are derived essentially in three di†erent ways : (i) phenomeno-
logically, (ii) to model a hypothetical reaction and (iii) empiri-
cally. An example of (i) is the model of Geirer and
Meinhardt.55 One version of this model has the kinetics f1(u1,u2)\ k1[ k2 u1] (k3 u12/u2), f2(u1, u2) \ k4 u12 [ k5 u2 ,
where . . . , are positive constants. In this system, isk1, k5 u1the activator ; it is produced by autocatalysis and it activates
the production of which is the inhibitor, inhibiting theu2 ,
production of u1.The Schnakenberg2 model discussed above is an example of
(ii) and is based on a cubic autocatalytic process.

An example of (iii) is the Thomas model,56 in which f1(u1,whereu2)\ k1[ k2 u1[ H, f2(u1, u2) \ k3[ k4 u2[ H, H \
and . . . , are positivek5 u1u2/(k6] k7 u1] k8 u12)u2 , k1, k8parameters. This is based on a speciÐc reaction involving the

substrates oxygen and uric acid which react in the(u1) (u2),presence of the enzyme uricase.
The patterning properties of these models have been well

documented for one-dimensional domains with zero Ñux
boundary conditions in the vicinity of primary bifurcation
points. However, the behaviour of solutions far away from
bifurcation points, or under di†erent types of boundary condi-
tions, has received little attention. Until recently, the two-
dimensional pattern forming properties of these systems had
also received little attention. However, the experimental
observations reviewed in the previous section have resulted in
a great deal of analysis of these systems in two dimensions. In
some cases, standard RD systems have been examined to see if
they exhibit solutions similar to those observed experimen-
tally. For example, DuÐet and Boissonade57 have derived a
variety of two-dimensional patterns using Schnakenberg
chemical kinetics that are similar to those observed in the
CIMA reaction (Fig. 5). Their numerical simulations also
predict rhombic arrays. A theoretical study of pattern forma-
tion in the presence of symmetries has been presented by
Gunaratne et al.41 who have demonstrated the existence of
rhombic arrays and derived their stability properties. The
theoretical prediction is in good qualitative agreement with
experimental prediction of stability.

In other cases, speciÐc models have been developed for par-
ticular reactions and then solved numerically. For example,
the following empirical rate law model for the CIMA reaction
has been proposed by Lengyel and co-workers.58h60

Fig. 5 Patterns generated by the Schnakenberg model.57 (Reprinted
with kind permission from ref. 57.)

Modelling of the CIMA reaction

The model proposed by Lengyel and Epstein stresses three
processes : the reaction between malonic acid (MA) and iodine
to create iodide, the reaction between chlorine dioxide and
iodide, and the reaction between chlorite and iodide. The
model has the form:

MA] I2 ] IMA ] I~] H` r1 \
k1[MA][I2]
w1] [I2]

ClO2 ] I~] ClO2~] 12I2 r2 \ k2[ClO2][I~]

ClO2~] 4I~] 4H`] Cl~] 2I2] 2H2O

r3\ k3a[ClO2~][I~][H`]] k3b
[ClO2~][I2][I~]

w3] [I~]2
where [] denote chemical concentration and k1 , k2 , k3a , k3b ,

and are positive constants. Parameter values can bew1 w3determined experimentally.58,59
The reaction rates and are derived empirically andr1, r2 r3lead to a set of Ðve coupled di†erential equations, with Ðve

variables corresponding to the concentration [MA], [I2],[I~] and[ClO2], [ClO2~].
Numerical simulation of the above system yields oscillatory

behaviour in close agreement with that observed experimen-
tally.53,61

Numerical and theoretical analysis of the full, Ðve-variable
model with spatial (di†usive) terms is a computationally
demanding task. As a Ðrst approximation, a more manageable
two variable model has been derived60 by making the experi-
mentally realistic assumption that the concentrations of
malonic acid, chlorine dioxide and iodine are constant.

A key problem faced when obtaining experimental veriÐca-
tion of Turing structures is the required variation of di†usion

J. Chem. Soc., Faraday T rans., 1997, V ol. 93 3605



coefficients. Di†usion of the inhibitor must be larger than dif-
fusion of the activator for Turing instabilities to develop. The
reactants above, however, have similar di†usion rates.

Lengyel and Epstein60 have suggested that reactions
occurring between the iodide and the gel or starch may serve
to reduce the di†usion rate of the activator. They demonstrate
mathematically (see below) how an e†ect of this nature may
serve to increase the ratio of di†usion coefficients sufficiently
for Turing structures to develop and apply this approach to
the CIMA reaction. The model, referred to as the LengyelÈ
Epstein or “Brandeisator Ï model is

Lu1
Lt

\ k1[ u [
4u1u2

1 ] u12
] +2u1

Lu2
Lt

\ k2
C
k3
A
u1[

u1u2
1 ] u12

B
] c+2u2

D

where are the concentrations of iodide and chlorite,u1, u2respectively, and and c are positive constants.k1, k2 , k3Numerical simulations of the above model under realistic
parameter values yield di†usion-driven stationary patterns
with a wavelength calculated at ca. 0.15 mm. This is close to
the experimental wavelength of 0.2 mm. Numerical simula-
tions of the above model demonstrate Turing structures qual-
itatively similar to the structures observed in the experimental
system.62

The e†ect of starch and/or the gel has been conÐrmed in
several experiments. For example, in experiments where no
reaction occurs between gel and iodine the presence of starch
is essential for the development of structures. Details of the
various reactions can be found in ref. 63È65.

At a low starch concentration the reaction demonstrates
travelling wave trains as opposed to Turing structures. This
suggests that the system has been shifted to the oscillatory
state. Indeed, this is as we should expect, as in the absence of
spatial di†usion the model predicts oscillatory behaviour. The
e†ect of the starch is to shift the reaction from oscillatory
behaviour to Turing structures. This idea has enabled investi-
gators to examine the transition from oscillatory to Turing
structures.66

ModiÐcation of the di†usion ratio

As mentioned above, a key problem in the veriÐcation of
Turing structures is the required variation of di†usion coeffi-
cients. For a general reaction di†usion system, the ratio may
be changed as follows :67 consider a standard two-species reac-
tion di†usion system of the form

Lu
Lt

\ f (u, v)] D
u
+2u,

Lv
Lt

\ g(u, v) ] D
v
+2v.

We make the additional assumption that the activator is
involved in a reaction of the form:

U ] S ½ C

Assuming that both S and C are immobile, the RD system is
now modiÐed to :

Lu
Lt

\ f (u, v) [ r1us ] r2 c] D
u
+2u

Lv
Lt

\ g(u, v) ] D
v
+2v

Lc
Lt

\ r1us [ r2 c

where s and c are the concentrations of S and C, respectively,
and is the forward (reverse) rate of reaction in the newr1 (r2)reaction. If and are large, then using singular pertur-r1 r2bation theory, c can be approximated in terms of u by c4 ru,
where and we have assumed that the concentra-r \ s0 r1/r2tion of S remains close to its initial value, s0 .

On addition of the Ðrst and third equations above, we
obtain the following equation for the activator :

(1 ] r)
Lu
Lt

\ f (u, v) ] D
u
+2u

Thus when the di†usion of the activator is greatlyr A 1
reduced.

This demonstrates how the formation of an immobile
complex can reduce the e†ective di†usion rate of the activator
species. It was this type of approach that was Ðrst used by
Lengyel and Epstein53,60 to explain how Turing structures
develop in the CIMA reaction. In this case, starch forms a
stable complex with triiodide ions via the reaction

S ] I~] I2 ½ SI3~ K \
[SI3~]

[S][I2][I~]

and the high molecular weight of the complex reduces the rate
of di†usion.

VeriÐcation of the wavelength rule in Turing systems

A characteristic of Turing patterns is the intrinsic relationship
between the average di†usion coefficient of the reactants and
the wavelength of the pattern. This characteristic di†erentiates
Turing patterns from other patterning phenomena. Turing
demonstrated that near the bifurcation from a uniform steady
state to Turing patterns, the wavelength of the pattern is pre-
dicted to be (2nT D)1@2, where and areD\ (D1D2)1@2, D1, D2the di†usion coefficients. T is the period of the limit cycle
when the system is at the onset of Hopf bifurcations
(temporally varying pattern).

Using two types of gel, and varying the concentrations of
the gels, it is possible to test experimentally if TuringÏs rule is
obeyed for the CIMA reaction.68 With the above variations,
pattern wavelengths can be measured when D is varied over a
factor of three. The corresponding plot of average di†usion
coefficient against the experimental wavelength conÐrms
TuringÏs prediction. Experimental measurement of the period
of limit cycles at the onset of Hopf bifurcations is also in good
agreement with the theoretical predictions.

Other models
Pearson69 has performed numerical simulations on the model
of Gray and Scott,49h51 a variation on the Selkov model of
glycolysis,70 which has the form f1(u1, u2) \ u1[ u1u22] k1(1where and[ u1), f2(u1, u2) \ u2 ] u1u22 [ (k1 ] k2)u2 k1 k2are constants. Two-dimensional simulations reveal a variety of
time-dependent and time-independent phenomena for various
parameter values. The “ lamallae Ï-type patterns observed in ref.
46 and shown in Fig. 4 are found for some regions of the
parameter space. The simulations also predicted the self-
replicating spots (see Plate 2) later found experimentally in ref.
46.

A four species presentation of the FIS reaction has been
developed from an earlier model that considered ten
species.71,72 Lee and Swinney73 have performed numerical
simulations on the reduced model and compared results with
experimental data. Numerical simulations show one-
dimensional phenomena that compare well with many of the
experimental results concerned, including the lamallae and
self-replication process.
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Plate 2 Time evolution of self-replicating spots generated by the
numerical simulations in ref. 69. (Reprinted with kind permission from
ref. 69.)

Comparison of experimental results and theoretical
predictions
In Table 1 we present a comparison of Turing-type patterns
observed in experiments with those observed in numerical
simulations. The numerical simulations are not necessarily
models of the speciÐc reaction mentioned. This table is by no
means exhaustive, but serves to provide a guide to some of the
recent research in the area. (For example, it is known that
many theoretical models can exhibit stripes, or spots or hex-
agonal structures. Here we list only a few examples.)

In the table we have used the following abbreviations :
PBC\ periodic boundary conditions ; 0FBC\ zero Ñux
boundary conditions, IC \ initial conditions and
RIC \ random initial conditions.

Some open questions in chemical applications
The theoretical study of spatial patterning in real chemical
systems requires a highly reduced model of the full system.
One example is the two-species model of the CIMA reaction
developed by Lengyel and Epstein. While capturing basic ele-
ments of pattern formation, such models are unlikely to
capture full features of the experimental system. Standard
linear analysis of even a three-species RD model reveals a far
greater array of patterning phenomena than the two-species
model.76 Exploration of a more detailed RD model of the
CIMA reaction may therefore reveal behaviour not previously
reported in the reaction. Examples include the TuringÈHopf
(or spatialÈHopf) bifurcation in which the resulting spatial
patterns oscillate in both space and time, the interaction of
TuringÈHopf and Turing-type patterns, and the interaction of
two Turing-type patterns. The Ðve-species model of the CIMA
reaction may demonstrate phenomena of this nature and, sub-
sequently, experimental study would be of great interest.

Some of the phenomena obtained experimentally have yet
to be found in numerical simulations. An example is the
black-eye patterns reported in the CIMA reaction. Although
symmetry arguments have been used to describe these pat-
terns theoretically, no numerical simulations have reported
this feature as of date. Numerical simulations of these patterns
would provide valuable information on the extent of
occurrence.

The rhombic arrays have only been numerical simulated
with other chemical kinetics, for example, Schnakenberg.2
Simulation of rhomboids with the LengyelÈEpstein model of
the CIMA reaction may provide deeper understanding on
how one can generate such patterns experimentally. It would
also be of interest to examine whether such patterns can be
formed “naturally Ï rather than by imposing speciÐc initial con-

Table 1 Comparison of experimental systems with computational models

pattern experimental systems computational models

hexagon (H
p
) CIMA reaction37,41 Brandeisator model

disc reactor ] PBC] RIC62
PAÈMBO system42
Petri dish

hexagon (H0) PAÈMBO system42 Schnakenberg model74
stripes gel removed from the Petri dish ] PBC] RIC

CIMA reaction37,41 Brandeisator model
disc reactor ] PBC] RIC62
PAÈMBO system42
Petri dish

rhombics CIMA reaction41 Schnakenberg model74
disc reactor ] PBC
(1)] discontinuous change ] IC: vertical stripes with
of the control parameter oblique stripes added
(2)] imposed rhombic pattern
as initial perturbation

black-eyes CIMA reaction41 none
disc reactor

zigzags PAÈMBO system42 Schnakenberg model74
Petri dish ] PBC

] IC: vertical stripes with
oblique stripes added

concentric ring none Oregonator model75
] 0FBC
] perturbation at centre

mixed Hn ] stripe CIMA reaction37 Schnakenberg model57
disc reactor transient pattern

mixed H0] stripe none Schnakenberg model57
transient pattern
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ditions. The demonstration of rhombic arrays with the Sch-
nakenberg kinetics indicates that they may appear in a wide
variety of chemical reactions that have the ability to develop
Turing structures.

The role of boundary and initial conditions has received
scant attention to date. Patterns can be highly inÑuenced by
the e†ect of di†erent boundary conditions, especially when the
length of the domain is of the order of a few wavelengths.
Understanding how one can impose speciÐc boundary condi-
tions in experiments may provide greater understanding on
the role of boundary conditions in determining pattern struc-
ture.

Biological pattern formation

Broadly speaking, there are two main models for spatial
pattern formation in biology : (i) chemical pre-pattern models ;
and (ii) cell movement models. In (i), it is hypothesized that
cells respond to a chemical pre-pattern and di†erentiate
according to the concentration of chemical that they experi-
ence. The chemical pre-pattern may be set up by a simple
source-sink mechanism,77 or by the more complicated RD
mechanism. Although the pattern forming process in the
former is simpler, the interpretation mechanism required by
cells would be more complex than in the latter.78 In (ii), it is
assumed that owing to mechanical forces and chemical cues,
cells form a spatial pattern and cells in high density aggregate
then di†erentiate.79h85

Both the above models, therefore, are based on fundamen-
tally di†erent biological assumptions. However, RD and
mechanochemical models share many common features math-
ematically. Thus far, mechanochemical models have only been
investigated in detail in one-dimension near primary bifur-
cation points and have been shown to exhibit patterns similar
to those of the Turing models. Some limited two-dimensional
analysis again reveals patterns similar to those observed in
Turing models. More extensive investigation of the patterning
properties of these models is required in order to determine if
they can exhibit fundamentally di†erent types of structures.
Such predictions could then be used to di†erentiate experi-
mentally between the two mechanisms.

Which mechanism operates is an area of huge controversy.
In recent years certain candidates have been put forward as
morphogens, most notably, retinoic acid,86 but its role in
morphogenesis is still unclear. There are many examples
where chemical patterns or cell aggregations are observed but
it is still a question of great debate as to whether these are the
cause of morphogenesis, or its e†ect. A detailed comparison
and critical review of theoretical models for, and experimental
results on, the skeletal pattern in the developing chick limb is
given in ref. 87.

We concentrate, in this article, on Turing models for bio-
logical pattern formation. These models have been applied to
diverse patterning phenomena too vast to be listed here, so we
focus on only a few applications for which recent biological
evidence suggests that the Turing model needs to be radically
modiÐed. One of the most widely studied applications has
been to the patterning of body segments in the fruit Ñy Dro-
sophila.5,88h93 Later numerical studies94 showed that the pat-
terns produced by the model system were crucially sensitive to
the geometry of the domainÈslight perturbations in the shape
of the domain resulted in a completely di†erent pattern. This,
of course, is a major drawback for the model application.
More recently, detailed experimental work on Drosophila has
shown that the pattern forming process is not, in fact, via reac-
tion di†usion, but due to a cascade of gene switching, where
certain gene proteins are expressed and, in turn, inÑuence sub-
sequent gene expression patterns. Therefore, although RD
theory provides a very elegant mechanism for segmentation,

nature appears to have chosen a much less elegant way of
doing it !

The formation of skeletal pattern in the limb has been the
focus of a great deal of experimental and theoretical research.
Recently, it has been shown that a number of Hox genes are
switched on in a precise spatiotemporal manner in the
developing chick limb. Although these are exciting advances,
they still beg the question of how this patterning of activity is
initiated. RD theory, as a model for the generation of such
robust processes as digit formation, has been heavily criticised.
For example, Bard and Lauder,95 showed that the qualitative
form of the model solutions could be greatly inÑuenced by
minor perturbations in the system. In such an application, an
essential requirement for a model is that it must be able to
produce a limited number of patterns in a very robust way. In
this respect, RD theory is too sophisticated because it exhibits
a vast variety of patterns, many of which are never observed.
Hence, one is forced to turn the question of pattern formation
on its head and ask, how can one not generate so much
pattern? We have addressed this issue by investigating the
role of boundary conditions. The key point here is that certain
types of boundary conditions preclude many patterns from
forming while extending the domains of stability of the
remaining patterns. This has been shown for an RD system in
one dimension.96 Fig. 6 shows a comparison of the patterns
formed under zero Ñux boundary conditions with conditions
in which the boundary is a sink for one of the morphogens.
The model now selects only patterns that are internal to the
domain, and exhibits a patterning sequence that is consistent
with that observed in the limb. The insight gained here then, is
that the boundary plays an active role in the patterning
mechanism, rather than simply being a passive impermeable
membrane.

In 1990, Wolpert and Hornbruch97 performed an experi-
ment in an attempt to prove that limb development in chickÏs
could not possibly arise as a consequence of an RD or
mechanochemical mechanism. They removed the posterior
half of a host limb bud and replaced it by the anterior half of
a donor limb bud so that the resultant double-anterior recom-
binant limb bud was the same size as a normal limb bud. This
experiment was performed at a sufficiently early stage in
development that no pattern was visible. The limbs developed
two humeri instead of one. This contradicted both models,
due to the fact that the model solutions are size-dependent,
that is, if the domain size is unaltered, the patterns produced
are unaltered.

In an attempt to rescue the theory, we assumed that the
di†usion coefficient of the morphogens varied across the limb.
The idea here was that, as di†usion and length scale are inti-
mately linked, a varying di†usion coefficient essentially sets up
an internal scaling, where the length scale in one part of the

Fig. 6 Patterns produced by a reaction-di†usion system for di†erent
types of boundary conditions. In (a), the boundary conditions are zero
Ñux for each chemical and the model predicts patterns at the bound-
ary. In (b), one chemical is Ðxed to zero concentration at the bound-
ary. In this case, the patterns form internal to the domain (see ref. 96
for details). (Reprinted with kind permission from ref. 96.)
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domain is so small that it cannot support Turing structures.
Therefore, although combining two anterior halves results in a
limb bud of normal size, it might actually consist of doubling
the patterning sub-domain and hence in more complicated
patterns. The prediction of the modelling was that there must
be a variation of di†usion across the anteriorÈposterior axis of
the chick limb.98,99 This actually turned out to be a
“postdictionÏ as experimental results show that gap junction
permeability varies across the anteriorÈposterior axis of the
chick limb.100,101

One of the most colourful applications of RD is in mamma-
lian coat markings.102,103 In these applications, the qualit-
ative features of the patterns do not change as the animal
grows. Recently, Kondo and Asai104 considered the time evol-
ution of skin patterns on the angelÐsh. On many species of
this Ðsh the juvenile exhibits vertical striped patterns. As it
grows, the stripes move apart, and other stripes emerge
between existing stripes to restore the original spatial wave-
length of the patterning process. They showed that, at least on
a one-dimensional domain, an RD model could exhibit pat-
terns consistent with these observations. However, a numeri-
cal study of these equations on a two-dimensional domain
reveals that these vertical stripes lose stability as the domain
grows.105,106 Kondo and Asai,107 argue that there is an addi-
tional cue that selects vertical stripes rather than horizontal
stripes or spots. However, the waters are muddied here by the
observation that in most cases the adult does exhibit horizon-
tal stripes or spots ! This warrants more detailed investigation.

A crucial property of the patterns on the juvenile angelÐsh
that was not addressed in ref. 104 and 105 is that the stripes
that emerge between the existing stripes are thinner than the
existing ones. This cannot be explained by a Turing mecha-
nism. Recently, we have been considering a hybrid RDÈcell-
movement model wherein we assume that an RD mechanism
sets up a pre-pattern in morphogen concentration, to which
cells respond by moving chemotactically, that is, in response
to chemical gradients (this is a well known phenomenon). Pre-
liminary investigations on this model show that it can gener-
ate patterns with alternating thick and thin stripes.106

The Ðnal application we consider here also involves domain
growth. It concerns the development of tooth primordia in the
jaw of the alligator, Alligator mississippiensis. This is a
complex process which has been the source of detailed experi-
mental investigation,108h110 so there is ample experimental
data on which to base a realistic mathematical model. As the
jaw has leftÈright symmetry, one need consider only one side
of the jaw. To a very good approximation, the jaw can be
considered as one-dimensional. Teeth arise as the result of
tooth primordia, which are clumps of cells in the jaw mesen-
chyme that mark where future teeth will form. The Ðrst seven
tooth primordia form along the posteriorÈanterior axis in the
sequence 7È3È6È2È5È1È4. That is, the Ðrst primordium forms
near the anterior end of the jaw, the second forms posterior to
the Ðrst and the third forms posterior to the second. The
fourth primordium, however, forms anterior to the Ðrst, and 5,
6 and 7 form in a posterior sequence. This complex sequence
cannot be generated by the standard Turing model on a
growing domain.

We have considered a modiÐed Turing system which
incorporates the biological observation that when a tooth pri-
mordium forms, it inhibits, for a certain length of time, neigh-
bouring primordium formation. We consider a third chemical,
a control chemical, which we assume is secreted by primordia
and a†ects the morphogen kinetics. Numerical simulations
show that this model exhibits spatiotemporal morphogen
dynamics consistent with the pattern of primordia observed
experimentally.111 To tie this in with the cell aggregations
observed, we make the further hypothesis that cells respond to
the morphogen pre-pattern by moving to areas of high mor-
phogen concentration.

Some open questions in biological applications
Most theoretical work on RD theory has focused on solving
the system on a Ðxed one-dimensional domain with zero-Ñux
boundary conditions and constant parameters. This is the
easy case but only scratches the surface of the study of these
systems. In a biological context, parameters themselves will
vary over space and time, boundary conditions will be more
complicated than zero Ñux and two crucial di†erences to the
case of the chemical systems discussed above are that the
domains do not have simple geometry and that they grow.
Although RD theory has been around as a model for morpho-
genesis for over 40 years, there are precious few cases in which
the model has been shown to exhibit patterns consistent with
those observed in nature for the case of realistic geometry and
domain growth in two and three dimensions. This is remark-
able when one considers that the Ðrst necessary step for any
model is that it must be shown to exhibit the phenomena it
purports to model. Of course, part of the problem has been
the lack of computer power necessary to carry out a thorough
numerical investigation of the model.

It has been shown recently that the form of the nonlinearity
in the chemical kinetics determines whether the model exhibits
spots or stripes.112h114 Other key questions to address are the
e†ects of di†erent types of non-linear kinetics, boundary con-
ditions, domain growth, and domain geometry, on the selec-
tion and stabilization of patterns.

On the biological side, the crucial question still concerns the
unequivocal identiÐcation of morphogens. We still seem a
long way from that goal. It is also necessary for the theory,
where possible, to make experimentally testable predictions.

Conclusion
The recent discovery of spatial pattern formation in chemistry,
some 40 years after TuringÏs prediction, has revitalised the
Ðeld and led to a great deal of interest in the properties of
Turing models. Biology is still lagging behind, which is hardly
surprising as it is on yet another level of complexity. However,
the application of Turing models to biological pattern forma-
tion, and the interaction between model predictions and
experimental observations, have led to model modiÐcations
that, in turn, suggest new insights to the underlying biological
mechanisms at work. With the enormous advances in biotech-
nology and computer power, the Ðeld seems poised on a
threshold of new discoveries.

acknowledges receipt of an Engineering and PhysicalK.J.P.
Sciences Research Committee (EPSRC) research studentship.
We thank an anonymous referee for a number of very helpful
comments including the analogy on page 1. We also thank
Len Fisher for helpful suggestions.

References

1 A. M. Turing, Philos. T rans. R. Soc. L ondon, Sect. B, 1952, 327,
37.

2 J. Schnakenberg, J. T heor. Biol., 1979, 81, 389.
3 P. Fife, Mathematical Aspects of Reacting and Di†using Systems,

L ecture Notes in Biomathematics, Springer-Verlag, Berlin, Hei-
delberg, New York, 1979, vol. 28.

4 J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin,
Heidelberg, New York, 1993.

5 H. Meinhardt, Models of Biological Pattern Formation, Aca-
demic Press, London, 1982.

6 L. Edelstein-Keshet, Mathematical Models in Biology, Random
House, New York, 1988.

7 N. F. Britton, ReactionÈDi†usion Equations and T heir Applica-
tions to Biology, Academic Press, London, 1986.

8 L. A. Segel, Modeling Dynamic Phenomena in Molecular and Cell
Biology, Cambridge University Press, 1989.

9 L. A. Segel and J. L. Jackson, J. T heor. Biol., 1972, 37, 545.
10 Y. I. Balkarei, A. V. GrigorÏYants, Y. A. Rzhanov and M. I.

Elinson, Opt. Commun., 1988, 66, 16.

J. Chem. Soc., Faraday T rans., 1997, V ol. 93 3609



11 Self-Organization, Auto-W aves and Structures Far From Equi-
librium, ed. V. I. Krinski, Springer, Berlin, 1984.

12 D. Walgraef and N. M. Ghoniem, Phys. Rev. B, 1990, 13, 8867.
13 D. B. White, J. Fluid Mech., 1988, 191, 247.
14 T. Nozakura and S. Ikeuchi, Astrophys. J., 1984, 279, 40.
15 M. Maruyama, Am. Sci., 1963, 51, 164.
16 B. P. Belousov, in Oscillations and T ravelling W aves in Chemical

Systems, ed. R. J. Field and M. Burger, Wiley, New York, 1985,
p. 605.

17 Oscillations and T ravelling W aves in Chemical Systems, ed. R. J.
Field and M. Burger, Wiley, New York, 1985.

18 B. R. Johnson and S. K. Scott, Chem. Soc. Rev., 1996, 265.
19 R. J. Field, E. Ko� ro� s and R. M. Noyes, J. Am. Chem. Soc., 1972,

94, 8649.
20 R. J. Field and R. M. Noyes, J. Chem. Phys., 1974, 60, 1877.
21 J. J. Tyson, T he BelousovÈZhabotinskii Reaction, L ecture Notes

in Biomathematics, Springer-Verlag, Berlin, Heidelberg, New
York, 1976, vol. 10.

22 J. J. Tyson, in Oscillations and T ravelling W aves in Chemical
Systems, ed. R. J. Field and M. Burger, Wiley, New York, 1985,
p. 92.

23 S. K. Scott, Chemical Chaos, Oxford University Press, 1991.
24 A. N. Zaikin and A. M. Zhabotinskii, Nature (L ondon), 1970,

225, 535.
25 A. T. Winfree, Science, 1972, 175, 634.
26 A. T. Winfree, Science, 1973, 181, 937.
27 A. T. Winfree, SIAMÈAMS Proc., 1974, 8, 13.
28 A. T. Winfree, T heor. Chem., 1978, 4, 1.
29 S. C. Mu� ller, T. Plesser and B. Hess, Science, 1985, 230, 661.
30 B. J. Welsh, J. Gomatam and A. E. Burgess, Nature (L ondon),

1983, 304, 611.
31 A. B. Rovinskii, J. Chem. Phys., 1987, 91, 4606.
32 G. Nicolis and I. Progogine, Self-Organization in Nonequilibrium

Systems, Wiley, New York, 1977.
33 J. Pearson and W. Horsthemcke, J. Chem. Phys., 1989, 90, 1588.
34 V. Castets, E. Dulos, J. Boissonade and P. De Kepper, Phys.

Rev. L ett., 1990, 64, 2953.
35 P. De Kepper, V. Castets, E. Dulos and J. Boissonade. Physica

D, 1991, 49, 161.
36 P. De Kepper, I. R. Epstein, K. Kustin and M. Orba� n, J. Phys.

Chem., 1982, 86, 170.
37 Q. Ouyang and H. L. Swinney, Nature (L ondon), 1991, 352, 610.
38 Q. Ouyang and H. L. Swinney, Chaos, 1991, 1, 411.
39 D. Walgraef, G. Dewel and P. Borckmans, Adv. Chem. Phys.,

1982, 49, 311.
40 Q. Ouyang, Z. Noszticius and H. L. Swinney, J. Phys. Chem.,

1992, 96, 6773.
41 G. H. Gunaratne, Q. Ouyang and H. L. Swinney, Phys. Rev. E,

1994, 50, 2802.
42 M. Watzl and A. F. Mu� nster, Chem. Phys. L ett., 1995, 242, 273.
43 M. Burger and R. J. Field, Nature (L ondon), 1984, 307, 720.
44 P. Resch, R. J. Field and F. W. Schneider, J. Phys. Chem., 1989,

93, 2783.
45 Y. X. Zhang and R. J. Field, J. Phys. Chem., 1991, 95, 723.
46 K. Lee, W. D. McCormick, Q. Ouyang and H. L. Swinney,

Science, 1993, 261, 192.
47 K. Lee, W. D. McCormick, J. E. Pearson and H. L. Swinney,

Nature (L ondon), 1994.
48 W. N. Reynolds, J. E. Pearson and S. Ponce-Dawson, Phys. Rev.

L ett., 1994, 72, 2797.
49 P. Gray and S. K. Scott, Chem. Eng. Sci., 1983, 38, 29.
50 P. Gray and S. K. Scott, Chem. Eng. Sci., 1984, 39, 1087.
51 P. Gray and S. K. Scott, J. Phys. Chem., 1985, 89, 22.
52 D. Haim, G. Li, Q. Ouyang, W. D. McCormick, H. L. Swinney,

A. Hagberg and E. Meron, Phys. Rev. L ett., 1996, 77, 190.
53 I. Lengyel and I. R. Epstein, Proc. Natl. Acad. Sci. USA, 1992,

89, 3977.
54 I. R. Epstein and I. Lengyel, Physica D, 1995, 84, 1.
55 A. Gierer and H. Meinhardt, Kybernetik, 1972, 12, 30.
56 D. Thomas, in Analysis and Control of Immobilized Enzyme

Systems, ed. D. Thomas and J.-P. Kernevez, Springer, Berlin,
Heidelberg, New York, 1975, p. 115.

57 V. DuÐet and J. Boissonade, Physica A, 1992, 188, 158.
58 I. Lengyel, G. Rabai and I. R. Epstein, J. Am. Chem. Soc., 1990,

112, 4606.
59 I. Lengyel, G. Rabai and I. R. Epstein, J. Am. Chem. Soc., 1990,

112, 9104.
60 I. Lengyel and I. R. Epstein, Science, 1991, 251, 650.
61 I. Lengyel and I. R. Epstein, Acc. Chem. Res., 1993, 26, 235.
62 O. Jensen, E. Mesekilded, P. Borckmans and G. Dewel, Phys.

Scr., 1996, 53, 243.

63 K. Lee, W. D. McCormick, H. L. Swinney and Z. J. Noszticius,
J. Chem. Phys., 1992, 95, 4048.

64 K. Agladze, E. Dulos and P. De Kepper, J. Phys. Chem., 1992,
96, 2400.

65 Z. Noszticius, Q. Ouyang, W. D. McCormick and H. L.
Swinney, J. Phys. Chem., 1992, 96, 6302.

66 J. J. Perraud, A. De Wit, E. Dulos, P. De Kepper, G. Dewel and
P. Borckmans, Phys. Rev. L ett., 1993, 71, 1272.

67 R. Kapral, Physica D, 1995, 86, 149.
68 Q. Ouyang, R. Li, G. Li and H. L. Swinney, J. Chem. Phys.,

1995, 102, 2551.
69 J. E. Pearson, Science, 1993, 261, 189.
70 E. E. Selkov, Eur. J. Biochem., 1968, 4, 79.
71 V. Gaspar and K. Showalter, J. Am. Chem. Soc., 1987, 109, 4876.
72 V. Gaspar and K. Showalter, J. Phys. Chem., 1990, 94, 4973.
73 K. Lee and H. L. Swinney, Phys. Rev. E, 1995, 51, 1899.
74 V. DuÐet and J. Boissonade, J. Chem. Phys., 1992, 96, 664.
75 J. Guslander and R. J. Field, J. Phys. Chem., 1992, 96, 10575.
76 H. G. Othmer and L. E. Scriven, Ind. Eng. Chem. Fundam., 1969,

8, 302.
77 L. Wolpert, J. T heor. Biol., 1969, 25, 1.
78 B. N. Nagorcka, J. T heor. Biol., 1989, 137, 127.
79 G. F. Oster, J. D. Murray and A. K. Harris, J. Embryol. Exp.

Morphol., 1983, 78, 83.
80 J. D. Murray and G. F. Oster, IMA J. Math. Appl. Med. Biol.,

1984, 1, 51.
81 J. D. Murray and G. F. Oster, J. Math. Biol., 1984, 19, 265.
82 G. F. Oster, J. D. Murray and P. K. Maini, J. Embryol. Exp.

Morphol., 1985, 89, 93.
83 P. K. Maini, M. R. Myerscough, J. D. Murray, K. H. Winters,

Bull. Math. Biol., 1991, 53, 701.
84 J. D. Murray, D. C. Deeming and M. W. J. Ferguson, Proc. R.

Soc. L ondon, Ser. B, 1990, 239, 1990.
85 J. D. Murray and M. R. Myerscough, J. T heor. Biol., 1991, 149,

339.
86 C. Thaller and G. Eichele, Nature (L ondon), 1987, 327, 625.
87 P. K. Maini and M. Solursh, Int. Rev. Cytol., 1991, 129, 91.
88 S. A. Kau†man, R. Shymko and K. Trabert, Science, 1978, 199,

259.
89 S. A. Kau†man, Philos. T rans. R. Soc. L ondon B, 1981, 295, 567.
90 T. C. Lacalli, D. A. Wilkinson and L. G. Harrison, Development,

1988, 103, 105.
91 T. C. Lacalli, J. T heor. Biol., 1990, 144, 171.
92 H. Meinhardt, J. Cell Sci., 1977, 23, 117.
93 H. Meinhardt, J. Cell Sci. Suppl., 1986, 4, 357.
94 B. Bunow, J.-P. Kernevez, G. Joly and D. Thomas, J. T heor.

Biol., 1980, 84, 629.
95 J. Bard and I. Lauder, J. T heor. Biol., 1974, 45, 501.
96 R. Dillon, P. K. Maini and H. G. Othmer, J. Math. Biol., 1994,

32, 345.
97 L. Wolpert and A. Hornbruch, Development, 1990, 109, 961.
98 P. K. Maini, D. L. Benson and J. A. Sherratt, IMA J. Math.

Appl. Med. Biol., 1992, 9, 197.
99 P. K. Maini, J. Biol. Syst., 1995, 3, 987.

100 F. Bru� mmer, G. Zempel, P. Buhle, J.-C. Stein and D. F. Hulser,
Exp. Cell. Res., 1991, 196, 158.

101 C. N. D. Coelho and R. A. Kosher, Dev. Biol., 1991, 148, 529.
102 J. D. Murray, J. T heor. Biol., 1981, 88, 161.
103 J. D. Murray, Sci. Am., 1988, 258, 80.
104 S. Kondo and R. Asai, Nature (L ondon), 1995, 376, 765.
105 T. Ho� fer and P. K. Maini, Nature (L ondon), 1996, 380, 678.
106 K. Painter, P. K. Maini and H. G. Othmer, in preparation.
107 S. Kondo and R. Asai, Nature (L ondon), 1996, 380, 678.
108 B. Westergaard and M. W. J. Ferguson, J. Zool. L ondon, 1986,

210, 575.
109 B. Westergaard and M. W. J. Ferguson, J. Zool. L ondon, 1987,

212, 191.
110 B. Westergaard and M. W. J. Ferguson, Am. J. Anatomy, 1990,

187, 393.
111 P. M. Kulesa, G. C. Cruywagen, S. R. Lubkin, P. K. Maini, J.

Sneyd, M. W. J. Ferguson and J. D. Murray, J. T heor. Biol.,
1996, 180, 287.

112 B. Ermentrout, Proc. R. Soc. L ondon, Ser. A, 1991, 434, 413.
113 B. N. Nagorcka and J. R. Mooney, IMA J. Math. Appl. Med.

Biol., 1992, 9, 249.
114 M. J. Lyons and L. G. Harrison, Dev. Dyn., 1992, 195, 201.

Paper 7/02602A; Received 16th April, 1997

3610 J. Chem. Soc., Faraday T rans., 1997, V ol. 93


