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We present a model for the formation of parallel rows of scale cells in the devel-
oping adult wing of moths and butterflies. Precursors of scale cells differentiate
throughout each epithelial monolayer and migrate into rows that are roughly par-
allel to the body axis. Grafting experiments have revealed what appears to be a
gradient of adhesivity along the wing. What is more, cell adhesivity character is
maintained after grafting. Thus we suggest that it is a cell’s location prior to migra-
tion that determines its interactions during migration. We use nonlinear bifurcation
analysis to show that differential origin-dependent cell adhesion can result in the
stabilization of rows over spots.
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1. INTRODUCTION

Lepidopteran wings are covered with a large number of highly ordered scale
cells. The arrangement of scale cells has a number of remarkable characteristics.
Scale cells form nearly parallel rows along the anteroposterior axis of the wing
(i.e., the body axis), and these rows are arranged at regular spatial intervals along
the proximodistal axis. These rows are continuous across the veins and also around
the two surface monolayers (i.e., the dorsal and ventral sides) of the wing.

Immediately after pupation, the epithelial cells of the wing are not differentiated
and they are morphologically homogeneous. About 1 to 3 days after pupation (the
timing depends on the insect and the temperature at which it develops), two cell
types can be readily distinguished. The smaller cells are generalized epithelial
cells (GECs) of the wing, and the larger cells are scale precursor cells (SPCs) that
differentiate from GECs at the inception of adult development. SPCs are arranged
in space such that they are separated from each other by GECs. Within a few hours
of differentiation of the isotropically arranged SPCs, these cells become polarized
along the proximodistal axis of the wing and begin to align into rows parallel to
the anteroposterior axis of the wing. This row formation continues until a stable
spatial periodicity of rows is established (Fig.1). These parallel rows of SPCs that
are established at the beginning of adult development maintain their arrangement
throughout adult development and represent the same rows of scales that appear
on the surface of the adult wing (Nijhout, 1980; Nardi and Magee-Adams, 1986;
Yoshida, A. and K. Aoki, 1989).

The spatial arrangement of scale cells in periodic rows has traditionally not at-
tracted the attention that the study of lepidopteran color patterns has received. Re-
cently, however, progress in understanding the cellular and molecular basis of pat-
tern formation has encouraged a fresh examination of processes involved in gener-
ating biological periodicity (Held, 1993). In the next section, we summarize what
is known about the cellular and molecular processes involved in parallel row for-
mation. In Section 3, based on experimental results on the mechanisms of row
formation, we develop a mathematical model with origin-dependent adhesivity to
account for the orderly rearrangement of cells during the formation of the parallel
rows of scale cells. We investigate the solution properties of the model using a
mixture of nonlinear bifurcation analysis and numerical simulation. The biological
significance of our results is discussed in Section 4.

2. EXPERIMENTAL RESULTS ON PARALLEL ROW FORMATION

M ECHANISMS

2.1. Cell rearrangement to form parallel rows occurs in a monolayer.There
are two monolayers (upper and lower) of epithelial cells in the lepidopteran wing.
During rearrangement of epithelial cells in the wing, these two monolayers are
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Figure 1. Parallel rows of scale cells in lepidopteran wings. (a)–(c): Surface views of the
upper epithelial monolayer of the mothMandusawing at various times after retraction of
the epithelial cells from the pupal cuticle. Proximal→ distal = upper left→ lower right;
anterior→ posterior = upper right→ lower left. (a) At the time of epithelial retraction
from the pupal cuticle (2.5 days after pupation), primordial scale cells (dark, circular areas)
are distributed in an irregular pattern within the epithelial sheet. The cells have no obvious
polarity. (b) Primordial scale cells begin to align in anastomosing rows that lie parallel to
the anterior–posterior axis of the wing (3.5 days after pupation). (c) Once the alignment of
cells is completed (5 days after pupation), scale cells begin their outgrowth in a proximal to
distal direction. A stable periodicity of rows has been established [from Nardi and Magee-
Adams (1986) with permission, bar= 50µm].
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separated by an extracellular space. Cell rearrangement in the developing adult
wing has been assumed to occur within each monolayer without influence from
the other monolayer (Nardi, 1992, 1994). These findings suggest that the process
of scale row formation in the lepidopteran wing does not involve complex three-
dimensional interactions among epithelial cells, but instead involves simpler two-
dimensional interactions.

2.2. Lateral inhibition probably forms the uniform pattern of SPCs.Before
epithelial cells rearrange their spatial positions in the developing adult wing, SPCs
differentiate from GECs. SPCs are distributed in a uniform hexagonal pattern, in
which they do not come in contact with each other [see Fig.1(a)]. Similar pat-
terns have also been observed in other insects such as the grasshopper (Doe and
Goodman, 1985) and fruitfly (Campos-Ortega, 1988). The initial isotropic spac-
ing of SPCs is strongly suggestive of patterns generated by cells of the Drosophila
integument. Bristles represent the structures of the fly integument that are devel-
opmentally equivalent to the scales of lepidopteran wings. Genetic analysis of
regular bristle patterns in the integument of Drosophila has revealed most of what
we know about the process (Simpson, 1990; Heitzler and Simpson, 1991; Held,
1991; Campuzano and Modolell, 1992). Bristle patterns arise in a stepwise fash-
ion. First, a general area is specified in which all cells are competent to become
bristle precursors and then one of these several competent cells is specified to be
a bristle precursor cell. This cell then inhibits all nearby cells of the equivalence
group from realizing their bristle cell potentialities by a process referred to as lat-
eral inhibition (Doe and Goodman, 1985; Yoshida, A. and K. Aoki, 1989; Honda
et al., 1990). The inhibitory signal emanates from the bristle precursor cell. What
molecule(s) make up the inhibitory signal is still a mystery, but several loci are
known to be required for transmission of the signal. Two of these loci (Notch and
Delta) encode cell surface proteins and probably mediate lateral inhibition via cell
contacts.

2.3. Short-range interaction mediated by differential cell adhesion.Two sur-
face proteins (Faciclin II and neuroglian) have been found in the wing monolayers
of developing adult Manduca during rearrangement of epithelial cells. The expres-
sion of these proteins changes dramatically in space and time during morphogen-
esis of the wing pattern. SPCs show a different pattern of protein expression from
GECs during cell rearrangement (Nardi, 1992, 1994). Although neither fasciclin
II nor neuroglian have been assayed for their ability to participate in heterophilic
adhesive interactions, their vertebrate counterparts are known to participate in het-
erophilic interactions (Kadmonet al., 1990; Mauroet al., 1992). Heterophilic as
well as homophilic interactions among the surface proteins expressed during cell
rearrangement could provide a plethora of adhesive interactions that are instrumen-
tal in establishing the final scale patterns of lepidopteran wings.
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2.4. Origin-dependent cell adhesion.Grafting experiments within the pupal
wing monolayer have been carried out to test differences in affinity properties of
epithelial cells along the proximodistal axis of the wing. Those experiments have
revealed that the greater the distance separating host and graft cell populations
along the proximodistal axis, the more circular and constricted the interface be-
tween graft and host cells (Nardi, 1988). This result shows that affinity properties
of cells depend on their positions, or more precisely, the distance between their
original positions along the proximodistal axis of the wing.

2.5. Long-range interaction mediated by basal processes.During rearrange-
ment of epithelial cells, both SPCs and GECs extend basal processes. As the align-
ment of SPCs into rows proceeds, extension of processes from the basal surfaces
of the epithelial cells simultaneously occurs. These processes can extend for dis-
tances of several cell diameters and can establish contacts not only with adjacent
cells but with cells that are four or five cell diameters away.

This long-range interaction is mediated by basal filopodia which extend over
several cell diameters in many directions (Locke et al., 1981; Nardi and Magee-
Adams, 1986). The extension of basal processes is coincident with the surface
rearrangement of cells; as soon as the SPCs have assumed their final positions in
the wing monolayer and have begun to extend their polarized scale processes, all
cells within the monolayer retract their basal processes.

3. MODEL FOR SPCS WITH ORIGIN -DEPENDENT ADHESIVITY

Based on observations on row formation, we begin by presenting a general model
for aggregation in which cells move up gradients of adhesivity. As cells can re-
spond directly to non-adjacent neighbours, we use integrals to represent the local
average adhesivity to which a cell responds. In a first simplification we ignore
origin-dependent effects and find that spotted or striped patterns are possible, de-
pending on parameter values. This is based on a nonlinear bifurcation analysis,
confirmed by numerical simulations. However, even when the parameter values in
the model equations are such that stripes are expected it is difficult to see how such
striped patterns could evolve with the predictable orientation found on lepidopteran
wings. When we add origin-dependent adhesion to the basic model, further nonlin-
ear analysis suggests that stripes predominate in a larger region of parameter space.
More importantly, the stripes are more predictably aligned.

3.1. Integral representation. In this model we shall focus on only one cell type
(SPCs) and assume that cells interact with each other according to the distance
between their original locations (as well as the distance between their current loca-
tions).

Let n(x,a, t) denote the cell density at positionx = (x, y) at timet for the cells
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of a given adhesivitya that originate from a position that is a distancea away from
the body axis (the base of the wing). We assume that cell movement is due to two
processes; diffusion and advection (directed movement) in response to gradients of
adhesivity. Due to the evidence for long-range interactions we shall consider a cell
to respond to gradients in a spatially averaged adhesivity. As an evolution equation
for cell density in space we write

nt = D 52 n−5 · [nc], (1)

whereD is the diffusion coefficient. The advection velocity,c, is given by

c= C 5

[ ∫
n(x− y,a− s)w( y, s) ds dy1 dy2

]
, (2)

wherex = (x, y) andy = (y1, y2) are position variables, andC is a positive con-
stant. The integral represents the spatially averaged adhesivity. The degree of ad-
hesivity as a function of distance,y, and adhesivity distance (distance in adhesivity
space),s, are incorporated in the kernelw( y, s). For simplicity, we shall suppose
that this is separable (i.e., that the effects of distance in physical and adhesivity
space are independent of each other). We therefore write

w( y, s) = g( y)h(s). (3)

Suggested forms of these functions are shown in Fig.2. We assume thatg dis-
plays rotational symmetry in the two spatial dimensions, andh is symmetric in the
adhesivity difference. Notice the threshold in adhesivity marking a transition from
attraction to repulsion. Also, the spatial kernel is such that very short range attrac-
tion is weaker than middle distance attraction. This reflects the fact that scale cells
appear not to come into contact with one another during reorganization. Below, we
will analyse the model for the special case in which we assume that|y| and|s| are
both much smaller than 1. Biologically, this corresponds to the assumption that the
adhesive interaction takes place over short distances in comparision to the size of
the domain and that changes in the magnitude of adhesivity are very small.

To complete the model formulation we impose random initial conditions in cell
density and periodic, or reflective, boundary conditions.

3.2. Mathematical analysis of the model and numerical simulations.Here we
study the mathematical model proposed above for describing the mechanisms un-
derlying the spatial patterning of scale precursor cells in lepidopteran wings. Our
goal is to investigate this model mathematically and numerically to test if it gen-
erates the parallel row pattern observed in the wing. Firstly, we study a simplified
model where the origin-dependent adhesion mechanism is absent. The methods we
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Figure 2. (a) The spatial kernelg. Adjacent cells are relatively unadhesive (diffusion
dominates); for large distances adhesivity effects fall with distance between cells. (b) The
adhesivity kernelh. Cells originally from nearby points attract each other. Cells of vastly
different adhesivity repel each other.

use are weakly nonlinear analysis and numerical simulation. We compare our an-
alytical results with the numerical results. Secondly, we study the effect of origin-
dependent adhesivity on generating rows that are parallel to the body axis.

Using the assumption that|y| � 1 and|s| � 1, we can simplify equation (1) by
Taylor expanding equation (2):

nt = D 52 n− C 5 ·[n5 (n+ γ 52 n+ βnaa] + O(s4
+ |y|4) (4)

where

β =
1

2

∫
s2h(s) ds, (5)

γ =
1

2

∫
y2

1g( y)dy1 dy2. (6)

The parametersβ andγ are related directly to the effects of cell adhesion and
distance, respectively.

In this equation, the first term on the right-hand side represents random cell mo-
tion, while the second term represents cell motion in response to adhesivity. This
is a generalization of the haptotaxis term introduced by Murray and coworkers [see
Murray (1993) for full details] and incorporates cell response to non-local neigh-
bours in physical and adhesivity space. This procedure reduces the integro-partial
differential equation (1) to a partial differential equation and we carry out all our
analyses on the latter.
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3.2.1. Origin-independent cell adhesion..We first consider a simple version
of equation (4) in which we neglect theO(s4, |y|4) terms, and assume thatβ � γ ,
that is,

nt = D 52 n− C 5 ·[n5 (n+ γ 52 n)]. (7)

Hence, this version of the model ignores the effect of the origin-dependent cell
adhesion mechanism.

Linear analysis.By nondimensionalizingn appropriately, we can, without loss
of generality, assume that the steady state cell density isn0 = 1. For linear analysis,
we consider small perturbations from the uniform steady state of the form

n = 1+ n′ (8)

where|n′| � 1. Substituting equation (8) into (7) we obtain the linearized equation

n′t = D 52 n′ − C 52 n′ − Cγ 54 n′. (9)

We look for solutions to equation (9) of the form

n′ =
M∑

l=1

[al (t)e
i kl ·x + āl (t)e

−i kl ·x] (10)

where the bar denotes complex conjugate. Since we are interested in the ini-
tial growth of spatial pattern in cell density, we consider spatial modes,kl(l =
1,2, . . . ,M), that satisfy the boundary conditions and whose corresponding am-
plitude functions are exponentially growing functions (|al (t)| = eσl t , σl ≥ 0) in the
short time.

We substitute (10) into (9) to obtain the dispersion relation

σ = −(D − C)k2
l − Cγ k4

l (11)

wherekl = |kl |. This is illustrated in Fig.3.
Thus the exponential modeskl in this case must satisfy 0< kl ≤ kc =

√
C−D
Cγ .

Therefore, to generate an initial growth of spatial pattern, the diffusion coefficient
D must be less thanC, and there must exist at least one spatial modekl , l =
1,2, . . . ,M , that satisfies the boundary conditions and the condition 0< kl ≤

kc =

√
C−D
Cγ . This shows, as we would intuitively expect, that diffusion is the

stabilizing influence, while advection is the aggregating factor.
To determine the ultimate spatial patterns generated by the full nonlinear model

(7), we now investigate the behavior of the amplitude functions in large time
through a weakly nonlinear analysis.
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Figure 3. The dispersion relation(σ = σ(k2)) for the linearized version of the origin-
independent model (7). See text for details.
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Figure 4. The effect of perturbing the parametersD andC around the critical valuesDc
andCc, where the dashed line is the perturbed dispersion relationship curve, and the solid
line is (σ = σ(k2)) at critical values.

Weakly nonlinear analysis.Here we use a singular perturbation technique to
study the weakly nonlinear behavior of the amplitude functions at the bifurcation

pointkc =

√
Cc−Dc

Ccγ
, whereDc andCc are the critical values at bifurcation. Assume

that kcl(|kcl| = kc, l = 1,2, . . . ,M) are spatial vectors that satisfy the bound-
ary conditions, and that there is no other spatial vectork, |k| < kc, satisfying the
boundary conditions. We perturb the model coefficientsD andC around the criti-
cal valuesDc andCc to obtain the dispersion relation as shown in Fig.4, where

σ(kc) = ε
2
� 1. (12)
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As usual [see, for example,Fife (1979)], we consider the slow time-scale

t =
T

ε2
(13)

and expandn with respect toε:

n = 1+
∑
j=1

ε j n j . (14)

Substituting (13) and (14) into (7) and equating powers ofε, we derive the fol-
lowing hierarchy of linear equations from which we can determinen1:
O(ε):

L1n1 = 0, (15)

O(ε2):

L1n2 = Cc 5 ·[n15 (n1+ γ 5
2 n1)], (16)

O(ε3):

L1n3 = n1T + Cc 5 ·[n15 (n2+ γ 5
2 n2)] + Cc 5 ·[n25 (n1+ γ 5

2 n1)]

+(C′ − D′)52 n1+ C′γ 54 n1 (17)

where

L1 = (Dc − Cc)5
2
−Ccγ 5

4 . (18)

By solving equation (15), we obtainn1 in the form of

n1 =

M∑
l=1

[al (T)e
i kcl·x + āl (T)e

−i kcl·x] (19)

whereal (T) are amplitude functions,kcl are spatial vectors that satisfy the bound-
ary conditions and|kcl| = kc. By solving (16) and applying the Fredholm alterna-
tive to (17), we obtain the Landau equations that determine the amplitude functions,
al (T), in (19):

d Al

dT
= Xll A2

l +
∑
j 6=l

Xl j Al A j + Y Aj (20)
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where

Al = |al |
2 l = 1,2, . . . ,M (21)

andXll , Xl j andY are functions ofC′, D′,Cc, Dc, γ , kcl andkcj.
As the Landau equations (20) are the governing equations of the amplitude func-

tions al (T) on the long time-scale, we can obtain the conditions for generating
certain spatial patterns by determining the stability of these amplitude functions.

For example, let us consider a special case whereM = 2 (‘square’ but not
‘hexagonal’ spots or stripes),k1 = (kc,0) andk2 = (0, kc). Equation (20), in
this case, reduces to

d A1

dT
= X A2

1+ X12A1A2+ Y A1, (22)

d A2

dT
= X A2

2+ X12A1A2+ Y A2

where

X =
3C2

ck2
c[3k2

cγ − 1][1− γ k2
c]

(Cc − Dc)− 4Cck2
cγ

, (23)

X12=
4C2

ck2
c[2k2

cγ − 1][1− γ k2
c]

(Cc − Dc)− 2Cck2
cγ

, (24)

Y = 2k2
c[C
′
− D′ − C′γ k2

c],

andD′ andC′ are, respectively, the perturbations of D and C around the bifurcation
values:D = Dc + ε

2D′, C = Cc + ε
2C′.

From (22), we can obtain the steady state values of the amplitude functions and
determine their linear stability using standard techniques (Jordan and Smith, 1987)
(see Table1).

From Table1, we see that if, for example, the parameters satisfyDc < 2Cc/5
and the uniform steady state is perturbed by a small initial random perturbation,
then a striped spatial pattern will be generated eventually. However, we cannot
determine the direction of the stripe. In fact, Table1 shows that the parallel and
perpendicular directions are equally likely. Furthermore, it also shows that there is
a parameter space in which spotted patterns are stable.
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Table 1.

Steady state Conditions for Spatial pattern
linear stability

|a1|
2
= |a2|

2
= 0 Y < 0 None

|a1|
2
= 0, |a2|

2
=
−Y
X Y > 0 and Stripes perpendicular to

Dc < 2Cc/5 the body axis
|a2|

2
= 0, |a1|

2
=
−Y
X Y > 0 and Stripes parallel to

Dc < 2Cc/5 the body axis
|a1|

2
= |a2|

2 Y > 0 and Spots
= −

Y
X+X12

2Cc/5< Dc < 6Cc/11

3.2.2. Numerical simulations..Here we numerically solve of model (7) by us-
ing a finite difference method with the aim of verifying our analytic predictions.
The model parameters used in the numerical simulations are chosen to satisfy the
conditions for generating (Table1).

SIMULATION 1. We use a randomly distributed cell density as our initial con-
dition and impose periodic boundary conditions. We chooseDc = 0.09Cc, which
satisfies the condition for generating stripes given in Table1. The numerical re-
sults obtained are shown in Fig.5, where the cell density distributions are shown
at t = 0, t = 0.05, t = 0.5, t = 2, t = 20, andt = 40. The lighter color repre-
sents higher cell density while the darker color represents lower cell density. The
results clearly show that a striped pattern is generated by our model equation, in
accordance with the results of our weakly nonlinear analysis.

SIMULATION 2. Again we use a randomly distributed cell density as our initial
condition, and chooseDc = 0.09Cc. However, in this case we impose zero-flux
boundary conditions in bothx- and y-directions. The numerical results obtained
are shown in Fig.6, where the cell density distributions are shown att = 0, t = 2,
t = 12, t = 20, t = 30, andt = 40. Again we obtain a stable striped pattern.

SIMULATION 3. We use a randomly distributed cell density as our initial con-
dition, and periodic boundary conditions. In this case, we use a large value for the
diffusion coefficient (Dc = 0.5Cc). The numerical results obtained are shown in
Fig. 7, where the cell density distributions are plotted att = 0, t = 0.05, t = 2,
t = 6, t = 12, andt = 28. In this case, we obtain a stable spotted pattern, as
predicted analytically (Table1).

3.2.3. The effect of origin-dependent adhesivity..The above study shows that
the simple, origin-independent adhesivity model exhibits patterns of rows, parallel
and perpendicular to the body axis, and spots. However, only rows parallel to
the body axis are observed in lepidopteran wings. Here we investigate the effect
of including origin-dependent adhesivity in the model. With the origin-dependent
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Figure 5. Results of simulation 1, under periodic boundary conditions, whereCc =

0.006, ε = 0.1,C′ = 0.01, D′ = −0.001 andγ = 0.0228. Here, origin-dependent
adhesivity effects are neglected.

adhesivity term the model equation becomes

nt = D 52 n− C 5 ·[n5 (n+ γ 52 n+ βnaa)]. (25)

Note thatn(x,a, t) is the cell density at positionx = (x, y) at timet for the cells
that originated a distancea away from the body axis. We assume thatnaa = Enxx,
whereE is a proportionality constant. The motivation for making this assumption
is as follows: note thatγ 52 n = γ (nxx+nyy) is a long range diffusion term. With
the origin-dependent effect, cells are less likely to diffuse in thex-direction (i.e.,
perpendicular to the body axis), soβnaa is acting as a negative diffusion term in
thex-direction and reduces the net diffusion in thex-direction.

Therefore, equation (25) becomes

nt = D 52 n− C 5 ·[n5 (n+ γ 52 n+ β∗nxx)], (26)
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Figure 6. Results of simulation 2, under zero-flux boundary conditions. Parameter values
as in the caption for Fig.5. Again, origin-dependent adhesivity effects are neglected.

whereβ∗ = Eβ. Note that althoughβ∗ is negative, we assume thatγ + β∗ ≥ 0,
i.e., the effective diffusion in thex-direction is still positive.

Linear analysis.We linearize equation (26) around the uniform steady staten0 =

1, as previously, and obtain

n′t = D 52 n′ − C 52 n′ − Cγ 54 n′ − Cβ 52 n′xx (27)

wheren′ = n− 1.
We consider a square domain and restrict the analysis of this model to perturba-

tions with spatial modes which have wave numbers of the formk1 = (k,0) and
k2 = (0, k). We look for a solution to equation (27) of the form

n′ =
2∑

l=1

[al (t)e
i kl ·x + āl (t)e

−i kl ·x] (28)
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Figure 7. Results of simulation 3, under periodic boundary conditions with large diffusion
coefficient, whereCc = 0.006, ε = 0.1,C′ = 0.01, D′ = −0.001 andγ = 0.0127.

= a1(t)e
ikx
+ a2(t)e

iky
+ ā1(t)e

−ikx
+ ā2(t)e

−iky

wherek = |kl |, l = 1,2, and the amplitudesa1 anda2 have temporal growth rates
σ1 andσ2, respectively.

Substituting equation (28) into (27), we obtain dispersion relations forσ1 andσ2:

σ1 = (C − D)k2
− C(γ + β∗)k4, (29)

σ2 = (C − D)k2
− Cγ k4. (30)

From these equations, we note that the growth rates for the two amplitudes are
different. As we assume thatβ∗ = 1

2 E
∫

s2h(s) ds < 0, we have thatσ1 > σ2

(see Fig.8). This means that rows parallel to the body axis are more likely to be
generated than rows perpendicular to the body axis.
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(Cc – Dc),
(Cc γ) 

k2

σ

kc
2 =

(Cc – Dc)
Cc( γ + β*)

Figure 8. The dispersion relation for the linearized version of the origin-dependent model
(27). The solid curve isσ1 = (C − D)k2

− C(γ + β∗)k4, the dashed curve isσ2 =

(C − D)k2
− Cγ k4.

Weakly nonlinear analysis.We now carry out a weakly nonlinear analysis on
model equation (26). The procedure we use is identical to that described above
for the origin-independent adhesivity model. Note, however, that in this case the
bifurcation point occurs whereσ1 = 0, namely, where

k2
c =

Cc − Dc

Cc(γ + β∗)
, (31)

whereDc andCc are the critical parameter values forD andC,
As before, we perturbD andC around the critical values ofDc andCc by ε2D′

andε2C′ so that

σ1(kc) = ε
2
� 1. (32)

We again consider a slow time-scale

t =
T

ε2
(33)

and expandn as

n = 1+
∑
j=1

ε j n j (34)

We substitute equation (33) and (34) into (26) and equate coefficients of powers
of ε: O(ε):

Ln1 = 0, (35)
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O(ε2):

Ln2 = Cc 5 ·[n15 (n1+ γ 5
2 n1+ β

∗n1xx)], (36)

O(ε3):

Ln3 = n1T + Cc 5 ·[n15 (n2+ γ 5
2 n2+ β

∗n2xx)] (37)

+ Cc 5 ·[n25 (n1+ γ 5
2 n1+ β

∗n1xx)]

+ (C′ − D′)52 n1+ C′(γ 54 n1+ β
∗
5

2 n1xx),

where

L = (Dc − Cc)5
2
−Cc 5

2

(
γ 52

+β∗
∂2

∂x2

)
. (38)

The solution to equation (35) on a square domain has the form

n1 = a1(T)e
ikcx
+ a2(T)e

ikcy
+ ā1(T)e

−ikx
+ ā2(T)e

−iky, (39)

and, using the same procedure as above, we obtain the Landau equations:

d A1

dT
= X11A2

1+ X12A1A2+ Y1A1, (40)

d A2

dT
= X22A2

2+ X12A1A2+ Y2A2

where

A1(T)= |a1(T)|
2, (41)

A2(T)= |a2(T)|
2, (42)

X11=
3C2

ck2
c[3k2

c(γ + β
∗)− 1][1− (γ + β∗)k2

c]

(Cc − Dc)− 4Cck2
c(γ + β

∗)
, (43)

X12=
4C2

ck2
c[k

2
c(2γ + β

∗)− 1][1− (γ + β∗)k2
c]

(Cc − Dc)− 2Cck2
cγ − Ccβ∗k2

c

, (44)

X22=
3C2

ck2
c[3k2

cγ − 1][1− γ k2
c]

(Cc − Dc)− 4Cck2
cγ

, (45)

Y1 = 2[(C′ − D′)k2
c − C′(γ + β∗)k4

c], (46)

Y2 = 2[(C′ − D′)k2
c − C′γ k4

c]. (47)

The linear stability conditions for these steady states can be easily found (see Ta-
ble2).
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Table 2.

Steady state Conditions for Spatial pattern
linear stability

|a1|
2
= |a2|

2
= 0 Y1,Y2 < 0 None

|a1|
2
= 0, |a2|

2
=
−Y2
X22

Impossible Rows perpendicular
to the body axis

|a2|
2
= 0, |a1|

2
=
−Y1
X11

Y1 > 0 Rows parallel
Dc < 2Cc/5, andβ∗ < 0 to the body axis

|a1|
2
=

Y1X22−Y2X12
X22X11−X2

12
Impossible when Spots

|a2|
2
=

Y2X11−Y1X12
X22X11−X2

12
β∗ < −γ

(
Dc
Cc

C′ − D′
)
/(C′ − D′)

From Table2, we see that striped patterns can only occur in the direction that is
parallel to the body axis under the effect of origin-dependent adhesivity. We also
note that as long as the effect of origin-dependent adhesivity is sufficiently strong
(β∗ < −γ ( Dc

Cc
C′ − D′)/(C′ − D′)), spotted patterns cannot be generated.

4. SUMMARY AND DISCUSSION

Several models have been proposed for spatial pattern formation in biology [for
a review, seeMurray (1993)]. The vast majority of these models consist of coupled
systems of partial differential equations and they have been extensively studied
and shown to exhibit a vast range of spatial patterns. In this paper, we have consid-
ered pattern formation of scale cells in lepidopteran wings based on a number of
key biological observations, we have developed a novel model for pattern forma-
tion consisting of only one equation, of integro-partial differential type. We have
shown that a simple version of this model can exhibit stripes or spots, but that a
more complicated version can exhibit only stripes of a specific orientation that is
consistent with biological observations.

We have assumed that the arrangement of scale precursor cells in lepidopteran
wings proceeds temporally stepwise and consists of two different pattern forming
processes, that is, uniform pattern formation of SPCs as the first step, noted in
Section 2 [see also Fig.1(a)] and as the second step, the formation of parallel rows
(Sekimura and Yoshida, 1990). In relation to parallel row formation of scale cells,
two other problems of note still remain.

The first concerns the mechanisms that generate the uniform pattern of SPCs
prior to parallel row formation. It has been suggested that the isotropic spacing
pattern of SPCs can be generated through lateral inhibition—a type of cell–cell
interaction whereby a cell that adopts a particular fate inhibits its immediate neigh-
bours from doing likewise. The transmembrane proteins Notch and Delta (or their
homologues) have been identified as mediators of the interaction—Notch as recep-
tor, Delta as its ligand on adjacent cells. Recently, a simple and general mathemat-
ical model of such contact-mediated lateral inhibition has been presented, based
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on the Delta–Notch mechanism of lateral inhibition (Collier et al., 1996). In our
numerical simulations in Section 3, we have not used a uniform pattern of SPCs as
initial condition, but instead have imposed a randomly distributed cell density of
SPCs. However, it should be noted that these random perturbations can be made
extremely small without affecting the results of the simulations, and they reflect the
fluctuations that one would expect in a biological system of this type. The second
problem is cell proliferation during the arrangement pattern formation. SPCs con-
tinue to differentiate from generalized epithelial cells during cell rearrangement.
The increase in populations of SPCs is around 20% of the total cell population.
The exact value depends on the insect (Yoshida, A. and K. Aoki, 1989; Yoshida,
1993). Hondaet al. (1990) have estimated, computationally, neuroblast numbers
in insect neurogenesis using the lateral inhibition hypothesis of cell differentiation.
We have not included cell proliferation in the model. It would result in a pro-
duction term which would not affect the movement dynamics and would therefore
have only a quantitative influence on the patterning behavior of the model and the
main results of this paper would still hold.

Arrangement of cells into rows also occurs in the formation of pigment patterns
in, for example, alligators, snakes, and fish skin. The models proposed for these
types of pattern (Murray et al., 1990; Murray and Myerscough, 1991; Kondo and
Asai, 1995; Vareaet al., 1997) are of coupled partial differential equation type and
they can exhibit a wider variety of pattern.

One of the key questions in biological pattern formation is how does a particular
pattern develop in a robust and reliable manner? For example, reaction diffusion
systems (Turing, 1952), can exhibit spots or stripes on two-dimensional domains. It
has been shown that the form of the nonlinearity is crucial in determining which of
these patterns stabilizes (Ermentrout, 1991; Lyons and Harrison, 1991; Nagorcka
and Mooney, 1992; Zhu and Murray, 1995a,b). More recently,Vareaet al. (1997),
have shown that stripe selection and orientation can be controlled by imposing
very special boundary conditions and spatially varying parameters. In this paper,
we have provided a novel mechanism (origin-dependent adhesivity), for selecting
the formation of stripes over spots, and orienting the stripes in the correct direction,
without imposing special boundary conditions.
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Varea, C., J. L. Araǵon and R. A. Barrio (1997). Confined Turing patterns in growing
systems.Phys. Rev.E56, 1250–1253.

Walgraef, D., G. G. Dewel and P. Borckmans (1982). Nonequilibrium phase transitions
and chemical instability.Adv. Chem. Phys.XLIX , 311–355.

Yoshida, A. and K. Aoki (1989). Scale arrangement pattern in a lepidopteran wing. I.
Periodic cellular pattern in pupal wing ofPieris rapae. Dev. Growth Differ.31, 601–
609.



828 T. Sekimuraet al.

Yoshida, A. (1993). The spatial pattern of the cell distribution and the cell number ratio
determined by competition and lateral inhibition in the butterfly wing.Forma 8, 203–
210.

Zhu, M. and J. D. Murray (1995a). Parameter domains for generating spatial pattern: a
comparison of reaction-diffusion and cell-chemotaxis models.Int. J. Bifurcation Chaos
5, 1503–1524.

Zhu, M. and J. D. Murray (1995b). Parameter domains for spots and stripes in mechanical
models for biological pattern formation.J. Nonlinear Sci.5, 317–336.

Received 18 February 1998 and accepted 10 May 1998


	Introduction
	Fig. 1

	Experimental Results on Parallel Row Formation Mechanisms
	Model for SPCs with Origin-dependent Adhesivity
	Fig. 2
	Fig. 3
	Fig. 4
	Table 1
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Table 2

	Summary and Discussion
	References

