
An Introduction to

Mathematical Physiology

Michaelmas Term 2025

Christiana Mavroyiakoumon



General course information .

Lectures take place on Wednesdays 12-1 (15) and Thursdays 11-12 (24)

There will be 4 problem sheet classes. Each tutor will do 4 classes , each 90 mins

and each covering I problem sheet .

CLASS OPTION 1

Georgina Ryan : Monday 9 :30-11 Weeks 3
,

5
,

7
,
HT1 in2

CLASS OPTION 2

Callum Marsh : Tuesday 11-12 : 30 Weeks 4,
6 . 8 in C3 ,

HTT in C2

CLASS OPTION 3

Ramon Nautallo-Kaluarachchi : Wednesday 10 : 30-12 Weeks 4,
6 ,

8 in C2

HT1 in (3 /21/01/26)

My email is : mavroyiakoum & maths .
ox

.
ac

.
uk

Office number : S3 .
11

-

Problem Sheets : - Solutions to the B questions of Problem Sheet 1 and 3 should be

submitted on Moodle by Friday 9 am on Weeks 2 and 6.

- Model answers will be provided to all questions and we'll go through these in

the classes
.

Special Topics : For those attending who needd write a special topic on this course .

these is a list of possible topics on the course website .

Lectures : -Typeset Lecture notes are detailed. But , everything you need will be covered

in the Lectures . Sometimes I'll point to the lecture notes for additional proofs.

- In this course there is just as much emphasis on coming up w/ the appropriate
mathematical models as there is on solving them .

- Some guest appearances from research experts in the field (in brain modelling,

calcium dynamics, ...)
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[Notes based on those of Prof. Ian Griffiths]

Chapter 1 : Enzyme Kinetics

Enzymes are collysts , they help convert other molecules known as substrates into

#ducts , but are not used up in the reaction themselves
.

Applications : digestive system ,
DNA replication ,

liver enziymes
(glucose breakdown (destroy toxins

Consider chemicals A and Breacting on collision to form chemical d with a

rate k : A +B C

This rateI depends on the moleude sizes
,
shapes , and the temperature.

Then we can write =A
The rate at which the reaction takes place is

proportional to the number of sufficiently energetic
Collisions beth molecules A & B a concentrations
of A and B.

&If you double the number of A you would expect the rate of reaction to double
.

Note this means that 2A +BEC is d = kAB
- ↓

More on this on problem sheet 1 &2.
you can think of 2A +BE C

as A + A +1 C

This iscalled the law of mass action (the way in which chemical reactions
& the consequent evolving concent. Of

their reactants are quantified)
Assumption : the mixture is wstirred (i . e . concentrations of reactants uniform in space

Michaelis-Menten Kinetics (Section 1.2)

An enzyme reaction looks like this :

a complex ,
which breaks down

- into the enzyme and a product

enzymeact
substrate
Ste

on E + P (two-step process)
S I

enzymesubstrate (k + 1

is released product

enzyme I When the

complex breaks
a reversible

down into the product
reaction



· verall reaction rate &

The overall reaction is S&P . This looks like a simple reaction ,
but we

know there are internal rate steps. You could just model the single reaction
and capture all the intermediate steps with this overall reaction. This is the

Hill equation

S
Thus the reactionr= rate is not a

-

constant
If

some

constants

But better to use the low of mass action :

=C - S ①
Michaelis -Menter Kinetics

= (ktz)C-kSE

& = k
,
St - (1 + k-1)

= ④

Can we simplify ? Yes - I only appears in so decouples.

↓ e .
it can be found by direct integration once the other zequs for E , C. S have

been so lued. initial value of E

↓ since C = 0
Add # + ③ to see

that0 = Etc = constant = E initialo

This reduces the system to two ODEs

C



&
which can be solved subject to suitable initial conditions : S =So

,
C = 0 at t= 0.

We now non-dimensionalize theSystem to analyze it :

= s
,

C = Eo
,

t=
Thus,

&Ed
· TheS equation becomes :

k
, So% = 1

-, c - k
, Sostff)

=> k
,So= -k(-

Divide through by K, So to obtain

= - s(l-c) = c(s +) - S

&

· = c(s++) - s = - s + c(s + x - x)
-

ki
where

K = 1 and3.
· TheAd equation becomes:

Yoko A = k
,Sos(t - Foc - (k + k

+1)% <

k
, to & = k

, Sos(1-c) - (ka +-1) a



*
we divide now by k

,
So again : T

Nate: the remarkable effectiveness of

enzymes as cotalysts is reflected in

the extremely small concentrations=Sll-- needed in comparison to the substrate
~

=> Ex
E

KI

=>

ES-1stc , where =E because we only needa

Jo bit of enzyme.

Thus, the dimensionless system of equations becomes

= - S+(s +k -3)
with initial conditionsS10) = 1

= 5-st'
(0) = 0

& means we con neglect the time derivative in the c-equation .

This makes a QUASI-STATICsystem : s evolves through a time derivative

c evolves through an algebraic equation.

From Eto
: 0 = S-(St) = c = 2

(d + 0) S +K

Thus
, if weping this into the 1st equation,

weget -St1t-
=> G =

-S(y) + s(s) -3)
= -

xS+/

* =- (t)

(*) is known as the Michaelis-Menten how land is for enzyme reactions

Crate of transformation of the substrate)
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What is the reaction rate ?
because it is more the state of depletion
~

This is def=S Condimensionalizinga
Si-

=

= Sotok
, ( ) (using A)

Nowlet's subst
.

S = Sos and =e to obtain
k

,
So

v = + Eok/k =

tok = FokfSok'

-
So , reaction rate is

~== K= This is the Michaelis constant

It's difficult to measure individual reaction rates experimentally .

But we can measure the overall reaction rater and concentrations. So
, if we look

at the initial rate of reaction So :

slope

↓ =k+
Thus to is linear in+

So I
We can plot experimental data of versus -and the slope isa

as

intercept is : Which allows us to extract K and kf



&
These plots are Lineweaver-Burk plots

.

Now
, our quasi-steady approximation c = I

↓

-

> does not satisfy our initial
5+K

conditions S= So
,

< = 0
,
since clot, 70. .

This is because there is a rapid transient ,aI

=> S10)= 1

when t = O(d)
, during which the quasi-steady state approx .

does not hold
.

We see that by rescaling t = Et to give
*=0 =) 5 = const

.& = c) -S + c(s + k'- 3)) = 0 to

Leadingordera
subst . S = So

=s -1st =

We solve this 1st order ODE Soa
We use the method of INTEGRATING FACTOR

. Y = eBotK') I

& leSott) = SoeSotI

e(botkltc
= elot/const

of integrationon

C= i

+ AE-Botk't

Using the initial condition (o) =0 : 0=A A = -, we obtain

=kill - e- Botkse

If we use that S10) = So-1
, then this becomes

= F .
( -e u+ (c)

This takes us from 1 =0 at to to the initial quasi-static value
, and

-If ,
as we more out of the boundary layer aswa.
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#hibitors are substances that inhibit the catalytic reactions of an enzyme .

⑳ COMPETITIVE INHIBITION - When the substrate can't bind if the inhibitor is bound to

an enzyme(other molecules w/ similar structure to substrate , can bind on the active site of

the enzyme preventing,
the binding of the substrate

ka
St E = c++ P

T You can do LAW OF MASS ACTION
k - 1

L for these and analyze the reaction- enzyme complexand E +I C w/ substrate
rate in a similar way to a previous

k - 3 ↓ case (see the typed Lecture notes)↑
enzyme complexw/

inhibitor& ALLOSTERIC INHIBITION - As well as the previous two reactions we can also have

the inhibitor binding to C to make a different product(other binding sites : a

molecule can bind to one of these
C +I + other sites , altering the 3D shape of

↑ the enzyme , and thus effecting the
inhibitor binding of the substrate on the

active site)
.

Cooperative systems- more than one binding site

enzyme w/ two active sites

I #·I a & Catalytic reaction to make P from S

Ste using E as a catalyst

· ⑧ ⑲
9 & O #

k4 i

Catalytic reaction to make p from S using the

Stc - C + P
intermediate product[as a catalyst too

You can then do the law of mass action analysis in this case and find that now

~ whereand
For the derivation, please see the Lecture notes

SPECIAL CASE : If the rate of binding of the first substrate molecule is small but the rate of

binding of the second molecule is large , then -0 , k + 0 with k
, k3 finite , gives
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~=S ~=
Which is a Hill equation with exponent 2

Recall this is the Hill equation

since K
,

= k2- 0 with K-0 and K =k0with

CHAPTER 2 :
Trans-membrane ion transport

Cells are bags of water
.

The water contains dissolved salts : NaCl and KCL which dissolve into Nat , Cl-, k+ ions

These exist both inside and outside the cell
, creating a potential difference .

The cell walls are permeable - ions may be transported through the cell membrane , passing
through pores called channels or gates.

Omosis is the mechanism by which water is transported across the cell membrane.

Carrier mediated diffusion - a moleude hitches a lift by binding to a carrier molecule

which is a lipid soluble and can more through the membrane
.

Carrier mediated transport -

a molecule binds to a protein that has an active site that mony

be exposed to the interior or exterior of the cell leg . glucose or amino acid transport)

exterior -> 05cell-
wall interior

Pumps - these exchange one ion for another eg.
Nat and K + or Nat and C2t

-ter
molecule

Nat



carrier protein &

A model for carrier mediated transport
F -0- switches from

-

in 12

Ce binding-site-outwards to

Ci binding-site-inwards
4. = state with binding site exposed to the interior

(binding/extive site of the membrane

Ce = state with binding site exposed to the exterior can either be exposed in the

interior or exterior)

Ce can bind with a substrate molecule in the exteriorSe to make a product Pe (1)

Ci can bind with a substrate molecule in the interior S; to make aproduct P: (with

same rates as in the exterior) (2)

Further P
, can turn into Pe and rice versa

. (This is the carrier during its rotation') (3)

[see below for pictures]
The reaction scheme is :

⑫
and CC This is the carrier site rotating without any substracte on it

- we assume this occurs at the same rate of the rotation

equally with a substrate on it.

likely

cell wall Ri reaction rates(
exterior
*

DaingsideO-II
· Pi

·
interior

Y

You can be on the inside

F or outside of the cell

Re
1 If k wall waiting for thto

bind"

⑨ Pe exterior↳DeO
interior

⑭
G

- -
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Using the law of mass action we have

Ri = k
+ SiC - k

-
Pi We are interested in finding a relationship

Re = k
- SeCe-k- Pe

for the rate of transfer of ims from one

side to the other in steady state and how
F = kPi- kPe this depends on the parameters in all

G = kC - kd
the individual reaction.

Finally, suppose that substrate is supplied from the exterior at a constrate J and taken away

from the interior at the same rate. This is to avoid the system simply setting down to a

Steady State w/ zero Hlux .

Then :

①

S
③

②

&Pe = F-Re ⑭

&= -G-Ri ⑤

de = G + Re ⑳

If J is unknown then this is six equations for seven unknowns.

Adding B + Q + 5 +⑥ gives :

& (Pi + Pe + (i + G) = 0

=> PitPetCi + Ce = constant This is conservation of carrier

And O+ +B +& gives SitSetPi + Pe = constant
.
This is conservation of substrate

.
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One can solve 0-0 in steady state to find

-

5

Like Wheremk
+

~

So this tells us the flux of ions transported across the cell membrane in steady state .

Note the similarity in structure to the Michaelis - Menten flux we derived .

Recal: =- Michaelis -Ment

un ~ wa

J

Active transport : the sodium-potassium pump

The carrier-mediated transport described above moves molecules down chemical gradients.

To more molecules against ahemical gradient requires energy.This is known as an

active transport mechanism. One of the most important active transport mechanisms is
Sodium ions pumped out of the cell against the electrochemical gradient
-

the Nat-K +
pump. [ potassium ions pumped in

J
-

Thus
,
the important distinction here to pay attention to is :

This is like the carrier mediated transport , but now there is a chemical reaction which

requires energy. This allows chemicals to move against concentration gradients .

The Nernst potential and the resting potential

The Nernst potential is that obtained when all gates are open and there is a balance

between diffusive flux and electric flux.The system is in equilibrium.

high to low concent. ion charges moving
The resting potential is the difference between the potential outside and far from the

cell and inside the cell
,
which may be different to the Nerust potential because gates

open and close and ions are moved under different ionic and concentration gradients.
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The Nerust potential
~

13 X
+ 17 Y Total + charges = 30

↓ *
not possible

a membrane permeable to X+ but not Jt

7 X
+ 2347 Total + = 30

total + = 28

11 X+

174t
But doesn't reach 10 X+

on each side

because of electrostatic potential

9X
+ 2345

pushing back.

total + = 32

↳ charge imbalance sets up an electric field ,
which produces a force

on the ions opposing further diffusion of XT

Important : the actual amount of X + which diffuses through the membrane is small
, and->

the excess charge all accumulates near the interface
, so that to a good approx .

the

solutions on either side remain electrically neutral. The potential difference at which

equ is established and diffusion and electric-field-generated fluxes balance is the

Nernst potential .

The membrane potential

5xt
Consider the following set-up : x +

x
+

x
+

y
+
x

+

5y-

y
-

y
- y -y - y-

a membrane permeable
x

+ x
+ y - to X + but not Y-

y
-

y
-

X +

3x
+

Equal positive and negative charges in each
34

-

respective side but different amounts on the two sides .
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Xt will diffuse through the membrane to balance the charge of X + on both sides
.

The balancing will happen in a small region near the membrane /so far from the membrane

the liquids will remain electroneutral)
.

The potential difference that builds up across the cell membrane as a result is called the

Nernst potential .

· What is this potential ? There will be a flux of ions due to a concentration gradient .

5 = -D
concentratione

cregular diffusive flux)

ion

diffusivity
There will be a flux of ions due to a potential difference (the ion carries a charge a

&

is in the presence of an electric

= field)

u = ion mobility = velocity under a constant electric field

z = valence of the ion
i. e

. valence = charge of ion (e .g. Nat has valence
+,

O2 has valence -2)

# # giving ion charge / +reions more down potential gradients ,S Z

- veions more up potential gradients)

P = electric potential => To = electric field

So the total flux is F = Fi + F2 = -DT-p

or J = -DO- (*) assuming set-up is one-dimensionala

Einstein's relation connects the diffusivity with the ion mobility : (look up
Einstein relation in

D = uRF R = universal gas constant
diffusion

,
or

,
kinetic

theory
T= absolute temperature

F = Faraday's constant . ( total electric charge divided (
by elementary chargecarriers



Note that (*) can be rewritten as J= -D+ ) ,
where isa

coordinate normal to the membrane .

In equilibrium. 5= 0 (no flux) => O +E
We can integrate the flux Jin (*) from X =0 to x =L to get :

(interior) (exterior
of membrane)

vd P:
- Pe=g

↑
e : exterior

Nest potential i : interior
across cell membrane

Ionic currents

The flow of ions across a membrane causes a build up of charge which means the

membrane acts asa capacitor
.

~charge difference
The voltage across the membrane is V = Q

I
~ capacitance

The current across the membrane is I = -do here I is the ionic current out of the cell
>

E (i. e . rate of flow of the charges outwards)

Combining these gives C + I = 0 Cassuming C = constant) since CV =Q

This equ is the basis for & (1)===

much theoreticaleectrophysiology if

C = const

We link the current of each species of ion S to the voltage via Is = 9s/V-Vs)
& Nerust

j potential

Ion-specific membrane conductance
The total current is I =& Is . Is =0 When V = Us

-> just V = IR (Ohm's lo)

and conductance is=
Recall that conductance is a measure of how easily an electric current flows through

a material
. (It's the reciproced of resistance)



& protein-lined pores which allow the 15
passage of specific molecules

But what does g ,
look like?

-

This is not a constant - it depends on the fraction of gates that are available /i - e
- we know this experimentally

that are open) . Let's denote the fraction of open channels by n.

Then
gg

= n9smax
& conductivity when all gates are open .

-- closed

-↳ open

closeddepend
on the voteaa

gate

Law of mass action gives =< (V) (1-r) - B(V) n
fraction of open gates

~

fraction of closed gates
OR = x(N) - n(x(V) + B(t)-

=>=But - n

-ear value of n

= 2T(N) = no-n where no and =
↓

2+B
x +B

timescale for

We note that both Ny and I are determined experimentally . approach of the

equilibrium no
You can also have multiple gates. Let Si = density of states with i open gates. Then

the

transition between gate states is governed by the reaction :

· 2x

So* 2,3

Y the factor of 2 is because there are

number of
two configurations for going from 2

closed gates open to 1 open gate and similarly
for closed to open
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law of mass action gives

= -2 + BS

=S-2B

We could also write down an equation for S, but this equation is superfluous , since we

can just inter it from SotS,
+ Sc = 1 (conservation of gotes)

We can reduce to one ope by finding that the solution is

So = (l-n)
, Si = 2n(1-n)

,
Se = n2 /we can see this by simple substitution)

where n satisfies = xll-n-pn li . e
.

the one-gate equation. .

[see problemSheet 2
, question 17

In this case ,
the proportion of open channels is Sz =2

so the conductivity in this

case is 129smax
This result generalizes for N gates with a conductivity of ngSmaxYou can also look at the case of non-identical gates -see lecture notes on pg 34.

The Hodgkin-Huxley model

The nervous system is a communication system formed by nerve cells or neurons
--

Information is propagated along long cylindrical segments called axms by electrochemical

signals.

Communication between cells occurs at junctions between synapses to the dendrites .

EXCITABILITY OF NEURONS

If a small current is applied for a short time then the membrane

potential just returns to its resting potential when the current *
dendrite

is removed
. ⑧- cell bodyI

But for a sufficiently high current , the membrane potential synapsesundergoes a large excursion-an action potential-



XA
before returning to its resting value. va

Signals are transmitted by the propagation it
of these action potentials . Later on we t

will look at this spatial propagation This propagates down the axon like a wave.

down an axon , but for now we will

look at a spatially independent model.

This can be achieved in practice by inserting an electrode along the axon to spread the
-

current out. This is called the space clamp technique .

(external inward current)Nat Nat
Exterior

Ij [app
Apply a current lapp to the axon and observe the

I ionic current that comes out
, It

Interior I 1
. C

. (outward ionic current)
k+ k+ How does I; respond to Fapp ?

How much energy do we need for this Na-k"pump ?

Our earlier equation +I = 0 D

=> Cm + (I: -Fapp) = 0

-

y total outward current

capacitance of the membrane

Now we'll figure out the equs that are satisfied by Na & K using theequs for the gates from before

Potassium flow applied voltage
- ↓ ↓ resulting current

Recall we have our link between V and Fi : Fi = gs(V-Vs) and g ,
= n

*

&smax
conductivitywhere N = number of gates and TV( = ngV) -n@ = true regardless of what the Nis

What we find is that the potassium conductance may
be controlled by this model when

N=4

Note ,
however that this is not due to four gates but just as 95 = n

+

9k
experimental fit .

(the underlying physics is behaving like a 4-gate system
u

but it's a bit more complicated than that) Ismax
n is called the potassium activation.



Sodium flow X8
For the sodium conductance there is a protein that turns the sodium current on and another

which turns it off . This can be described by
-> again these powers are an

experimental fit rather than9s = 9 mI related to gates

Gmax
[m(V) = mo(V) -m

Th(V) A = ho(V) -h@

is an appropriate model. This is like two gates :

m is called the sodium activation

h is called the sodium inactivation.

The Hodgkin-Huxley model for
the outward ionic current is then

- resting potentials

Fi = 9Nm3h(V-Va + g,m(V-V) + gIV-1 ⑤

-- -
other ions flying around

Nat current K + current Leakage
that contribute to the current

(sodium) (mainly Cl-chloride ions(potassium) &

(This model also comprises the OD- system O-$) .

The closed system is Q-5.

NB .
The resting potential is the valueof when the outward ionic current is zero

.

What does the potential do?

These values are experimentallymeasured
A GRAPH 1

A GRAPH 2

no Th

X
-

1- mi
Im
-

& S
O

O V-Veg
V-Veg

Relaxation times as fens of

Equ gate variables as potential relative to resting
fans of potential relative to potential

resting potential



Apply a current lapp &

(2) V rises due to the current legng) (m& + (Fi -[app) = 0 => ↑ Cm&= Fapp-1 : ↑

13) Tm is small (graph 2) so m rises quickly legn 8) d = (mm)
=> Nat floods into the axon from outside (since gs = m3hgNa m increasing

sodium activation means more gates
open for Na

(4) This causes even more of a potential difference , cousing mo to rise (graph 1) , which

causes even more of a potential difference (from step (3) above) =(mm)
(5) no falls causing Nat flow to slow as gNafalls (gate closes activation gates↑

deactivation gates /

No rises causing K
+ to flow out of the axon19k+ rises-gate opens) 9. = ngwa"Igraph 1)

This causes an overshoot past Veg /because VisVeg)
Cresting potential for Kt)

(6) A slow leakage of K + back into the axon causes the system to go back to equilibrium
(this recovers from the overshoot)

&

wa
apply Na 9 This is an action potential , obtained by solving

alittletherete
Natdsent flow

in other the Hodgkin-Huxley model
. Ivisualisation)

Veg

v

T 7

t

⑳ direction) - out of the axon

↳ low leakage of Kt
NB The[app doesn't give a relaxation
->

back into axon
to Veg immediately , but first an excitation

-

that we are interested in.

The membrane is excitable. The equilibrium is a steady state but a large enough

perturbation (which in practice isn't too large) that causes the potential to undergo

an excursion - the action potential -

Note If we spatial independence :
-
We'll basically have a traveling wave of this action potential from the axon to the muscles
that tells the muscles to do something

At the moment this is a four-dimensional system (V, n . m
,
h described by equsD-$)

This is not easy to analyse but we can reduce this to a two-dimensional system called the

Fitzhugh - Nagumo model .
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Section 2 .3 : Fitzhugh -Nagumo model (approximate asymptotic reduction of the]

Hodgkin-Huxley model

Assumptions : 1 Im is small so m=mo/V) ([m In ,In) Recall egn

Im rapidly reaches its quasistable value , using) = mm
Im

2)En = In (not perfect , see graph 2, but a decent approximation (

3) noth-const ,nmotivated by graph 1)

=> nth = E (using Band &

#(n+h) = n - (n+h)

=> (n+h) = i + ce
- t

This system is true for all time so it eventually
setttes to nth = n

This reduces the Hodgkin-Huxley model (four opts for V, n ,
m, h) to the two-dimensional

system for V and n : (see problem sheet 2 for this

Cm&= Fapp -(9k(V -Vq)n"+gNa(V- VNa) mG(V)(n - n) + gn(V - Vn)

Th(V) = no(V) - n

We'll see if some of these parameters are small & negligible
Let'snon-dimensionalise the system :

Volta

v = Efeg and T = InNeg) +
-

ge VNa-Veg v sets to 0 Dimensionless parameters
I rather than Nea.

resting potential forNat F
*

= P=This leads to the dimensionless system

dn
c

= Na(v)- n @
UK= :Ed = I * -g(V ,n U=

gNgTr

where g(v, n) =Uk(V + V* )n* + ((V - u-*) - ( -v)(h- n)m3(v) with
x
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key point : Ex where s

=hi
This is whyye non-dimensionalize - to see the relative parameter sizes

.

Key point : Ex ,
so v quickly reaches a quasisteady equilibrium in ② andU ,

so g/v, n) simplifies :

-> you can see this through
g(v, n) = (( +V** (n "

- x -vi(h-

n)mb(r)=g ,
n

PHASE PLANE ANALYSIS

Start by considering the case I*
=0 li . e.

no applied current , fromO ,
v is

given by g =0

Setting a== o ingivesm an algebraic relationsas(X)
sidentified between n and
as small)

N
N
largein

G >0

⑰ so v decreases quickly hereYv increases90
- g(n , v) = 0 /solution of (x)

quickly here
> Note that including this UL

Since E V term doesn'tchange these
we know that qualitative features.
the system quickly
jumps on to this

nulkline.

Now wejust need to add the n= 0 nullcline (n = no (v)
(nullclines in general are when you

M N
n uulkline (n = nc(v) set the to zero

-mullcline whenn === no(v by egn

we go PHASE PLANE

until -some ANALYSIS
back to

below the n-nulkline
,

equilibrium recallby non
(recall that equ
is when v=0 >

v = 0 =) V = Veg V nulldine (g =0)
(when both v = ri =0

v - nullline when g(vin) = I
*

= 0 byegn
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Perturbing around the fixed point we see that trajectories spiral around so the

fixed point is a spiral .

STABILITY
-

Linearize near the fixed point, n = no , v =o

Set v = U

M
n = ng + N

,
v ,Nx

and opts becomeW:()
Stability is given by det() and tr(M) => det(M) so => saddle

I
trace det(1) > 0 and tr (M) < 0

=> node or spiral

Trace and determinant method

Eigenvalues can be written as

Tr(A) =V (TrA)2 -4de+ (1)
x =

2

We have det)= +n =

18

Now det (A)O

Prof Now slope of a nullcline =do
Ju

Differentiate g(v . n(v)) = out v :

Slope of v nulkline--since giv,n=0 0,49
an
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and from graph : slope of 7 slope of

n nulkline v nullcline &
n nulkline

·
unulkline

=>& . This implies thatit E
an J

det (0 and tr() = -1 -En =no

fixed point is stable if tr(m) <O =-
To because of pictureat

Na g means : rate t

change of g in thedirection
& definitely@ noticego while keepingn fixed (start on

fixed point is stable .

9=0
, or vmulldine)

g =0

Although the fixed point is stable
,

a small increase in v will lead to a large excursion-

this is the action potential again. If we plotted v versus t we would obtain the graph
we drew earlier.

Limit cycles
Ext

If we apply a current then this will push us off the equilibrium point and send us

round the trajectory before starting the process all over again -we only need

a bit of energy to achieve this
.

slightly different to a conventional limit cycle because in this case you need to give a bit

of energy to kick it round the cycle (i
. e . it doesn't continue on the loop who energy input

The Fitzhugh-Nagumo model is the reduction of the four-dimensional Hodgkin-Huxley
model to a two-dimensional system.

The Fitzhugh-Nagumo equations are an analytically similar pair of equations that have

the same behaviour
.

easier to handle this mathematically

Fitzhugh- Nagumo model Fitzhugh-Nagumo equations

dv = [
*

-

g(v , n)
Ev = [* + f(v) - w

~ implicit function w =

jV
- w
-linear

for

i = ny(v) -n y
cubic fan

f(u) = v(u- a)( - v) oa= I



Fun fact of the day : Nerve signals can travel at speeds of 270mph. This allows
you to react quickly to various stimuli , such as pulling your hand away from a hot

Wave propagation in neurons
surface or reacting to a sudden loud noise

We now explore spatial dependence of the Hodgkin-Huxley model.
external

internal a
neuron

↓
* the axon behaves like an electric cable

# = transmembrane
current per unit length #Sx lleakage w/ these axons because they are not

In = axial current current in ↑ current out perfectly insulated)

R = axial resistance In - " -> I+ SI,

Junwillingness of axon to transmit ↑ *
current down it parallel #

C = capacitance per unit length SX

lability to storecharge) if l apply to something o/capacitance C ,

↓ a voltage v , then the total charge held by
In a segment Sx the total change is CVSX. this small segment is CVSX

current out right

Charge conservation: - (Cr8x) = - 1
+ Sx + [x - (1 + f[

,)Ot
current lost

throughwalls current in (only this increasesthehe

total charge (VSX)
Assuming C = const.

COSx =
- [y8x + Ik -( - SI

at
=> CF =

- It-
* the axon's internal electrical potential V

Taking the limit as 8x+
is now a function of distance along
the cable and time to

CO = -E-
- SV = IRSx Definition of resistance (i . e. AV = In R total)

=>-[R= In =-
So in (4)

. = -I+H

This is called the telegraph equation (or the cable equation)



assuming the axo has a circular cross section -
If the neuron perimeter is

p
= id , thenE= Pli-lapp)

capacitance -
~ per unit length diameter need current per unit area between

and C = pCm it per inside and outside as defined earlier

I unit

length
Capacitance per unit area

If Ry = resistivity of medium ,
then R= Where A =& is the neuron

cross-sectional area. In (t) this givesi = - i)I :
- Fapp)+Y

= C= Fapp-[j+
Non-dimensionalization

~
to be chosen later

V=e ,
Fi = galVa-Veg) gu, X=

Isame as earlier non-dimensionalization
WhereI is to be chosen later

This gives

dWX = [
*

- g(n , v)+ aOt

& Ot

See problem sheet② for derivation
an
- = Md(v) -n of this

This is the space dependent version of the Fitzhugh-Nagumo model - it's the same but

just with a terme. [spatial variation of V adds diffusion term

Let's analyze action potentials in this case. We could analyse the equations above but it is

easier to analyse the space-dependent Fitzhugh-Nagumo equations (the equations that display
the same qualitative behaviour but are easier to analyse

E = f(u) - w +E f(v) = v(u-a)(-V)

=2 - w andJ large enough that 10.0)

is the unique steady state.
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Let's look for a travelling wave solution so we can find a ware traveling down the axon

V = v (g) , w =W(z) , j = Ct- X,O waves we'll draw at the end will go from right to left

① ECV' = f(v)-l+EU"
phase plane w/ V , W , v,

② CW' =Y - w

NB the primes are derivatives cort]
with v,

w + o as 3-0 Isolitary waves in which the solution returns to the rest state

at each end
It is harder to do phase plane analysis now because the phase plane is

three-dimensional rather than two : V
,

w
,
v

However
, <1 so this allows us to make progress without having to consider the

three-dimensional phase space.

There are four different regions of behaviour :

(i) To begin with , if we aren't on the curve w = f(v) then we quickly more there

because of

① ECV' = f(v) -w + E2V" Just like before
-

(
=0

& higher order Cignoring the higher order

fast motion correction 32 term)

In this region , things happen over a fast 5 scole. This suggests rescaling j : z]

# = c = f) - w+ ⑪

and in this region , considering the otherequation ,
CW' = -V - w (2 from above)

=> CW(V
=>

w = constant .

We choose coordinates such that the resting state corresponds to 1v , w) = 10
,0) .

Thus W = const = Wresti = 0
. This is not saying that a const w must bezen

n
but starting from rest, the slow variable w hasn't moved yet , so it equals its

resting value (which is O in the shifted words)
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Now setd = n .

Then we can write Cd = fIv +=cu =f
where 'denotes
derivativeThen our phase plane system is

S
V1 = U

Phase plane system wrt now

u = cu - f(v)
stripped down equs ou -

pg 26 to phase plane in v,
v

= v(V -a)(I -V), oa <

which wecalled u (2D Slice of 3D space)
Fixed points of this problem are u = 0 ,

V = 0
, a,

-

ua the 3 equilibria
are the zeros of f(u)

-
.

with u = 0

x = c - f (v)
.
Thusu= 0

IFear nullcline I => cu = f(v) Ia

=> u = f(v)/c
can see this through linearization

Linear stability analysis shows that V = 0 ,
1 are saddles and v=a is an unstablemode.

So we are interested in the trajectory in the phase plane that goes from v =0 to v =/

fixed points (to replicate the action potential we had in the space-clamped case

where we had the fast behaviour jumping out of the nullcline
.
)

ua

simotoroa
fast
I

There is only one value ofc that achieves this now :

==r =- at Vo
,

so gradient of trajectorystone
at

because f(v = d) = 0
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un

7 s
if we are"too high"

we will "fly off
"

-v =
0

> v
=I saddle- we are after the purple one

d >

V
that takes us from v =0 to v=/

v =a / start by drawing
unstable

if we
the trajectories close

mode
are too to v = o , a , 1 given
low we'll their known nature
alsofly off & fill in the trajectories after

~wave speed
L

Like a shooting problem. This is how c is selected - this means there is a

unique wave speed for the travelling wave.

recall we set x= v

(ii) . Thus , once we land on the u nulkline (n:, i . e .
v= ) we

~ lowly more on this
. Specifically , on this we have

= (v" = f(v)

&CV' = f(r) -w + 22 V"
x/ 3 Cw' = jV -w ② from before

=> Cf(v) = f(r) - w +2 r"

to leading order in

=> w = f(v) @

This takes us up the curve z=) until we reach w = JV (the eq of2)

W # (v , w) phase plane now rather
M

than (v , 2) phase plane

we know will looks like this because v=f(r)= vir-al(l-V)

a different slice now
from D just above

Wa
~I don't go all the

in the purely time-dependent................ rayup , wegite
-

In
A

system , the action potential
A B

> v dimensim goes all the way upXa initiatefor mullcline

> V

!
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21

W
W

a
2D version

2D for atraveling wave ,

A

·Dow
slanted version

i
from RHS

-
.......g the action potential

& - w reaches a valueWe
& B V

v

Note thatG is not the maximum of w = f(U) unlike in the space-damped model.

Now Cis where w =Jr. We need to find what this value We is
,
which we

will find out in the next stage

(iii) Once we have reached this point we enter another fast phase.Again rescale

- 2] to capture this, but this time w:w
, (a nonzero constant ,

which we need

to find out what value it is). Then the system is

(v = f(u) - w
=

+ r" where ·=
The advantage of this now is we can again turn it into a phase plane

, by writing it as

a first-order system .

Phase plane system E
v 1U

& from before ,
becomes now

H = cu - f(r)

=> v= U

u = cu - f(r) + wa

Going back into the /U .v) plane again we end up w/ something quite similar

ua

*ullcline :
1

=0

unstable
node

=> 0 = (2 - f(u) + We

↑
=> u = (f(v) -Wc)/c

↳

campt same curve as before⑫:

-

> j but shifted down
C f(r)

-

Wa by this amount

equ pt [ T T



so
C & D are saddles and this time we have a trajectory that takes us

from C to
D
.

This time it isWe that we need to choose correctly (just like we had to choose

the wave speed, correctly in part (il) .

21
W

DoSeton

&
& 'B V

A [

(iv) Finally a slow phase takes us back to A again on the ( . w) phase plane.

21
wa W

↳t

Vision
i &

3

I
&

V
> A S

B
A

A + B
, B + c , C+ D , D +A

fast slow fast slow

The overall picture is a travelling wave that moves down the axon and looks like this

2 I

The trajectories
vn · B+C (if you look at the plot · A+B

A-B
on the right , above,

B v goes from 0 to

B+ C
doesn't change much

& it happens quickly
C-+ D I - .

.
=.... B

-

D + A

take a certain - I recall that since we chose j=cf-X,o

amount of time we go from right to left
but we are interested

D

in the voltage A
X

this is our wave train which propagates
WI speed C



&1

3 D + D This takes us from v = 1 to v = 0 (but a bit negative)

* Same as the space-clamp version , but in that case the wave train above would be a time trace

Whereas the one above is moving down the axon.

/

The section above is about how a signal propagates from our brain to our muscles to

say "do something" . But the muscle then has to do something. This
is what we will

cover next.

Chapter 4 : CALCIUM DYNAMICS

Calcium (Cart) is important in muscle dynamics and cell signalling

Cast is stored in cells in bones & released by hormonal stimulation.The internal store is

Called the sarcoplasmic reticulum.

It releasesCa2+ via calcium induced release .

The intracellular fluid matrix is called the sarcoplasm .

-

ExtracellularCast concentrations are higher than intracellular concentrations so Ca2t

must be pumped out.

Muscle cells are bundles (fascicules) of muscle fibres (cells) each of which contains arrays of
filament structures (microfibrils) which contract under the action of Co2t

-
- ->E :

muscle

Contraction "biceps"

Under stimulation from a nerve cell , an action potential is triggered and propagates
along the fibre

.
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Nat floods in and this allows Ca2t in too

The release of Last is quite spiky a

Cart 11concent.

t

Can we derive a mathematical model for muscle contraction with a low Cast concentration
in steady state that is excitable under stimulus?

The two-pool model

We want to derive a model to explain howCa2+ moves between thesarcoplasmic
reticulum (the store) and the sarcoplasm .

~Sr [influx]Leakage
sarcoplasm C

sarcoplasmic Siactive uptakej

[activeimrelease] Cs

S
KsG (leakage]

Cit makes sense that the leakage is proportional to the conc .C
.If we double G , we'll have more leakage)

C = concentration of Cast in the sarcoplasm

C = 11 Sarcoplasmic reticulum (SR)
S

5 = rate of take up ofCart by the sarcoplasmic reticulum (by receptors)
[active uptake]

5

. = rate at which the SR releases its internal store (calcium induced calcium release

[active release]

v = influx of Ca2+ into the sarcoplasm from the outside world because of an applied
stimulus

.

ksC = rate of leakage of Cast from SR into the sarcoplasm [passive -proportion oa
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-↓C = rate of Leakage of Cost from sarcoplasm to outside world

(passive - proportional to

]concentration

& = J+
- j

-

-k * F

* = w - k - (5+
- j-ks)

= r -kc - F
constants

-
We choose J= (from experiments) Hill function again

# V, is not a voltage ,isa concentration rate.

-numbersthese
bits aren't importa

um

This is the important bit that causes the calcium induced

Calcium release .

Non-dimensionalisation

u , v, , fC= u
, C = Ev , t =+ ,

F = Nef
all dimensionless

counterparts

& = m - u - Ef(u , v)

implicit function of u and v that we can plot

& Esfiu , v) where + = Blun)-up) - Su

With M==K ,=
as our dimensionless parameters.
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This is a two-dimensional system (u .V) so we may use phase-plane analysis .

&) means that we quickly jump onto the v-nullline , flisiv) = 0

Va

M f(u , v) = 0 v-nulldine

>
u

How to plot this curve ?

① SKI so ignoring the S-term in flue , v) gives
o since 8

- =Bl)-↑
in the nulkline

-
A J(u)/k(u)

k(u)

-~ Mus

" u >
u

=> Um = (1+M) vm)-)=
Plus

a

-
um sus)=

> U v = [m =p
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vn

M flu ,
v) = 0 v-nullcline

% &

2

approximate this part, set v=I
For the rest of this ,

see problem sheet .

Now let's look at the daynamics . V rapidly approaches the v-null cline that we

have found , because of the d in the equation.

But now if we look atthede equation we have

& = k - x - Ef(u ,v

↑
an here

so we don't just have u = const unlike in the previous cases. This time we note that

since=fluv) ==--

=>+

On the fast timescale tiet We have E = flu , v) becomes find
giving the movement ofv to the v-nullcline and + U =( -u)

=> u + yV = const to leading order in a.

↑ these are not
So we more to the v-nulkline along the line v=- yu+
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M + and l are the points where the

·
gradient of the curve flu , vi =0 is -t

Nv=
- jutconst Recall from

!
a

Fitzhugh-Nagumo
M

- Mk+
u

Case (i) : (n -

<>k+ =
Thenu+yv) = -u . When ucl , we more to the right Env

= oWhen us In , we more to the left

this leads to self-sustained or relaxation oscillations. My= M -110 when UsM+ um

VN 30 When u <- um

un

u v
>

t 't

Case (ii) : Me <-

Then (utyv) = M-u <0 When 2 M(p) we more to the right

When uslu we move to the left
Va

·
M- u

M

We need a bit of energy/excitation to move away from the blue equilibrium point,
and then we get an excursion- a muscle contraction !
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Case (iii) : Ms M+

V n

.
M- |n+ u

M

utyv = M - U
. When up we more to the right

u = m we more to the left

The equilibrium lies at us +, which is high .
This leads to cramps and rigor mortis

↓
i. e. concentration of Cast stoys high always


