LIE ALGEBRAS: LECTURE 11.

1. More on the Cartan decomposition

Proposition 1.1. Let \mathfrak{g} be a semisimple Lie algebra and let \mathfrak{h} be a Cartan subalgebra, and $\mathfrak{g} = \mathfrak{h} \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$ the associated Cartan decomposition.

(1) If $x \in \mathfrak{g}_{\alpha}$, $y \in \mathfrak{g}_{\beta}$ and $h \in \mathfrak{h}$ then

$$\kappa(h, [x, y]) = \alpha(h)\kappa(x, y).$$

- (2) The roots $\alpha \in \Phi$ span \mathfrak{h}^* .
- (3) The subspace $\mathfrak{h}_{\alpha} = [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] \subset \mathfrak{h}$ is one-dimensional and $\alpha(\mathfrak{h}_{\alpha}) \neq 0$.
- (4) If $\alpha \in \Phi$, and $e_{\alpha} \in \mathfrak{g}_{\alpha} \setminus \{0\}$, there exist $f_{\alpha} \in \mathfrak{g}_{\alpha}$ and $h_{\alpha} \in \mathfrak{h}_{\alpha}$ so that the map $e \mapsto e_{\alpha}$, $f \mapsto f_{\alpha}$ and $h \mapsto h_{\alpha}$ gives an embedding $\mathfrak{sl}_2 \to \mathfrak{g}_{\alpha} \oplus \mathfrak{h}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$. (Here e, f, h denote the standard basis of \mathfrak{sl}_2 .)

Proof. For (1) we have

$$\kappa(h, [x, y]) = \kappa([h, x], y) = \kappa(\alpha(h)x, y) = \alpha(h)\kappa(x, y),$$

as required.

For (2), suppose that $W=\operatorname{span}\{\Phi\}$. If W is a proper subspace of \mathfrak{h}^* , then we may find an $h\in\mathfrak{h}$ such that $\alpha(h)=0$ for all $\alpha\in\Phi$. But then it follows from our formula for the Killing form in terms of the Cartan decomposition that $\kappa(h,x)=0$ for all $x\in\mathfrak{h}$, which contradicts the nondegeneracy of the form $\kappa_{|\mathfrak{h}}$.

For (3), as in the remark above, since $\kappa_{|\mathfrak{h}}$ is nondegenerate it yields an isomorphism $\mathfrak{h}^* \to \mathfrak{h}$, given by $\lambda \mapsto t_\lambda$ where $(t_\lambda, h) = \lambda(h)$ for all $h \in \mathfrak{h}$. Since we know that Φ spans \mathfrak{h}^* , it follows that $\{t_\alpha : \alpha \in \Phi\}$ spans \mathfrak{h} . Suppose that $x \in \mathfrak{g}_\alpha$, $y \in \mathfrak{g}_{-\alpha}$. Then by (1) we see that $[x,y] = \kappa(x,y)t_\alpha$, so that $\mathfrak{h}_\alpha \subseteq \operatorname{span}\{t_\alpha\}$. Since κ is nondegenerate on $\mathfrak{g}_\alpha \oplus \mathfrak{g}_{-\alpha}$ we may find $x \in \mathfrak{g}_\alpha$, $y \in \mathfrak{g}_{-\alpha}$ such that $\kappa(x,y) \neq 0$, hence $\mathfrak{h}_\alpha = \operatorname{span}\{t_\alpha\}$ as required.

Next we wish to show that $\alpha(\mathfrak{h}_{\alpha}) \neq 0$. For this note that if $\alpha(\mathfrak{h}_{\alpha}) = 0$ then pick $x \in \mathfrak{g}_{\alpha}$, $y \in \mathfrak{g}_{-\alpha}$ so that $z = [x,y] \in \mathfrak{h}_{\alpha}$ is nonzero. Then $[z,x] = \alpha(z)x = 0 = -\alpha(z)y = [z,y]$, so that $\mathfrak{a} = \text{k-span}\{x,y,z\}$ is a solvable subalgebra of \mathfrak{g} . In particular, by Lie's theorem we may find a basis of \mathfrak{g} with respect to which the matrices of $\text{ad}(\mathfrak{a})$ act by upper triangular matrices, and so ad(z) = ad([x,y]) acts by a strictly upper triangular matrix, and hence is nilpotent. Since we also know $z \in \mathfrak{h}$ we have ad(z) is semisimple, hence ad(z) is both semisimple and nilpotent, which implies it is zero, contradicting $z \neq 0$.

Given $\alpha(\mathfrak{h}_{\alpha}) \neq 0$, it is clear that there is a unique $h_{\alpha} \in \mathfrak{h}_{\alpha}$ such that $\alpha(h_{\alpha}) = 2$, indeed $h_{\alpha} = \frac{2}{\alpha(t_{\alpha})}t_{\alpha}$. Next if $e_{\alpha} \in \mathfrak{g}_{\alpha}$ is nonzero, then using the nondegeneracy of κ and part (1) we may find an $f_{\alpha} \in \mathfrak{g}_{-\alpha}$ so that $\kappa(e_{\alpha}, f_{\alpha}) = \frac{2}{\kappa(t_{\alpha}, t_{\alpha})}$, and hence using part i) we see $[e_{\alpha}, f_{\alpha}] = h_{\alpha}$. It is now easy to check that $\{e_{\alpha}, f_{\alpha}, h_{\alpha}\}$ span an copy of \mathfrak{sl}_2 in \mathfrak{g} which establishes (4).

Remark 1.2. A triple of elements $\{e, f, h\}$ in a Lie algebra $\mathfrak g$ which obey the relations of the standard generators of \mathfrak{sl}_2 (that is, [e, f] = h, [h, e] = 2e, [h, f] = 2f) is called an \mathfrak{sl}_2 -triple.

Lemma 1.3. Let \mathfrak{g} be a semisimple Lie algebra and \mathfrak{h} a Cartan subalgebra with Cartan decomposition $\mathfrak{g} = \mathfrak{h} \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$. Then

- The root spaces \mathfrak{g}_{α} are one-dimensional.
- If $\alpha \in \Phi$ and $c\alpha \in \Phi$ for some $c \in \mathbb{Z}$ then $c = \pm 1$.

Proof. Choose a nonzero vector $e_{\alpha} \in \mathfrak{g}_{\alpha}$. Then as above we may find an element $e_{-\alpha} \in \mathfrak{g}_{-\alpha}$ such that $[e_{\alpha}, e_{-\alpha}] = h_{\alpha} \in \mathfrak{h}$ (since κ restricted to $\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$ is nondegenerate). Consider the subspace:

$$M=\mathsf{k}.e_\alpha\oplus\mathsf{k}.t_\alpha\oplus\bigoplus_{p<0}\mathfrak{g}_{p\alpha}.$$

(this is a finite direct sum as $\mathfrak g$ is finite-dimensional). Then since $\mathrm{ad}(e_\alpha)(e_\alpha)=0$, and $[\mathfrak g_\alpha,\mathfrak g_{-\alpha}]=\mathsf k.h_\alpha$, and $[e_\alpha,h_\alpha]=2e_\alpha$, it is easy to see that M is stable under $e_\alpha,e_{-\alpha}$ and h_α . We commute the trace of h_α on M in two ways: on the one hand, it a commutator and so has trace zero. On the other hand it acts semisimply on each of the direct sums defining M, so that

$$0 = \operatorname{tr}(h_{\alpha}) = \alpha(h_{\alpha}) + \sum_{p < 0} \dim(\mathfrak{g}_{p\alpha}) \cdot p\alpha(h_{\alpha})$$
$$= \alpha(h_{\alpha})(1 - \sum_{p > 0} p \cdot \dim(\mathfrak{g}_{-p\alpha}).$$

Since we know that $\alpha(h_{\alpha}) \neq 0$, the only way the above equality can hold is if $\dim(\mathfrak{g}_{p\alpha}) = 0$ for p > 1 and $\dim(\mathfrak{g}_{-\alpha}) = 1$. Since $-\alpha \in \Phi$ if and only if $\alpha \in \Phi$, this completes the proof.

Remark 1.4. It follows immediately from Proposition 1.1 part iv) and Lemma 1.3 part i) that for any $\alpha \in \Phi$, the direct sum $\mathfrak{g}_{\alpha} \oplus \mathfrak{h}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$ is a subalgebra of \mathfrak{g} isomorphic to \mathfrak{sl}_2 . We will denote this subalgebra as \mathfrak{sl}_{α} . (Note $\mathfrak{sl}_{\alpha} = \mathfrak{sl}_{\beta}$ if and only if $\alpha = \pm \beta$.)

We can refine somewhat the structure of the Cartan decomposition we have already obtained, using the same techniques. Suppose that α, β are two roots in \mathfrak{g} such that $\beta \neq k\alpha$ for $k \in \mathbb{Z}$. Then we may consider the roots which have the form $\alpha + k\beta$. Clearly, since \mathfrak{g} is finite dimensional, there are integers p,q>0 such that $\alpha + k\beta \in \Phi$ for each k with $-p \leq k \leq q$, but neither $-(p+1)\alpha$ nor $(q+1)\alpha$ are not in Φ . This set of roots is called the α -string through β .

Proposition 1.5. Let $\beta - p\alpha, \dots, \beta + q\alpha$ be the α -string through β . Then we have

$$\beta(h_{\alpha}) = \kappa(h_{\alpha}, t_{\beta}) = \frac{2\kappa(t_{\alpha}, t_{\beta})}{\kappa(t_{\alpha}, t_{\alpha})} = p - q.$$

In particular $\beta - \beta(h_{\alpha}).\alpha \in \Phi$. Moreover, if $\alpha \in \Phi$ and $c \in k$ has $c\alpha \in \Phi$ then $c \in \{\pm 1\}$.

Proof. We consider the subspace $M=\bigoplus_{-p\leq k\leq q}\mathfrak{g}_{\alpha+k\beta}$. Pick $e_{\alpha}\in\mathfrak{g}_{\alpha}$ and $e_{-\alpha}\in\mathfrak{g}_{-\alpha}$ such that $0\neq [e_{\alpha},e_{-\alpha}]=h_{\alpha}$ and so that $\{e_{\alpha},e_{-\alpha},h_{\alpha}\}$ form the standard

generators of \mathfrak{sl}_2 as above. It is clear that $e_{\alpha}, h_{\alpha}, e_{-\alpha}$ preserve M, so we $\operatorname{tr}_{|M}(h_{\alpha}) = 0$, and so, using the fact root spaces are 1-dimensional, we have the identity:

$$\sum_{-p \le k \le q} (\beta + k\alpha)(h_{\alpha}) = 0,$$

and so

$$(q(q+1)/2 - p(p+1)/2)\alpha(h_{\alpha}) + (p+q+1)\beta(h_{\alpha}) = 0,$$

and so since $p + q + 1 \neq 0$ and $\alpha(h_{\alpha}) = 2$, we obtain:

$$\beta(h_{\alpha}) = p - q.$$

as required. Since $\beta+(p-q)\alpha$ is certainly in the α -string through β it follows that $\beta+\beta(h_{\alpha}).\alpha\in\Phi.$

For the second part, since we know from the previous lemma that if $c \in \mathbb{Z}$ then $c \in \{\pm 1\}$, it suffices to consider the case where $c \in \mathsf{k} \setminus \mathbb{Z}$. But then we may apply the first part of the lemma to $\beta = c\alpha$ to find that $2c = c.\alpha(h_\alpha) = p - q$, that is, $c = \frac{1}{2}(p-q)$. Since $c \notin \mathbb{Z}$, the difference p-q must be odd, and the α -string through $\beta = \frac{(p-q)}{2}\alpha$ has the form:

$$\frac{-(p+q)}{2}\alpha,\ldots,\frac{(p-q)}{2}\alpha,\ldots,\frac{(p+q)}{2}\alpha,$$

which clearly then contains $\frac{1}{2}\alpha$ so that $\frac{1}{2}\alpha \in \Phi$. But then we get a contradiction as $\alpha = 2(\frac{1}{2}\alpha)$.

Remark 1.6. In fact, if $\alpha, \beta \in \Phi$ and $\alpha+\beta \in \Phi$, then $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]=\mathfrak{g}_{\alpha+\beta}$. Indeed let \mathfrak{sl}_2 act on \mathfrak{g} via the triple $\{e_{\alpha},h_{\alpha},e_{-\alpha}\}$ as in the proof above. Then the \mathfrak{sl}_2 -representation $M=\bigoplus_{-p\leq k\leq q}\mathfrak{g}_{\alpha+k\beta}$ is easily seen to be an irreducible representation (because each h_{α} weight space is one-dimensional and the eigenvalues all have the same parity as $\beta(h_{\alpha})$. Then the explicit description of the irreducible representations of \mathfrak{sl}_2 worked out in the problem sheet shows that e_{α} is injective except on the subspace $\mathfrak{g}_{\beta+q\alpha}$, and so in particular on \mathfrak{g}_{β} , hence $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]$ is nonzero and hence all of $\mathfrak{g}_{\alpha+\beta}$.