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Abstract

It is a classical result that a random permutation of n elements has, on average, about
log n cycles. We generalise this fact to all directed d-regular graphs on n vertices by show-
ing that, on average, a random cycle-factor of such a graph has O((nlogd)/d) cycles.
This is tight up to the constant factor and improves the best previous bound of the form
O(n/y/logd) due to Vishnoi. Our results also yield randomised polynomial-time algo-
rithms for finding such a cycle-factor and for finding a tour of length (1 + O((logd)/d)) - n
if the graph is connected. This makes progress on a conjecture of Magnant and Martin and
on a problem studied by Vishnoi and by Feige, Ravi, and Singh. Our proof uses the lan-
guage of entropy to exploit the fact that the upper and lower bounds on the number of
perfect matchings in regular bipartite graphs are extremely close.

1 Introduction

The probability that a random permutation has a fixed point was considered as early as 1704
in Pierre-Rémond de Montmort’s Essai d’Analyse sur les Jeux de Hasard. Random permutations
have since become one of the most classical topics in discrete probability. Cauchy was the first
to study permutations for their own sake. In the 1840s, he derived a formula for the number
of permutations of n elements with a given cycle structure [Cau40]. This formula implies that,
on average, a random permutation contains ) ;/_; 1/k ~ logn cycles. The latter result is now a
standard exercise in discrete probability.

In this paper, we generalise this result to all directed d-regular graphs' on n vertices. A cycle-
factor of such a graph is a partition of its vertices into directed cycles. Equivalently, this cor-
responds to a permutation of the vertices such that every vertex is mapped to one of its d
out-neighbours. In particular, a random permutation of n elements is the same as a random
cycle-factor of the complete directed graph on n vertices with a loop at every vertex.

It follows from Hall’s theorem that every directed d-regular graph has at least one cycle-factor.
How many cycles are there in a typical cycle-factor of such a graph? By the discussion above, a
random cycle-factor of the disjoint union of n/d complete directed graphs on d vertices has, on
average, about (nlogd)/d cycles. We prove that, up to constant factors, this is an upper bound
on the expected number of cycles in a typical cycle-factor for any directed d-regular graph.
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Theorem 1.1. The expected number of cycles in a uniformly random cycle-factor of a directed d-regular
graph on n vertices is O((nlogd)/d).

This recovers the aforementioned fact that, on average, uniformly random permutations of n
elements have O(logn) cycles. The constant factor in Theorem 1.1 can be taken to be 4. Note
that Theorem 1.1 also applies to undirected d-regular graphs if we direct each edge in both
directions?. Previously, the best upper bound known on the number of cycles in a typical
cycle-factor of a d-regular graph was O(n/4/logd) due to Vishnoi [Vis12].

While Theorem 1.1 only proves the existence of cycle-factors with few cycles, we can also find
such cycle-factors efficiently. This is a consequence of the fact that we can sample almost-
uniform random perfect matchings of bipartite graphs in polynomial time [JSV04].

Corollary 1.2. There exists a randomised polynomial-time algorithm that computes, with high proba-
bility, a cycle-factor of a directed d-reqular graph on n vertices with at most O((nlogd)/d) cycles.

If we remove one edge from each cycle in a cycle-factor, we obtain a path-factor, which is a
partition of the vertices of a graph into paths. Magnant and Martin [MMO09] conjectured that
every d-regular graph on n vertices has a path-factor with at most n/(d + 1) paths. This would
be tight as the disjoint union of n/(d + 1) cliques on d + 1 vertices requires at least n/(d + 1)
paths in any path-factor. The conjecture of Magnant and Martin is only known to be true for
d < 6 [MMO09, FF22], d = Q(n) [GL21], and for partitioning almost all vertices of a graph into
paths [MMPS24, LMS25]. Feige, Ravi, and Singh [FRS14] showed that every d-regular graph
on 1 vertices has a path-factor with O(n/v/d) paths, which was the best previous upper bound
known. Using Corollary 1.2, we get the following improvement.

Corollary 1.3. There exists a randomised polynomial-time algorithm that computes, with high proba-
bility, a path-factor of a d-regular graph on n vertices with at most O((nlogd)/d) paths.

The conjecture of Magnant and Martin is also intimately related to the celebrated Linear Ar-
boricity Conjecture of Akiyama, Exoo, and Harary [AEHS80] which states that the edges of
every graph with maximum degree A can be partitioned into at most [ (A + 1) /2] path-factors.
The best bound known for the Linear Arboricity Conjecture is due to Lang and Postle [LP23]
and shows that A/2 + O(v/Alog* A) path-factors suffice. This bound cannot be improved to
A/2 + o(v/A) without being able to show that every A-regular graph has a path-factor with at
most o(1/v/A) paths. Corollary 1.3 shows that such path-factors exist.

Finally, we can use our results to find short tours® of connected d-regular graphs. The problem
of finding such tours was introduced by Vishnoi [Vis12], motivated by the study of approxima-
tion algorithms for the travelling salesman problem. Feige, Ravi, and Singh [FRS14] showed
that there exist tours of length (1 + O(1/v/d)) - n and provided an example in which every tour
has length at least (1 + Q)(1/d)) - n. Since a cycle-factor with ¢ cycles in a connected graph can
be efficiently transformed into a tour of length 1 + 2c, we obtain the following.

Corollary 1.4. There exists a randomised polynomial-time algorithm that computes, with high proba-
bility, a tour of a connected d-regular graph on n vertices of length at most (1 + O((logd)/d)) - n.

The rest of the paper is structured as follows. In Section 3, we prove our main results, Theo-
rem 1.1 and Corollary 1.2. This section also includes an overview of our proof strategy. Since
the proof of Theorem 1.1 uses the language of entropy, we first provide a short introduction to
entropy in Section 2. We also use this section to introduce a small amount of notation.

Note. In upcoming work, we use a completely different approach to prove that every d-regular graph on
n vertices has a path-factor with O(n/d) paths as well as a tour of length (1+ O(1/d)) - n if the graph

2A cycle-factor of an undirected graph can contain individual edges, which we consider to be cycles of length 2.
3A tour of a graph is a connected walk that visits every vertex and starts and ends at the same vertex.



is connected. We also use this approach to make progress on the Linear Arboricity Conjecture. However,
this approach does not provide efficient algorithms and does not apply to directed graphs or cycle-factors.

2 Preliminaries

Let [n] :={1,...,n}, and let S, denote the family of permutations of [n]. If ¢ € S, and Z C [n],
we write 0(Z) = {0 (i) : i € Z}. A cycle of o € S, is a minimal non-empty subset Z C [n] such
that 0(Z) = Z. We denote the number of cycles of ¢ by ||

For our proofs, we will need Stirling’s approximation which states that as n — oo, we have
n! = (1+o0(1))-v2rn(n/e)". In fact, it will be more useful for us to use the weaker bounds
(n/e)" < n! <en(n/e)" which hold for all .

We now recall some basic definitions and properties of Shannon entropy which will be essen-
tial for our proofs. For a more thorough exposition, we refer the reader to [AZ18, Chapter 37].
This also contains a nice exposition of Radhakrishnan’s proof [Rad97] of the Brégman-Minc in-
equality (see Theorem 3.1), which serves as the starting point of our approach. In the following,
all logarithms are base 2, and we use the convention plogp = 0 for p = 0.

Suppose that X is a random variable that takes values in a finite set X. Then, the Shannon
entropy of X is defined as

=— ) P(X=x)log(P(X = x)).
xeX
One basic property of entropy is that H(X) < log|X| with equality if and only if X is dis-
tributed uniformly at random in X'. For p € [0,1], write H(p) .= —plogp — (1 — p)log(1 — p)
for the entropy of a Bernoulli random variable with probability p.

The definition of entropy easily extends to conditional probability. If E is some event, then the
entropy of X conditioned on E occurring is

H(X | E) ——Z}l{lp =x|E)log(P(X =x | E)).

If Y is another random variable that takes values in a finite set ), then the conditional entropy of
X given Y is
HX|Y):=) PY=y)-H(X|Y=y).
yely

Note that H(X | Y) = 0if and only if Y completely determines X.

The only fact about conditional entropy that we will need is the chain rule which says that if
Xi,...,X, are random variables, then

H(X1,.. o, Xn) =H(X1) +H(Xo | X0) + -+ H(Xn | X100+, Xn1)
where the tuple Xj, ..., X; is viewed as a single random variable whose distribution is the joint
distribution of Xy, ..., X;.
3 Expected number of cycles in a random cycle-factor

Suppose that G is a directed d-regular graph on n vertices. We wish to show that the expected
number of cycles of a uniformly random cycle-factor of G is O((nlogd)/d). To achieve this, we
will reveal the edges of the random cycle-factor one by one in a random order and bound the
probability that each new revealed edge closes a cycle. We do this by going through the vertices
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in a random order and revealing their out-neighbours in the cycle-factor. If the revealed out-
neighbour of a vertex were always uniformly distributed among all remaining available out-
neighbours, then we could show the desired bound. Indeed, since the edges are revealed in a
random order, it is possible to show that the number ¢ of remaining out-neighbours of a vertex
is uniformly distributed in [d], and so the probability that each new revealed edge closes a cycle

would be at most .
121:o<logd>_
d=t d

To handle the general case where out-neighbours are not uniformly distributed, we connect our
process to Radhakrishnan’s entropy proof [Rad97] of the Brégman-Minc inequality [Bre73].
Towards that end, construct a d-regular bipartite graph H with bipartition V(H) = UUV
where U and V are both copies of V(G), and for each directed edge (u,v) of G we add an
edge between u € U and v € V to H. It is easy to see that cycle-factors of G correspond to
perfect matchings of H*. The Bregman-Minc inequality gives the following upper bound on
the number of perfect matchings in regular bipartite graphs.

Theorem 3.1. Every d-reqular bipartite graph on 2n vertices has at most (d!)"/ perfect matchings.

On a high level, Radhakrishnan’s proof of Theorem 3.1 picks a uniformly random perfect
matching and shows that its entropy is at most log((d!)"/?). The idea here is to reveal the
edges of the random matching one by one in a random order® and to bound the amount of en-
tropy added by each new revealed edge. Note that the amount of entropy added is maximised
if each new revealed edge is uniformly distributed among its remaining options. This can be
used to prove Theorem 3.1.

We pursue a very similar strategy to analyse random cycle-factors of G. Conveniently, re-
vealing an edge of a random perfect matching of the auxiliary bipartite graph H corresponds
precisely to revealing an edge of the random cycle-factor of G. As mentioned before, we wish
to understand the case where a revealed edge of the cycle-factor is not uniformly distributed
among its remaining options. If this happens, the amount of entropy added for the correspond-
ing edge in H is lower than the entropy of the uniform distribution. This, in turn, translates
into a better upper bound on the number of perfect matchings of H. However, this upper
bound cannot drop too low. This is because the Van der Waerden inequality, proved by Ego-
rychev [Ego81] and Falikman [Fal81], gives the following lower bound on the number of perfect
matchings in regular bipartite graphs.

Theorem 3.2. Every d-regular bipartite graph on 2n vertices has at least n! - d" /n™ perfect matchings.

This lower bound allows us to quantify how much entropy can be lost while revealing the
edges of the random cycle-factor of G. We will see that the total loss in entropy is at most
O((nlogd)/d) compared to what the entropy would have been had the edges been uniformly
distributed throughout the process. The key fact that ties everything together is that any loss in
entropy increases the probability of closing a cycle at most by an additive linear term. Together,
this implies Theorem 1.1.

We start by proving the following simple lemma that formalises the relationship between a loss
in entropy and an increase in the probability of a random variable attaining a specific value. In
our case, this will correspond to the probability of closing a cycle.

4This observation was also used by Vishnoi in [Vis12] to show that a typical cycle-factor in a d-regular graph has
O(n/+/logd) cycles.

5To the best of our knowledge, the random order was first used by Alon and Spencer [AS16] to prove the
Bregman-Minc inequality.



Lemma 3.3. Let X be a random variable taking values in a set X of size s, and let ¢ = logs — H(X).
Then, for all x € X it holds that

Proof. Let x € X and let p := P(X = x). Consider the indicator random variable 1x_, of the
event that X = x. By the chain rule for entropy,

H(X) =H(Ixey) +H(X | Ix—x) =H(p)+p - HX | X=x)+(1—p) - H(X | X # x).

Clearly, H(X | X = x) = 0. Also, if X # x, then X takes at most s — 1 distinct values, and so
H(X | X # x) <log(s —1). This implies that

H(X) < H(p)+(1—p)log(s —1).
Let h(q) :== H(q) + (1 — q) log(s — 1). Note that h(q) = H(Y) for the random variable Y with

P(Y=x)=qgqandP(Y =y) = (1—¢q)/(s—1) forally € X\ {x}, and so h(q) < logs.
Moreover,

W(q) = —logq+log(l—gq)—log(s—1) = log <q(15_—ql)> .

Since this is decreasing in g, we get for g > 2/s that

=1 (2)-vu (75 e (2) -

So, for g > 2/s, we have h(q) < h(2/s) — (g —2/s) < logs — (g —2/s). Since we know that
h(p) > H(X) =logs — ¢, it follows that p < 2/s + (. O

We can now prove our main result using the strategy outlined earlier in this section. The first
part of the proof closely follows Radhakrishnan’s proof of the Bregman-Minc inequality, with
the twist being that we keep track of the total loss in entropy. This is used in the second part to
prove an upper bound on the expected number of cycles, by passing through Lemma 3.3.

Proof of Theorem 1.1. We identify the vertices of G with [n]. Let C be the set of all permuta-
tions ¢ of [n] such that (i,0(i)) € E(G) for all i € [n]. Note that C corresponds to the collection

of all cycle-factors of G. Theorem 3.2 in combination with Stirling’s approximation implies that
IC| > n!-d"/n" > (d/e)".

Pick ¢ € C uniformly at random, so H(c) = H(c(1),...,0(n)) = log|C|. For every permuta-
tion T € S, the chain rule for entropy implies that

) = L M) [olr(§- 1))
Fori € [n],let t; :== 7([j — 1]) where j = T7!(i). If we reorder the above sum, we get
H(e) = L H(o(0) | o(r).
Expanding the definition of conditional entropy, we get

n

H(o) = Y. L P(o(ta) = 1) Hlo(i) | o(ta) = 7),

i=1



where 7 ranges over all possible values of ¢(7.;). Since ¢ is chosen uniformly at random,
observe that P(c(1;) = ) = [{¢’ € C: 0'(1<;) = }|/|C|. Therefore,

Foralli € [n],¢0’ € C,and T € S, let s(i,0’,t) = |[NT(i) \ ¢/(7-;)| be the number of out-
neighbours of i in G that are not contained in ¢’'(7;). If o(7-;) = 0'(7;), then o(i) must
be one of these out-neighbours, and so H(c (i) | o(t<;) = ¢/(1<i)) < logs(i,0’, ). Define
L(i,0',7) :=1logs(i,c/,T) — H(o(i) | o(t<;) = ¢'(7<;)). Then,

-y ’(1:’ Y (logs(i, o', 7) — (i, 0, 7)).

=1 o'eC

Since this holds for all T € S,;, we may pick T € S, uniformly at random. This yields

n

H(o) = E; <Z|C|Zlogszar) Ezo*r) i| Z (logs(i,o’, 1)) — L

o'eC

where
1

‘Z (i, o', 7)

'eC

M:

Il
—_

denotes the loss in entropy compared to a uniform distribution.

For a fixed i and ¢’, note that s(i, ¢/, T) is the number of out-neighbours j € N7 (i) of i in G such
that (¢’)~!(j) does not appear before i in T. Since T is a uniformly random permutation, this
number is distributed uniformly at random in [d], and so it follows that

= Z Zlogt—ﬁ——log(d') L.

i=1 ‘ ‘ a/eC

Using Stirling’s approximation and recalling that |C| > (d/e)", we get

nlog (i) <log|C| =H(0) = glog(d!) — L <nlog <i> + glog(ed) - L,

and therefore £ < (nlog(ed))/d.

We now bound the number of cycles || of o using a very similar calculation. For every per-
mutation T € S,, we say that o(i) closes a cycle if T; contains all other vertices that are on the
same cycle as i in 0. That is, adding o (i) to o(7.;) creates one additional cycle. Note that |o| is
equal to the number of vertices i € [n] for which ¢ (i) closes a cycle, and so

(o)) = Z P(o (i) closes a cycle)

= ZZP<U(T<1‘) =) -IP(0(i) closes a cycle | o(T1-;) = 7)

P(c (i) closes a cycle | o(1<;) = 0’ (1<;)).



If 0(7-;) = 0/(1<;), then either ¢ (i) cannot close a cycle, or ¢(i) needs to be one specific out-
neighbour j € N7 (i) \ ¢/(t-;) in order to close a cycle. So, by Lemma 3.3 we know that

P(c (i) closes a cycle | 0(1<;) = 0’ (1)) < max P(o(i) =j| (1<) = o' (1<))

JENT (i)
< #—i—f(i o, 7)
~ s(i, 0, 7) s
This implies that
1 < 2 ,
E,(lo]) <) — ,+£1,(7’,T>.
Ao < gy Z (o +169)

Since this holds for all T € S,, we may again pick T € S, uniformly at random. As noted
before, s(i,0’, T) is then distributed uniformly at random in [d], and so

i=1 o'eC
noq 142
Lol
<2 g(logd+1)+£§4-g(logd+l). O

We finish by showing that there is a randomised polynomial-time algorithm that finds a cycle-
factor of G with at most O((nlogd)/d) cycles with high probability. For this, we will use the
fact that there exists an algorithm that samples an almost-uniform® random perfect matching
in bipartite graphs, which was proved by Jerrum, Sinclair, and Vigoda [JSV04].

Theorem 3.4. There exists a randomised polynomial-time algorithm that samples an almost-uniform
random perfect matching of a bipartite graph.

Using the fact that cycle-factors correspond to perfect matchings in the bipartite graph H con-
structed before, Corollary 1.2 is now an easy consequence.

Proof of Corollary 1.2. Recall that cycle-factors of G correspond to perfect matchings in the bi-
partite graph H constructed before. By Theorem 3.4 we can sample an almost-uniform random
perfect matching of H in polynomial time, and so we can sample an almost-uniform random
cycle-factor o of G in polynomial time.

By Theorem 1.1 and Markov’s inequality, we know that a uniformly random cycle-factor of
G has at most O((nlogd)/d) cycles with probability at least 1/2. Since ¢ is almost-uniform
with some error 4, this implies that o has at most O((nlogd)/d) cycles with probability at least
1/2 — 6. If we now sample ¢ independently at least Q)(log 1) times and return the cycle-factor
with the least number of cycles, then the returned cycle-factor has at most O((nlogd)/d) cycles
with high probability. O
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61f X is a random variable that takes values in a finite set X, then X is almost-uniform with error ¢ if the total
variation distance between X and the uniform distribution is at most J, thatis Y ,c y|1/|X| —P(X = x)| < 4.
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