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Abstract

A linear forest is a collection of vertex-disjoint paths. The Linear Arboricity Conjecture
states that every graph of maximum degree ∆ can be decomposed into at most ⌈(∆ + 1)/2⌉
linear forests. We prove that ∆/2 + O(log n) linear forests suffice, where n is the num-
ber of vertices of the graph. If ∆ = Ω(nε), this is an exponential improvement over the
previous best error term. We achieve this by generalising Pósa rotations from rotations of
one endpoint of a path to simultaneous rotations of multiple endpoints of a linear forest.
This method has further applications, including the resolution of a conjecture of Feige and
Fuchs on spanning linear forests with few paths and the existence of optimally short tours
in connected regular graphs.

1 Introduction

In 1850, Thomas Kirkman posed the following problem in The Lady’s and Gentleman’s Diary.

Fifteen young ladies in a school walk out three abreast for seven days in succession:
it is required to arrange them daily so that no two shall walk twice abreast.

Put differently, Kirkman was asking for a decomposition1 of the edges of the complete graph
on fifteen vertices into copies of a triangle. Investigating a similar problem in 1882, Walecki
proved that for all odd n, the complete graph Kn can be decomposed into Hamilton cycles,
which are cycles that contain every vertex. What other graphs can Kn be decomposed into?
The answer to this question is perhaps counter-intuitive: if basic divisibility conditions are
met, then Kn can be decomposed into a wide variety of graphs. Examples include large trees in
Ringel’s conjecture [MPS21, KS25], complete graphs in the study of designs [Kee14, GKLO23],
cycles of various lengths in the Oberwolfach problem [KS22], and many others. Notably, all of
these central conjectures have been proved in the past few decades as the machinery associated
with absorption and the probabilistic method has become more sophisticated and versatile
[AS16, KKK+23, GKLO23, Mon24, KSSS24].

The complete graph, however, is a very special and highly symmetric object, and so it is unclear
exactly which of its properties are necessary for these decomposition results. One way to in-
vestigate this is to consider dense graphs as a slight weakening of complete graphs. It turns out
that here too, a surprising variety of decompositions are possible, and here too there has been

†Department of Mathematics, ETH Zürich, Switzerland (micha.christoph@math.ethz.ch). Research supported by
SNSF Ambizione Grant No. 216071.

‡Mathematical Institute, University of Oxford, United Kingdom ({nemanja.draganic,antonio.girao,eoin.hurley,
lukas.michel,alp.muyesser}@maths.ox.ac.uk). Research of Nemanja Draganić supported by SNSF project 217926. Re-
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significant progress in the past few decades. Perhaps the largest body of work in this direction
concerns the decomposition of graphs that satisfy minimum degree conditions. Prominent ex-
amples of this include progress on the Nash-Williams conjecture on triangle decompositions
[BKLO16, DP21], generalising Kirkman’s problem, and the Hamilton decomposition theorem
for regular Dirac graphs [CKL+16], generalising Walecki’s result. Another exciting recent di-
rection concerns the decomposition of graphs that are dense and quasirandom. Here, results
include generalisations of Ringel’s conjecture [KS25] and of the Oberwolfach problem [KS22],
as well as approximate decompositions into arbitrary graphs of bounded degree [KKOT19]. This
work shares some machinery with the case of complete graphs and makes frequent use of Sze-
merédi’s famous regularity lemma. Overall, for the decomposition of dense graphs into graphs
of fixed size or very sparse spanning structures, the following perspective has emerged.

If there is no obvious barrier to the existence of a particular graph decomposition,
then the decomposition likely exists.

But what if we go beyond complete and dense graphs? After all, most graphs encountered in
areas like statistical physics, computer science, or group theory are graphs of bounded degree.
Is it still true that beyond obvious barriers, decompositions exist? Of course, in general we
can no longer hope for decompositions into complete graphs or Hamilton cycles since sparse
graphs may not even contain these structures. So, we have to ask for different decompositions.

Two classical and elegant results on the decomposition of sparse graphs are Vizing’s theorem
[Viz64] and the Nash-Williams theorem [NW61, NW64]. Vizing’s theorem, inspired by work of
Shannon [Sha49], states that any graph of maximum degree ∆ can be decomposed into ∆ + 1
matchings. The Nash-Williams theorem states that a graph can be decomposed into k forests if
and only if every set of ℓ vertices spans at most k · (ℓ− 1) edges. Thus, in both cases, decom-
positions exist beyond the obvious barriers. In recent decades, however, progress on sparse
decomposition problems has lagged far behind its dense counterparts. This is largely because
various tools—such as Szemerédi’s regularity lemma—offer little leverage in sparse graphs2.
Among the most famous open problems in this area are the List Edge Colouring Conjecture
[Viz76, ERT80, Kah00], the Erdős-–Gallai Conjecture on decomposing graphs into cycles and
edges [EGP66, BM24], and the Linear Arboricity Conjecture.

1.1 The Linear Arboricity Conjecture

A linear forest is a collection of vertex-disjoint paths, and the linear arboricity la(G) of a graph G is
the minimum number of linear forests needed to decompose the edges of G [Har70]. Matchings
are a special case of linear forests, and linear forests are a special case of forests, so the linear
arboricity of a graph lies between the aforementioned results of Vizing and Nash-Williams.
Since Hamilton paths are linear forests with the maximum possible number of edges, linear
arboricity can also be viewed as a relaxation of a decomposition into Hamilton paths.

How large is the linear arboricity of a graph? Since a linear forest covers at most two edges inci-
dent to any vertex, every graph G with maximum degree ∆ satisfies la(G) ≥ ⌈∆/2⌉. Moreover,
a ∆-regular graph G on n vertices has n · ∆/2 edges while any linear forest of G has strictly
less than n edges, and so la(G) ≥ ⌈(∆ + 1)/2⌉. The celebrated Linear Arboricity Conjecture of
Akiyama, Exoo, and Harary [AEH80] asserts that, beyond these obvious barriers, there should
always be a decomposition into linear forests.

Conjecture 1.1 (Linear Arboricity Conjecture). The linear arboricity of a graph with maximum de-
gree ∆ is at most ⌈(∆ + 1)/2⌉.

2Although there exist sparse variants of the regularity lemma [GS05, Koh97, Sco11], they only provide informa-
tion for sparse graphs whose edges are sufficiently well distributed, that is, pseudorandom graphs.
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This conjecture immediately received significant attention [AEH81, Eno81, Pér82, Tom82, EP84,
Gul86a, Gul86b]. By 1988, it was known to hold in the special cases ∆ ∈ {3, 4, 5, 6, 8, 10}, and
the best general upper bound was la(G) ≤ ⌈(3∆ + 2)/4⌉. In an influential paper, Alon [Alo88]
then confirmed the Linear Arboricity Conjecture asymptotically, showing that

la(G) ≤ ∆
2
+O

(
∆ log log ∆

log ∆

)
= (1 + o(1)) · ∆

2
.

This was one of the early applications of the Lovász Local Lemma, giving the Linear Arboricity
Conjecture a prominent place in the history of the probabilistic method [AS16].

Since then, some additional special cases of the conjecture have been solved, such as graphs
with minimum degree at least (1 + o(1)) · n/2 [GKO16, GS24], planar graphs [Wu99, WW08],
random or dense quasirandom graphs [DGCS25, GKO16], and random regular graphs of con-
stant degree [MR90]. The error term of Alon’s upper bound was subsequently improved to
O(∆2/3 log1/3 ∆) by Alon and Spencer [AS16], to O(∆2/3−ε) by Ferber, Fox, and Jain [FFJ20],
and to O(

√
∆ log4 ∆) by Lang and Postle [LP23]. A central ingredient in all of these upper

bounds is a certain degree of randomisation, either through a random partition of the vertex
set or through nibble-based strategies. For both approaches, Ω(

√
∆) is a natural bottleneck for

the error term, caused by concentration inequalities used throughout these proofs. This is a
reflection of the fact that the standard deviation of a binomial random variable with ∆ trials is
Θ(

√
∆). Our main contribution is the following upper bound on the linear arboricity.

Theorem 1.2. Every n-vertex graph G with maximum degree ∆ satisfies la(G) ≤ ∆/2 +O(log n).

This result breaks the square-root barrier for the Linear Arboricity Conjecture if ∆ = Ω(log2 n)
and represents an exponential improvement in the error term for ∆ = Ω(nε). Before our work,
there were no results that improved on the upper bound of Lang and Postle [LP23] even for
very dense graphs with ∆ = Ω(n).

For the fractional relaxation of linear arboricity, the previous best error term was also stuck at
the same square-root barrier. Formally, the fractional linear arboricity fla(G) of a graph G is the
smallest real number k for which we can choose a random linear forest of G that contains every
fixed edge of G with probability at least 1/k. Clearly, ∆/2 ≤ fla(G) ≤ la(G). Feige, Ravi, and
Singh [FRS14] showed that fla(G) ≤ ∆/2 +O(

√
∆). We improve the error term in this result

to O(log ∆), providing an exponential improvement for all ranges of ∆.

Theorem 1.3. Every graph G with maximum degree ∆ satisfies fla(G) ≤ ∆/2 +O(log ∆).

Our proofs use a novel variant of Pósa rotations for linear forests. We discuss our proof tech-
niques in more detail in Section 1.3. In particular, this section outlines the key lemma that we
use to prove our results, Lemma 2.3. In addition to being crucial for our upper bounds on the
linear arboricity, this lemma also has further applications, which we discuss in the following.

1.2 Spanning linear forests with few paths and short tours

If the Linear Arboricity Conjecture holds, then, by averaging, it follows that every d-regular
graph3 on n vertices has a spanning linear forest with as few as 2 · n/(d + 2) paths4. This
consequence of the Linear Arboricity Conjecture is a challenging and well-studied problem
in its own right. Magnant and Martin [MM09] conjectured that every d-regular graph has a
spanning linear forest with n/(d + 1) paths. Feige and Fuchs later conjectured that the weaker

3Recall that any graph with maximum degree ∆ is contained in a ∆-regular graph, and so we may, without loss
of generality, assume that a given graph is regular whilst obtaining bounds for the Linear Arboricity Conjecture.

4See [FF22, Section 1.1] for a detailed discussion of these calculations.
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bound O(n/d) should hold. These conjectures have been reiterated several times in recent
work [MMPS24, LMS25].

The conjecture of Magnant and Martin would be tight, as witnessed by a disjoint union of
cliques. However, this conjecture is only known to hold for d ≤ 6 [MM09, FF22], d = Ω(n)
[Han18, GL21], and for partitioning almost all vertices of a graph into paths [MMPS24, LMS25].
The upper bound on the fractional linear arboricity of Feige, Ravi, and Singh [FRS14] implies
that there is a spanning linear forest with O(n/

√
d) paths. Very recently, the authors of the

current paper [CDG+25] broke the square-root barrier for this problem, improving the upper
bound to O((n log d)/d).

These results employed a variety of different approaches. In addition to strategies also used for
the Linear Arboricity Conjecture, such as random partitioning arguments [MMPS24], previous
techniques included Szemerédi’s regularity lemma [Han18], robust expander decompositions
[GL21, LMS25], and entropy-based methods [CDG+25]. Using our new methods based on
rotations of linear forests, we establish the conjecture of Magnant and Martin up to a factor of
two. In particular, this proves the conjecture of Feige and Fuchs.

Theorem 1.4. Every d-regular n-vertex graph has a spanning linear forest with at most 2 · n/(d + 1)
paths.

For regular bipartite graphs, we even confirm the conjecture of Magnant and Martin, see The-
orem 2.7. We prove these results in Section 2 as an immediate consequence of the key lemma
that we use to make progress on the Linear Arboricity Conjecture.

Finally, our results imply that connected d-regular graphs have short tours, where a tour is a
sequence of adjacent vertices that ends at the starting vertex and visits every vertex at least
once. The problem of finding such tours was introduced by Vishnoi [Vis12] as a restriction of
the Travelling Salesman Problem to regular graphs. Feige, Ravi, and Singh [FRS14] showed
that every connected d-regular graph on n vertices has a tour of length (1 +O(1/

√
d)) · n and

observed that one cannot do better than (1 + O(1/d)) · n. The authors of the current paper
[CDG+25] very recently showed that tours of length (1 + O((log d)/d)) · n exist. Here, we
resolve this problem. This is a direct consequence of Theorem 1.4 in combination with a result
of Feige, Ravi, and Singh [FRS14, Corollary 1].

Corollary 1.5. Every connected d-regular n-vertex graph has a tour of length at most (1+O(1/d)) · n.

It is straightforward to construct regular connected graphs that are not Hamiltonian. However,
our results show that, at least in some sense, regular graphs are close to being Hamiltonian.

1.3 Proof techniques

A rotation of a path or a linear forest is a simple operation that modifies the path or linear forest
in such a way that exactly one of its endpoints moves to a different vertex of the graph (see also
Figure 1). This idea can be traced back to Dirac’s theorem [Dir52] stating that graphs on n
vertices with minimum degree at least n/2 are Hamiltonian. It was also used by Pósa [Pós76]
to determine the threshold for the Hamiltonicity of random graphs. Pósa’s proof is notable for
being the first to consider the family of all possible sequences of rotations that can be performed to
a given path of maximal length. This allows one to show that many vertices can become an
endpoint of such a path, which in turn is crucial for showing that sufficiently dense random
graphs are Hamiltonian. Since this was a very influential idea, rotations are often referred to as
Pósa rotations in the literature. Although the idea of rotations has been around for a long time,
several breakthroughs in recent years were only made possible by introducing novel twists to
this method [GCS24, DCS24, DMC+24].
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Figure 1: The two different types of rotations of a linear forest. Dotted edges represent edges
of the graph that are not contained in the linear forest.

A common feature of these applications is some notion of expansion in the underlying graph.
In contrast, we apply rotations to sparse regular graphs without any expansion conditions.
Moreover, while Pósa rotations are only about rotations of a single endpoint of a path, our main
novelty is to consider simultaneous rotations of a set of endpoints of a linear forest. Concretely,
our key lemma, Lemma 2.3, proves the following.

Suppose we are given a minimum spanning linear forest of a d-regular graph and a
set of ℓ endpoints. If we allow any sequence of rotations that only involves this set
of endpoints, then at least Ω(ℓ · d) vertices can become an endpoint.

As we make no assumptions on the structure of the underlying regular graph, this requires a
highly delicate argument. We prove this lemma in Section 2 where we also concisely explain
the key idea of its proof. For now, note that if there are at least Ω(ℓ · d) distinct potential end-
points, it immediately follows that ℓ = O(n/d), which implies Theorem 1.4 and the conjecture
of Feige and Fuchs. Moreover, in Section 3, we use this key lemma to create a distribution on the
spanning linear forests of the graph in which every vertex has a probability of at most O(1/d)
of being an endpoint. To prove our bounds on the (fractional) linear arboricity, Theorems 1.2
and 1.3, we then iteratively remove ∆/2 such random linear forests from the graph and de-
compose the remaining edges into matchings using Vizing’s theorem. Note that a vertex has a
high degree in the remaining graph only if it was an endpoint in many of the removed linear
forests. Since every vertex is unlikely to be an endpoint, we can apply standard concentration
inequalities and a union bound to show that the maximum degree of the remaining graph is
O(log n). This gives the error term of O(log n) in our result. We refer the reader to Section 4
for a discussion on the difficulties of improving this error term further.

Throughout the remainder of the paper, every linear forest is a spanning linear forest.

2 Small linear forests in regular graphs

In this section, we will show that any d-regular graph G on n vertices has a spanning linear
forest with at most 2 · n/(d + 1) paths. Our main tool to achieve this are rotations of linear
forests. A rotation modifies a linear forest by adding an edge incident to some endpoint of the
linear forest and removing a different edge so that the resulting subgraph is still a linear forest.
Intuitively, a rotation moves one endpoint of the linear forest to a different vertex of the graph.
Figure 1 illustrates the two different types of possible rotations of a linear forest.

Definition 2.1. Let F be a linear forest of a graph G. Let v be an endpoint of F, and let u be
a neighbour of v in G. If u and v are on the same path in F, let w be the neighbour of u that
is closer to v on that path. Otherwise, let w be any neighbour of u on its path in F. Then, the
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linear forest F′ obtained from F by removing the edge uw and adding the edge uv is called a
rotation of F in G.

We say that such a rotation rotates the old endpoint v to the new endpoint w, using the pivot u.
The restriction on w in the case where u and v are on the same path is necessary to ensure that
the resulting subgraph is still a linear forest. Note that w is allowed to be the same vertex as v,
which could happen if u is the unique neighbour of v on its path in F. Also, observe that if F′

is a rotation of F, then F′ has the same number of paths as F.

If we can use rotations to reach a linear forest where two endpoints of distinct paths are at
adjacent vertices of the graph, then we can reduce the number of paths of the linear forest by
adding the edge between these two endpoints. Suppose that F is a linear forest where we can
no longer do this, for example because F has the minimum number of paths possible. To show
that F has few paths, we will consider the set C of all vertices of the graph that could become
an endpoint of F through some sequence of rotations. We claim that if F has ℓ endpoints, then
the size of C is at least ℓ · (d + 1)/4. Since the size of C is at most the total number of vertices of
the graph, this claim implies that F has at most 4 · n/(d + 1) endpoints and therefore at most
2 · n/(d + 1) paths, as required.

We now sketch our proof of this claim. First, suppose for simplicity that G is bipartite. In this
case, by only rotating endpoints in one part of the bipartition of G, we may assume that C is an
independent set. Then, we will analyse the edges between C and its boundary B := NG(C) \ C5.

In particular, we exploit the tension between the following two facts. Firstly, each vertex in C
has d neighbours in B while each vertex in B has at most d neighbours in C. Secondly, each
vertex in C has at most two path-neighbours6 in B while each vertex in B has at least one
path-neighbour in C7. Using a double counting argument on these edges and combining this
with the fact that C contains at least one endpoint, we can find a vertex u ∈ B with (d + 1)/2
neighbours in C, but which has only one path-neighbour in C.

Now, rotate one endpoint of F to an arbitrary neighbour v of u and fix it there. If we never allow
v to be rotated again, we claim that no other endpoint can be rotated to a neighbour v′ of u.
Indeed, if that were possible, a short case analysis shows that either one of the two endpoints
v or v′ could be rotated to a vertex outside of C, contradicting the definition of C, or one of the
two edges uv or uv′ could be added to F, contradicting the minimality of F. This case analysis
uses the fact that u has only one path-neighbour in C.

Therefore, fixing an endpoint of F in the neighbourhood of u reduces the number of endpoints
that we rotate by one while it reduces the number of vertices that could become an endpoint
through a sequence of rotations by at least (d + 1)/2. Iterating this argument shows that C has
size at least ℓ · (d + 1)/2, proving the result for bipartite graphs.

For non-bipartite graphs, we divide the argument into two cases based on the number of edges
spanned by C. If C spans few edges, we can proceed exactly as for bipartite graphs. If instead
C spans many edges, we iteratively fix endpoints at vertices that have a high degree within C
and show that this reduces the size of C sufficiently. In both cases, we then iterate the argument
to show that C has size at least ℓ · (d + 1)/4, as required.

We now formalise this strategy. We begin by defining the set of all vertices of the graph that
could become an endpoint of a linear forest through a sequence of rotations. In the following,
we will use End(F) to denote the multiset of endpoints of a linear forest F, where an isolated

5If G is a graph and X ⊆ V(G), the neighbourhood of X in G is NG(X) := {v ∈ V(G) : uv ∈ E(G) for some u ∈ X}.
6A path-neighbour of a vertex v is a neighbour of v on its path in F.
7The fact that every vertex in B has at least one path-neighbour in C follows from a standard argument for Pósa

rotations.
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vertex of F is contained twice in End(F). In particular, if F′ is a rotation of F that rotates v to w,
then End(F′) = (End(F) \ {v}) ∪ {w}.

Definition 2.2. Let F be a linear forest of a graph G, and let X ⊆ End(F) be a multiset of fixed
endpoints. Then, F (F, X) denotes the family of linear forests obtained by a sequence of rotations
starting at F that never rotates any endpoint of X. Define the set

C(F, X) :=
⋃

F′∈F (F,X)

End(F′) \ X.

We call C(F, X) a rotation-component. Intuitively, C(F, X) consists of all vertices that could be-
come an endpoint of F through a sequence of rotations that leaves all endpoints of X fixed.
Note that if an endpoint v is contained once in X but twice in End(F), then we allow one of the
endpoints at v to be rotated, but not both. In particular, C(F, X) might not be disjoint from X.
Since rotations are reversible, we have F (F, X) = F (F′, X) for all F′ ∈ F (F, X), and therefore
also C(F, X) = C(F′, X). Moreover, if X ⊆ Y ⊆ End(F), then C(F, X) ⊇ C(F, Y).

A minimum linear forest F of G is a linear forest with the minimum number of paths among
all linear forests of G. We now state the key lemma of this section which asserts that for any
minimum linear forest F, the size of the rotation-component C(F, X) is always at least (d+ 1)/4
times the number of endpoints that are not fixed.

Lemma 2.3. Let F be a minimum linear forest of a d-regular graph, and let X ⊆ End(F). Then,

|C(F, X)| ≥ d + 1
4

· |End(F) \ X|.

This result suffices to prove that every d-regular graph on n vertices has a linear forest with at
most 2 · n/(d + 1) paths.

Proof of Theorem 1.4. Let G be a d-regular graph on n vertices, and let F be a minimum linear
forest of G. By Lemma 2.3, we have

|End(F)| ≤ 4
d + 1

· |C(F,∅)| ≤ 4
d + 1

· n.

Since the number of endpoints of a linear forest is twice the number of its paths, this implies
that F has at most 2 · n/(d + 1) paths.

To prove Lemma 2.3, we first make the following observations about rotations that are used
extensively throughout our proofs. These observations follow directly from the definition of
rotations together with a small amount of case analysis as indicated in Figure 2.

(R1) Suppose that v and u are endpoints of F and neighbours in G.
(a) If w is a neighbour of u on its path in F, then we can rotate v to w using the pivot u.
(b) Alternatively, if u and v are on different paths in F, we can reduce the number of

paths of F by adding the edge uv to F. In particular, this applies if u is an isolated
vertex of F.

(R2) Suppose that v is an endpoint of F which is a neighbour of u in G. If w and w′ are
neighbours of u on its path in F, then we can rotate v to one of the two vertices w or w′

using the pivot u.
(R3) Suppose that v and v′ are endpoints of F which are both neighbours of u in G. Note that

we allow v = v′ if v is an isolated vertex of F.

7
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v u w

v u w

(R1b)

v u

v u

(R2)

v u

w
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v u

w
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v u

w

w′

v u w

w′

v u

w
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(R3a)

v

v′ u w
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v
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u w

v

v′ u w

v

v′ u w

v

v′ u w

(R3b)

v

v′ u

or

v

v′

u

v

v′ u

v

v′ u

v

v′ u

Figure 2: The case analysis for the observations about possible rotations of linear forests.

(a) If w is a neighbour of u on its path in F, then we can rotate one of the two endpoints
v or v′ to w using the pivot u.

(b) Alternatively, if u is an endpoint of F, we can reduce the number of paths of F by
adding one of the two edges uv or uv′ to F.

Now, consider the boundary B(F, X) := NG(C(F, X)) \ C(F, X) of C(F, X). Since C(F, X) =
C(F′, X) for all F′ ∈ F (F, X), we also have B(F, X) = B(F′, X) for all F′ ∈ F (F, X). It is useful
to classify each vertex of C(F, X) and B(F, X) based on how many neighbours on its path in F
are contained in the opposite set. So, define Ci(F, X) := {v ∈ C(F, X) : |NF(v) ∩ B(F, X)| = i}
and Bi(F, X) := {v ∈ B(F, X) : |NF(v)∩ C(F, X)| = i}. Since every vertex is incident to at most
two edges of F, we may assume that i ∈ {0, 1, 2}.

We start by proving some basic properties about these sets. The second of these properties,
namely that B0(F, X) = ∅, is a well-known fact for Pósa rotations.

Lemma 2.4. Let F be a linear forest and let X ⊆ End(F). Then, for all F′ ∈ F (F, X) and i ∈ {0, 1, 2}
we have Bi(F, X) = Bi(F′, X). Moreover, if F is a minimum linear forest, then B0(F, X) = ∅.

Proof. Note that F′ is obtained by a sequence of rotations starting at F that never rotates any
endpoint of X. It suffices to consider a single rotation of this sequence, so we may assume that
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F′ is a rotation of F that rotates an old endpoint v to a new endpoint w, using a pivot u. Note
that v, w ∈ C(F, X) = C(F′, X). In particular, |NF(u) ∩ C(F, X)| = |NF′(u) ∩ C(F′, X)|, and for
each vertex in B(F, X) apart from u, the edges of F and F′ incident to that vertex are exactly the
same. This shows that Bi(F, X) = Bi(F′, X).

Now, let F be a minimum linear forest. We want to show that B0(F, X) = ∅, so suppose
for a contradiction that there exists a vertex u ∈ B0(F, X). Let v ∈ NG(u) ∩ C(F, X) be any
neighbour of u in C(F, X). Since v ∈ C(F, X), there exists a linear forest F′ ∈ F (F, X) with
X ∪ {v} ⊆ End(F′). Because F′ has the same number of paths as F, F′ is a minimum linear
forest, and we know that u ∈ B0(F, X) = B0(F′, X).

If u is an isolated vertex of F′, then by (R1b) we could reduce the number of paths of F′ by
adding the edge uv, contradicting that F′ is a minimum linear forest. If u is an endpoint of F′

but has a neighbour w ∈ NF′(u) on its path in F′, then by (R1a) we could rotate v to w using the
pivot u. But this would imply that w ∈ C(F′, X), contradicting u ∈ B0(F′, X). Finally, if u has
two neighbours on its path in F′, then by (R2) there exists at least one neighbour w ∈ NF′(u)
such that we could rotate v to w using the pivot u, again contradicting w /∈ C(F′, X). In all cases
we get a contradiction, and so B0(F, X) = ∅.

We now show that we can reduce the size of C(F, X) by fixing an endpoint at a vertex in C(F, X)
that has a neighbour in B1(F, X) which itself has many neighbours in C(F, X).

Lemma 2.5. Let F be a minimum linear forest and let X ⊆ End(F). Let v ∈ End(F) \ X and suppose
that u ∈ NG(v) ∩ B1(F, X). Then, |C(F, X ∪ {v})| ≤ |C(F, X)| − |NG(u) ∩ C(F, X)|.

Proof. We claim that NG(u) ∩ C(F, X ∪ {v}) = ∅. Suppose for a contradiction that there exists
a vertex v′ ∈ NG(u) ∩ C(F, X ∪ {v}). Since v′ ∈ C(F, X ∪ {v}), there exists a linear forest
F′ ∈ F (F, X ∪ {v}) with X ∪ {v, v′} ⊆ End(F′). Note that F′ is a minimum linear forest. By
Lemma 2.4 we know that u ∈ B1(F, X) = B1(F′, X).

If u is an endpoint of F′, then by (R3b) we could reduce the number of paths of F′ by adding one
of the two edges uv or uv′, contradicting that F′ is a minimum linear forest. Otherwise, u has
two neighbours on its path in F′. Since u ∈ B1(F′, X), there must be a neighbour w ∈ NF′(u)
that is not contained in C(F′, X). But then by (R3a) we could rotate one of the two endpoints v
or v′ to w using the pivot u, contradicting w /∈ C(F′, X). In both cases we get a contradiction,
and so NG(u) ∩ C(F, X ∪ {v}) = ∅, as claimed. Since C(F, X ∪ {v}) ⊆ C(F, X), this implies
that |C(F, X ∪ {v})| ≤ |C(F, X)| − |NG(u) ∩ C(F, X)|.

To use this result to prove a good lower bound on |C(F, X)|, we need to find a vertex in B1(F, X)
with many neighbours in C(F, X). This is easy if there are many edges between C(F, X) and
B1(F, X). We will use the following double counting argument to provide a lower bound on the
number of such edges. Here, for A, B ⊆ V(G), we denote the number of edges of G connecting
a vertex in A to a vertex in B by e(A, B), and we write e(A) := e(A, A).

Lemma 2.6. Let F be a minimum linear forest of a d-regular graph G, and let X ⊆ End(F). Then,

e(C(F, X), B1(F, X)) ≥ d
2
· |B1(F, X)|+ d

2
· |C1(F, X)|+ d · |C0(F, X)| − 2 · e(C(F, X)).

Proof. By double counting the number of edges of F between C(F, X) and B(F, X), we get

|C1(F, X)|+ 2 · |C2(F, X)| = |B1(F, X)|+ 2 · |B2(F, X)|.

Note that the left side of this equation is the same as 2 · |C(F, X)| − |C1(F, X)| − 2 · |C0(F, X)|.
The total number of edges of G between C(F, X) and B(F, X) is d · |C(F, X)| − 2 · e(C(F, X)).
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Because at most d · |B2(F, X)| of these edges are incident with B2(F, X) and we know that
B0(F, X) = ∅ by Lemma 2.4, it follows that

e(C(F, X), B1(F, X)) ≥ d · |C(F, X)| − 2 · e(C(F, X))− d · |B2(F, X)|

=
d
2
· |B1(F, X)|+ d

2
· |C1(F, X)|+ d · |C0(F, X)| − 2 · e(C(F, X)).

We now first prove that bipartite graphs have small linear forests. In that setting, observe that
if we fix all endpoints that are contained in one part of the bipartition, then C(F, X) will be
contained in the other part of the bipartition. This implies that e(C(F, X)) = 0. As a result,
Lemma 2.6 shows that there exists a vertex in B1(F, X) with at least (d + 1)/2 neighbours in
C(F, X). This allows us to apply Lemma 2.5 and use induction to complete the proof.

Theorem 2.7. Every d-regular n-vertex bipartite graph has a spanning linear forest with at most
n/(d + 1) paths.

Proof. Let G be a d-regular bipartite graph on n vertices, and let U be one part of its bipartition.
We claim that if F is a minimum linear forest of G and X ⊆ End(F) satisfies End(F) \ X ⊆ U,
then C(F, X) ⊆ U and |C(F, X)| ≥ |End(F) \ X| · (d + 1)/2. We prove the claim by induction
on ℓ := |End(F) \ X|. The claim clearly holds for ℓ = 0, so suppose that ℓ > 0.

Observe that if a rotation of F rotates an old endpoint v ∈ U to a new endpoint w, then w is at
distance two from v. Since G is bipartite, it follows that w ∈ U. This shows that C(F, X) ⊆ U.
In particular, e(C(F, X)) = 0. Since ∅ ̸= End(F) \ X ⊆ C1(F, X) ∪ C0(F, X), this implies
by Lemma 2.6 that e(C(F, X), B1(F, X)) > |B1(F, X)| · d/2. In particular, there exists a vertex
u ∈ B1(F, X) with |NG(u) ∩ C(F, X)| ≥ (d + 1)/2.

Let v ∈ NG(u) ∩ C(F, X) be arbitrary, let X′ := X ∪ {v}, and let F′ ∈ F (F, X) be any linear
forest with X′ ⊆ End(F′). Using the fact that C(F, X) = C(F′, X), Lemma 2.5 implies that

|C(F, X)| = |C(F′, X)| ≥ |C(F′, X′)|+ |NG(u) ∩ C(F′, X)| ≥ |C(F′, X′)|+ d + 1
2

.

By the induction hypothesis, it then follows that

|C(F, X)| ≥ |C(F′, X′)|+ d + 1
2

≥ d + 1
2

· |End(F′) \ X′|+ d + 1
2

=
d + 1

2
· |End(F) \ X|.

This proves the claim. Finally, if V(G) = V ∪ W is the bipartition of G, the claim implies that

|End(F)| = |End(F) \ (End(F) ∩ V)|+ |End(F) \ (End(F) ∩ W)|

≤ 2
d + 1

· |C(F, End(F) ∩ V)|+ 2
d + 1

· |C(F, End(F) ∩ W)| ≤ 2
d + 1

· n.

Since the number of endpoints of a linear forest is twice the number of its paths, this implies
that F has at most n/(d + 1) paths.

In non-bipartite graphs, we will define an iterative process that fixes endpoints of F one by one
at vertices that have a high degree within C(F, X). If this reduces the size of C(F, X) sufficiently,
we are done by induction. Otherwise, we show that C(F, X) spans only few edges, and so we
can finish the proof as in the bipartite case.

Proof of Lemma 2.3. Let G be a d-regular graph, let F be a minimum linear forest of G, and let
X ⊆ End(F). We proceed by induction on ℓ := |End(F) \ X|. The result clearly holds for ℓ = 0,
so suppose that ℓ > 0.
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Consider the following iterative process. Let X1 := X and let F1 := F. Then, given Xi and
Fi, let ∆i := ∆(C(Fi, Xi)) be the maximum degree of the subgraph induced by C(Fi, Xi), and
choose any vertex vi ∈ C(Fi, Xi) with degree ∆i in C(Fi, Xi). Define Xi+1 := Xi ∪ {vi} and
let Fi+1 ∈ F (Fi, Xi) be a linear forest with Xi+1 ⊆ End(Fi+1). This process gives a chain of
rotation-components

C(F, X) = C(F1, X1) ⊇ C(F2, X2) ⊇ C(F3, X3) ⊇ · · · ⊇ C(Fℓ+1, Xℓ+1) = ∅.

Since the maximum degree of the subgraph induced by C(Fi, Xi) is ∆i, this implies that

e(C(F, X)) ≤
ℓ

∑
i=1

|C(Fi, Xi) \ C(Fi+1, Xi+1)| · ∆i. (1)

If |C(Fi+1, Xi+1)| ≤ |C(F, X)| − i · (d + 1)/4, then we know by the induction hypothesis that

|C(F, X)| ≥ d + 1
4

· i + |C(Fi+1, Xi+1)|

≥ d + 1
4

· i +
d + 1

4
· |End(Fi+1) \ Xi+1| =

d + 1
4

· |End(F) \ X|.

So, we may assume that |C(Fi+1, Xi+1)| > |C(F, X)| − i · (d + 1)/4. Since ∆1 ≥ · · · ≥ ∆k, this
implies that

ℓ

∑
i=1

|C(Fi, Xi) \ C(Fi+1, Xi+1)| · ∆i <
ℓ

∑
i=1

d + 1
4

· ∆i =
d + 1

4

ℓ

∑
i=1

|NG(vi) ∩ C(Fi, Xi)|. (2)

We claim that

|End(Fℓ+1) \ X|+
ℓ

∑
i=1

|NG(vi) ∩ C(Fi, Xi)| ≤ |C1(Fℓ+1, X)|+ 2 · |C0(Fℓ+1, X)|. (3)

To see this, observe that every vertex on the left side of the inequality is contained in C(F, X) =
C(Fℓ+1, X), and consider the following cases:

(a) Suppose that u ∈ C2(Fℓ+1, X). Clearly u /∈ End(Fℓ+1) \ X since u has two neighbours
on its path in Fℓ+1. Moreover, we claim that u /∈ NG(vi) ∩ C(Fi, Xi) for all i. Indeed, if
u ∈ NG(vi) for some i, then by (R2) there exists at least one neighbour w ∈ NFℓ+1(u)
such that we could rotate vi to w using the pivot u. This would imply w ∈ C(Fℓ+1, X),
contradicting u ∈ C2(Fℓ+1, X).

(b) If u ∈ C1(Fℓ+1, X), we claim that either u ∈ End(Fℓ+1) \ X and u /∈ NG(vi) ∩ C(Fi, Xi) for
all i, or u /∈ End(Fℓ+1) \ X and u ∈ NG(vi) ∩ C(Fi, Xi) for up to one value of i. Indeed, let
w ∈ NFℓ+1(u) be the unique neighbour of u in B(Fℓ+1, X). If u ∈ End(Fℓ+1) \ X and u ∈
NG(vi) for some i, then by (R1a) we could rotate vi to w using the pivot u, contradicting
w /∈ C(Fℓ+1, X). Moreover, if u ∈ NG(vi) ∩ NG(vj) for some i ̸= j, then by (R3a) we
could rotate one of the two endpoints vi or vj to w using the pivot u, again contradicting
w /∈ C(Fℓ+1, X). This proves the claim.

(c) If u ∈ C0(Fℓ+1, X), we claim that either u ∈ End(Fℓ+1) \ X and u ∈ NG(vi) ∩ C(Fi, Xi)
for up to one value of i, or u /∈ End(Fℓ+1) \ X and u ∈ NG(vi) ∩ C(Fi, Xi) for up to two
values of i. Indeed, if u ∈ End(Fℓ+1) \ X and u ∈ NG(vi) ∩ NG(vj) for some i ̸= j, then by
(R3b) we could reduce the number of paths of Fℓ+1 by adding one of the two edges uvi or
uvj, contradicting that Fℓ+1 is a minimum linear forest. Moreover, if u ∈ NG(vi) ∩ NG(vj)
for some i < j, then u /∈ C(Fk, Xk) for any k > j. Otherwise, we could find a linear
forest F′ ∈ F (Fk, Xk) with {u, vi, vj} ⊆ End(F′), but then by (R3b) we could reduce the
number of paths of F′ by adding one of the two edges uvi or uvj, contradicting that F′ is
a minimum linear forest. This proves the claim.

11



In all cases, the contribution of a vertex to the left side of inequality (3) is at most as large as its
contribution to the right side, which proves this inequality.

We may assume that |End(Fℓ+1) \ X| · (d + 1)/4 = |End(F) \ X| · (d + 1)/4 ≥ |C(F, X)|, as we
would be done otherwise. Since C(F, X) = C(Fℓ+1, X), we therefore have

d + 1
2

· |End(Fℓ+1) \ X| ≥ |C(F, X)| = |C(Fℓ+1, X)| ≥ 1
2
· |C1(Fℓ+1, X)|+ |C0(Fℓ+1, X)|. (4)

By combining the inequalities (1) to (4) and using again that C(F, X) = C(Fℓ+1, X), we get that

2 · e(C(Fℓ+1, X)) <
d + 1

2

ℓ

∑
i=1

|NG(vi) ∩ C(Fi, Xi)|

≤ d + 1
2

· |C1(Fℓ+1, X)|+ (d + 1) · |C0(Fℓ+1, X)| − d + 1
2

· |End(Fℓ+1) \ X|

≤ d
2
· |C1(Fℓ+1, X)|+ d · |C0(Fℓ+1, X)|.

By Lemma 2.6, it follows that e(C(Fℓ+1, X), B1(Fℓ+1, X)) > |B1(Fℓ+1, X)| · d/2. Since we know
that Fℓ+1 ∈ F (F, X), by Lemma 2.4 this is equivalent to e(C(F, X), B1(F, X)) > |B1(F, X)| · d/2.
As in the proof of Theorem 2.7, we can then find a vertex v ∈ C(F, X) such that if X′ := X ∪ {v}
and F′ ∈ F (F, X) is a linear forest with X′ ⊆ End(F′), then |C(F, X)| ≥ |C(F′, X′)|+ (d + 1)/2.
By the induction hypothesis, it then follows that

|C(F, X)| ≥ |C(F′, X′)|+ d + 1
2

≥ d + 1
4

· |End(F′) \ X′|+ d + 1
2

≥ d + 1
4

· |End(F) \ X|.

3 Linear arboricity up to logarithmic error

We now use the results from the previous section to show that the linear arboricity of any
graph G on n vertices with maximum degree ∆ is at most ∆/2 + O(log n). We achieve this
by repeatedly choosing linear forests with few paths and removing them from the graph. If
the maximum degree of the remaining graph after ∆/2 iterations is O(log n), we can decom-
pose the remaining edges into O(log n) linear forests, say with Vizing’s theorem, to obtain the
desired upper bound on the linear arboricity.

Note that the degree of a vertex after the first ∆/2 iterations can only be larger than O(log n) if
the vertex appeared as an endpoint in more than O(log n) linear forests during those iterations.
To avoid this, we will choose the linear forests in each iteration randomly in such a way that
every vertex has a low probability of being an endpoint. Then, we can simply use standard
concentration inequalities and a union bound to bound the probability that any vertex is an
endpoint in more than O(log n) linear forests, which completes the proof.

We start by showing that for every d-regular graph G, there exists a distribution on the min-
imum linear forests of G such that every vertex has a low probability of being an endpoint.
Recall that End(F) denotes the multiset of endpoints of a linear forest F. In the proof, we will
make extensive use of the notation introduced in Section 2.

Lemma 3.1. Let G be a d-regular graph. Then, we can choose a random minimum linear forest F of G
in such a way that for all vertices v ∈ V(G) it holds that P(v ∈ End(F)) ≤ 16/(d + 1).

Proof. We claim that for all minimum linear forests F of G and all X ⊆ End(F), we can choose
a random linear forest F′ ∈ F (F, X) in such a way that for all vertices v ∈ V(G) it holds that
P(v ∈ End(F′) \ X) ≤ 16/(d + 1). For X = ∅, this implies the result. We prove the claim by
induction on ℓ := |End(F) \ X|. The claim clearly holds for ℓ = 0, so suppose that ℓ > 0.
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For all u ∈ C(F, X), let Fu ∈ F (F, X) be a linear forest with X ∪ {u} ⊆ End(Fu). By the
induction hypothesis, we know that we can choose a random linear forest F′

u ∈ F (Fu, X ∪ {u})
such that for all vertices v ∈ V(G) it holds that P(v ∈ End(F′

u) \ (X ∪ {u})) ≤ 16/(d + 1).
Choose a random linear forest F′′ ∈ F (F, X) by first choosing u ∈ C(F, X) uniformly at random
and then choosing the random linear forest F′

u. By the linearity of expectation, we know that

∑
v∈C(F,X)

P(v ∈ End(F′′) \ X) = E(|End(F′′) \ X|) = |End(F) \ X|.

By Lemma 2.3, we also have |C(F, X)| ≥ |End(F) \ X| · (d + 1)/4. This implies that the set
U := {v ∈ C(F, X) : P(v ∈ End(F′′) \ X) ≤ 8/(d + 1)} must contain at least half of the vertices
of C(F, X).

Now, choose the random linear forest F′ ∈ F (F, X) by first choosing u ∈ U uniformly at
random and then choosing the random linear forest F′

u. For all vertices v ∈ V(G) \ U, we have

P(v ∈ End(F′) \ X) =
1
|U| ∑

u∈U
P(v ∈ End(F′

u) \ X)

=
1
|U| ∑

u∈U
P(v ∈ End(F′

u) \ (X ∪ {u})) ≤ 16
d + 1

.

For all vertices v ∈ U, we have

P(v ∈ End(F′) \ X) =
1
|U| ∑

u∈U
P(v ∈ End(F′

u) \ X)

≤ 1
|U| ∑

u∈C(F,X)

P(v ∈ End(F′
u) \ X)

=
|C(F, X)|

|U| · P(v ∈ End(F′′) \ X) ≤ 16
d + 1

.

We can now prove Theorem 1.2. As described earlier in this section, our strategy is to repeat-
edly remove linear forests from the graph G using Lemma 3.1. Since that result only applies to
regular graphs, we need to regularise G after every step, but the remainder of the proof works
exactly as outlined before.

Proof of Theorem 1.2. Let G be a graph on n vertices with maximum degree ∆. Let d := ⌈∆/2⌉.
By adding vertices and edges to G, we may extend G to a 2d-regular graph Gd.

Consider the following iterative process. Start with the 2d-regular graph Gd. Then, given a
2i-regular graph Gi, let Ci ⊆ Gi be a 2-regular spanning subgraph of Gi. This subgraph exists
because Gi is regular with even degree. Choose a random minimum linear forest Fi of Gi accord-
ing to Lemma 3.1 so that for all vertices v ∈ V(Gi) it holds that P(v ∈ End(Fi)) ≤ 16/(2i + 1).
Then, let Ei ⊆ E(Ci) be the subset of all edges of Ci that are incident to some endpoint of Fi.
Note that every vertex of Gi is incident to at least two edges of Fi ∪ Ei. This implies that the
subgraph Gi \ (Fi ∪ Ei) has maximum degree at most 2(i − 1) and can therefore be extended to
a 2(i − 1)-regular graph Gi−1.

We iterate this process until we reach the empty graph G0. Note that the restriction of each
linear forest Fi to the initial graph G is a linear forest. We also have that every edge of G is
contained either in one of the linear forests Fi or in one of the sets Ei. So, the degree of a vertex
v ∈ V(G) in G′ := G \ (⋃d

i=1 Fi) is at most the number of edges of
⋃d

i=1 Ei that are incident to v.

Let Di
v be the indicator random variable of the event that v is incident to an edge of Ei. Since v

is incident to at most two edges of Ei, the degree of v in G′ is at most Dv := ∑d
i=1 2Di

v. Moreover,
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v can only be incident to an edge of Ei if v or one of its two neighbours in Ci is an endpoint of Fi.
By construction, the probability that a vertex is an endpoint of Fi is at most 16/(2i + 1) ≤ 8/i,
regardless of the choices of Fi+1, . . . , Fd. It follows that P(Di

v = 1) ≤ 24/i, even conditioned on
the values of Di+1

v , . . . , Dd
v . So, the random variables D1

v, . . . , Dd
v are stochastically dominated

by a collection of independent Bernoulli random variables X1, . . . , Xd with P(Xi = 1) = 24/i.
In particular, X := ∑d

i=1 2Xi satisfies Dv ≤ X. Since µ := E(X) ≤ 48(log d + 1), a standard
Chernoff bound with δ := 48(log n + 1)/µ ≥ 1 implies that

P(Dv > (1 + δ)µ) ≤ P(X > (1 + δ)µ) ≤ e−
δ2µ
2+δ ≤ e−

δµ
3 = e−16(log n+1) <

1
n

.

So, a union bound shows that with positive probability, Dv ≤ (1 + δ)µ = O(log n) for all
v ∈ V(G). In that case, the maximum degree of G′ is at most O(log n) which implies that G′

can be decomposed into at most O(log n) linear forests. Together with F1, . . . , Fd, this provides
a decomposition of G into at most d +O(log n) = ∆/2 +O(log n) linear forests.

The proof for fractional linear arboricity follows almost the same strategy, except that it ignores
vertices with degree larger than O(log ∆) in the remaining graph. This produces a family
of ∆/2 + O(log ∆) linear forests such that each edge is contained in that family with high
probability. If we then choose a uniformly random linear forest from that family, this proves
the upper bound on the fractional linear arboricity.

Proof of Theorem 1.3. Let G be a graph on n vertices with maximum degree ∆. Define d, Fi,
G′, Dv, and X as in the proof of Theorem 1.2. Since µ := E(X) ≤ 48(log d + 1), a standard
Chernoff bound with δ := 48(log d + 1)/µ ≥ 1 implies that

P(Dv > (1 + δ)µ) ≤ P(X > (1 + δ)µ) ≤ e−
δ2µ
2+δ ≤ e−

δµ
3 = e−16(log d+1) <

1
d2 .

So, the probability that v has degree larger than c := (1+ δ)µ = O(log d) in G′ is less than 1/d2.
Let E ⊆ E(G′) be the subset of all edges of G′ that are incident to a vertex of degree larger than c
in G′. In particular, every edge of G is contained in E with probability at most 2/d2. Moreover,
the graph G′′ := G′ \ E has maximum degree c which implies that G′′ can be decomposed
into at most c + 1 linear forests F′

1, . . . , F′
c+1. Choose a linear forest F ∈ {F1, . . . , Fd, F′

1, . . . , F′
c+1}

uniformly at random. Then, for every edge e ∈ E(G) of G, we have

P(e ∈ F) = P(e /∈ E) · P(e ∈ F | e /∈ E) ≥
(

1 − 2
d2

)
1

d + c + 1
≥ 1

d +O(log d)
.

So, the fractional linear arboricity of G is at most d +O(log d) = ∆/2 +O(log ∆).

4 Open problems

By proving the conjecture of Feige and Fuchs, we removed a major obstacle towards resolv-
ing the Linear Arboricity Conjecture. However, the bound on the linear arboricity that we
obtained in Theorem 1.2 has an error term of O(log n), which depends on n. A natural next
step is to replace this error term with a term polynomial in log ∆. To achieve this, one would
like to replace the union bound that we use with a variant of the Lovász Local Lemma or a
similar technique. Unfortunately, the dependency structure of the corresponding bad events is
extremely intricate, and so it is not obvious how to make such a strategy work. We believe that
it would already be interesting to provide such an improvement for bipartite graphs.

Problem 4.1. Do all bipartite graphs G with maximum degree ∆ satisfy la(G) ≤ ∆/2 + (log ∆)O(1)?
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In bipartite graphs, we can sample a random linear forest more easily than for non-bipartite
graphs. Indeed, as shown in the proof of Theorem 2.7, we can always find a vertex u ∈ B1(F, X)
with at least (d + 1)/2 neighbours in C(F, X). If we then fix an endpoint of the linear forest at
a uniformly random neighbour of u in C(F, X), all neighbours of u will afterwards be removed
from C(F, X). Repeating this process results in a random linear forest where every vertex is an
endpoint with probability at most 2/(d + 1).

When we iteratively remove linear forests from a graph, in later iterations we would like to
fix endpoints only at vertices that have not been endpoints in too many previous iterations.
This would be possible if we never fix too many endpoints in the neighbourhood of a vertex
since we could then simply avoid these vertices when generating a new linear forest. Note
that the above random linear forest has a very low probability of fixing many endpoints in the
neighbourhood of a given vertex. However, we cannot apply the Lovász Local Lemma because
the vertex u as well as the subset of its neighbours that are contained in C(F, X) can depend on
previously fixed endpoints, creating large dependencies. Even just the fact that we only have
a subset of the neighbours of u available when we fix an endpoint seems to make this problem
difficult. More precisely, even if we knew in advance the sequence of vertices u obtained while
fixing endpoints, but not the subset of available neighbours, we do not know how to ensure
that we fix at most (log ∆)O(1) endpoints in the neighbourhood of any vertex.

We believe that the following online matching game exhibits the same difficulty and could
be of independent interest. Suppose that G is a bipartite graph with bipartition U ∪ W such
that every vertex in U has degree c · d while every vertex in W has degree at most d. Let
U = {u1, . . . , un}. Now, for i = 1, . . . , n, we receive a subset Ui ⊆ N(ui) of size c · d/2, and we
immediately have to match ui to an unmatched vertex in Ui. If the sets Ui were determined in
advance and c ≥ 2, Hall’s theorem would imply that we could find a perfect matching.

Problem 4.2. If c is a sufficiently large constant, is there a way to construct a perfect matching in this
online matching game where an adversary chooses the subsets Ui based on the matching of u1, . . . , ui−1?

An alternative approach to replacing the error term of O(log n) with (log ∆)O(1) could be to
prove stronger properties about how C(F, X) evolves when fixing endpoints. This might be
enough to recover the limited dependencies necessary to apply the Lovász Local Lemma.

In terms of the existence of linear forests with few paths, the conjecture of Magnant and Martin
remains open up to a factor of two, but we believe that our techniques could be sufficient to
eventually resolve this conjecture completely. Note that even for regular bipartite graphs where
we proved this conjecture, our result still differs by a factor of roughly two from the best lower
bound of n/(2d) that comes from a disjoint union of complete bipartite graphs.

There are also several potential generalisations of the conjecture of Feige and Fuchs that remain
open. For instance, this conjecture might generalise to cycles8 and to directed regular graphs.

Conjecture 4.3. Every directed d-regular n-vertex graph has a collection of O(n/d) vertex-disjoint
cycles that cover all vertices of the graph.

The authors of the current paper [CDG+25] very recently proved that there exists a collec-
tion of O((n log d)/d) cycles that satisfy this, which is the current best upper bound. In ad-
dition, they provided a randomised polynomial-time algorithm that computes such a collec-
tion. As a corollary, they also obtained an efficient algorithm for computing a tour of length
(1 +O((log d)/d)) · n in a connected d-regular n-vertex graph.

In contrast, all of the results in this paper are non-constructive, and so we do not obtain efficient
algorithms. This raises the question whether there are efficient algorithms for finding spanning

8Here, an individual edge is considered to be a cycle of length two.
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linear forests with O(n/d) paths in d-regular n-vertex graphs. This would also imply the ex-
istence of efficient algorithms for computing a tour of length (1 + O(1/d)) · n in connected
regular graphs. An efficient algorithm would likely improve our understanding of small linear
forests significantly, which may lead to further progress on the Linear Arboricity Conjecture.

Problem 4.4. Is there an algorithm that can efficiently compute a spanning linear forest of a d-regular
n-vertex graph with at most O(n/d) paths?

In particular, what is the computational complexity of finding a rotation-component C(F, X)?
This could plausibly be NP-hard. In extremal combinatorics it is unusual for a proof to rely
on hard-to-compute objects, but this does occur with algebraic methods such as the method
of interlacing polynomials [MSS15a, MSS15b] and topological methods such as applications of
the Borsuk-Ulam Theorem [Mat03]. Note that for Hamiltonian cubic graphs where minimum
linear forests are Hamilton paths, it is known that the number of rotations required to rotate
one endpoint to some fixed vertex of the graph may be exponential in n. This follows, for
example, from a construction in [BS22].
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