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Abstract. We construct a set of 2𝑛 points inℝ𝑛 such that all pairwise Manhattan distances
are odd integers, which improves the recent linear lower bound of Golovanov, Kupavskii and
Sagdeev. In contrast to the Euclidean andmaximummetrics, this shows that the odd-distance
set problem behaves very differently to the equilateral set problem under the Manhattan
metric. Moreover, all coordinates of the points in our construction are integers or half-
integers, and we show that our construction is optimal under this additional restriction.

1. Introduction

An equilateral set in a metric space is a set of points in which all pairwise distances are the
same. Determining the largest equilateral set in a metric space has been well-studied and
the case ofℝ𝑛 equipped with the ℓ𝑝-norm1 ∥·∥𝑝 has received significant attention. Denoting
the size of the largest equilateral set in ℝ𝑛 with the ℓ𝑝-norm by 𝑒𝑝 (𝑛), the following table
gives a summary of the best bounds known for 𝑝 ∈ {1, 2,∞}.

Lower bound Upper bound

𝑒1(𝑛) 2𝑛 cross polytope 𝑐𝑛 log𝑛 Alon and Pudlák [1]
𝑒2(𝑛) 𝑛 + 1 unit simplex 𝑛 + 1 folklore
𝑒∞(𝑛) 2𝑛 unit hypercube 2𝑛 Petty [5]

Table 1. The size of the largest equilateral sets in (ℝ𝑛, ∥·∥𝑝).

An old conjecture of Kusner [4] states that 𝑒𝑝 (𝑛) = 𝑛 + 1 for all integers 1 < 𝑝 < ∞ and
𝑒1(𝑛) = 2𝑛. For progress on Kusner’s conjecture, see for example [1, 6, 7].
Graham, Rothschild and Straus [3] introduced the following relaxation of an equilateral set.
An odd-distance set in a metric space is a set of points in which all pairwise distances are odd
integers. We denote the size of the largest odd-distance set inℝ𝑛 equipped with the ℓ𝑝-norm
by odd𝑝 (𝑛). In a normed space, any equilateral set can be scaled to a set where all pairwise
distances are 1, and so odd𝑝 (𝑛) ⩾ 𝑒𝑝 (𝑛). The following table gives a summary of the best
bounds known for odd𝑝 (𝑛). The bounds for odd2(𝑛) were proved in the original paper of
Graham, Rothschild and Straus [3], who in fact determined the exact value of odd2(𝑛) (it
is 𝑛 + 1 except when 𝑛 ≡ −2 (mod 16)). The other bounds are due to a recent paper of
Golovanov, Kupavskii and Sagdeev [2].
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1A point v = (𝑣1, . . . , 𝑣𝑛) ∈ ℝ𝑛 has ℓ𝑝-norm ∥v∥𝑝 :=
(∑

𝑖 |𝑣𝑖 |𝑝
)1/𝑝 for 1 ⩽ 𝑝 < ∞ and has ℓ∞-norm

∥v∥∞ := max𝑖 |𝑣𝑖 |.
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Lower bound Upper bound

odd1(𝑛) ( 73 − 𝑜(1))𝑛 [2] (4 + 𝑜(1))𝑛!𝑛 log𝑛 [2]
odd2(𝑛) 𝑛 + 1 unit simplex 𝑛 + 2 [3]
odd∞(𝑛) 2𝑛 unit hypercube 2𝑛 [2]

Table 2. The size of the largest odd-distance sets in (ℝ𝑛, ∥·∥𝑝).

From these results we see that relaxing from the equilateral to the odd-distance problem
makes very little difference for the ℓ2 and ℓ∞-norms. The case of the ℓ1-norm is less clear: the
lower bound of Golovanov, Kupavskii and Sagdeev [2] for odd1(𝑛) is larger than Kusner’s
conjectured upper bound for 𝑒1(𝑛), but only by a constant multiplicative factor, and it is
still smaller than the upper bound proven by Alon and Pudlák [1].

In this note, we significantly improve the lower bound for odd1(𝑛), showing that there are
odd-distance sets of size 2𝑛 under the ℓ1-norm. Together with the upper bound for 𝑒1(𝑛) of
Alon and Pudlák [1], this confirms in a strong sense that the equilateral and odd-distance
problems behave very differently for the ℓ1-norm.

Theorem 1. For all positive integers 𝑛, odd1(𝑛) ⩾ 2𝑛. Moreover, there is an ℓ1-odd-distance
set P ⊆ ( 12 · ℤ)

𝑛 of size 2𝑛.

It is not possible to replace the half-integer lattice ( 12 · ℤ)
𝑛 by the integer lattice ℤ𝑛 in the

statement of Theorem 1. Indeed, there is not even an odd-distance set of size 3 in ℤ𝑛: every
integer 𝑥 satisfies |𝑥 | ≡ 𝑥 (mod 2) and so, for any integer points a,b,c ∈ ℤ𝑛, we have that
∥a − b∥1 + ∥b − c∥1 ≡ ∥a − c∥1 (mod 2).

We further show that Theorem 1 is best possible in the case that all coordinates are half-
integers.

Proposition 2. Let P ⊆ ( 12 · ℤ)
𝑛 be an ℓ1-odd-distance set. Then, |P | ⩽ 2𝑛.

As a last result, we also note that, when considering odd-distance sets in the ℓ1-norm, we
may restrict the coordinates to be rational numbers whose denominator is a power of 2.

Proposition 3. Let T ⊆ ℚ be the set of rational numbers whose denominators are powers
of 2. For any ℓ1-odd-distance set P ⊆ ℝ𝑛, there exists an ℓ1-odd-distance set Q ⊆ T 𝑛 of the
same size as P.

2. Proofs

To prove the lower bound on odd1(𝑛), we will inductively construct an odd-distance set of
size 2𝑛. We will achieve this by splitting in two a coordinate of each point of an odd-distance
set in ℝ𝑛. By doing this in two distinct ways, we replace each point with two points in ℝ𝑛+1.
This construction relies on the following simple lemma.

Lemma 4. For every 𝑥 ∈ 1
2 · ℤ, there exists an odd-distance set P ⊆ ( 12 · ℤ)

2 of size 2 such
that the coordinates of each point sum to 𝑥 and all coordinates are at least 𝑥/2 − 1/2 and at
most 𝑥/2 + 1/2.
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Proof. If 𝑥 ∈ ℤ, let
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+ 1
2
,
𝑥

2
− 1
2

)
,

(
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,
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.

Otherwise, if 𝑥 ∈ ℤ + 1
2 , let

P =

{(
𝑥

2
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4
,
𝑥

2
− 1
4

)
,

(
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2
− 1
4
,
𝑥

2
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4

)}
.

Clearly, in both cases P satisfies the claim. □

We may now prove our main result. Our strategy is to start with an odd-distance set
P ⊆ ( 12 · ℤ)

𝑛 and first space out the points in P in the first dimension. We achieve this
by translating the first coordinate of each point by some even integer while maintaining
their order in the first dimension and the odd-distance property. Then, we replace each
first coordinate by the odd-distance set in ( 12 · ℤ)2 given by Lemma 4. Because the first
dimension was sufficiently spaced out in advance, this guarantees that the relative order
of the points in the two new dimensions will be the same as their relative order in the old
dimension. As a result, the new set will be an odd-distance set in ( 12 · ℤ)

𝑛+1 of size 2|P |.

Theorem 1. For all positive integers 𝑛, odd1(𝑛) ⩾ 2𝑛. Moreover, there is an ℓ1-odd-distance
set P ⊆ ( 12 · ℤ)

𝑛 of size 2𝑛.

Proof. We will prove, by induction on 𝑛, that ( 12 · ℤ)
𝑛 contains an ℓ1-odd-distance set of

size 2𝑛 for all 𝑛 ⩾ 1. For 𝑛 = 1, the set P = {0, 1} suffices. Now, suppose P is an odd-distance
set in ( 12 ·ℤ)

𝑛 of size 2𝑛. We label the points of P as p1, . . . , p2𝑛 so that the first coordinate is
increasing. That is, for all 𝑖 ∈ [2𝑛] we may write p𝑖 = (𝑎𝑖,v𝑖), where 𝑎1 ⩽ 𝑎2 ⩽ · · · ⩽ 𝑎2𝑛

and the vectors v𝑖 are in ( 12 · ℤ)
𝑛−1.

For each 𝑖 ∈ [2𝑛], let 𝑏𝑖 := 𝑎𝑖 + 2𝑖 and q𝑖 := (𝑏𝑖,v𝑖). Note that Q := {q1, . . . ,q2𝑛} is also an
ℓ1-odd-distance set in ( 12 · ℤ)

𝑛. Indeed, for 1 ⩽ 𝑖 < 𝑗 ⩽ 2𝑛,

∥q𝑗 − q𝑖∥1 = (𝑏𝑗 − 𝑏𝑖) + ∥v𝑗 − v𝑖∥1
= (𝑎𝑗 − 𝑎𝑖) + ∥v𝑗 − v𝑖∥1 + 2(𝑗 − 𝑖)
= ∥p𝑗 − p𝑖∥1 + 2(𝑗 − 𝑖),

which is odd.

By Lemma 4, for each 𝑖 ∈ [2𝑛] there is an odd-distance set C𝑖 = {c(1)
𝑖 ,c(2)

𝑖 } ⊆ ( 12 · ℤ)2
where the coordinates of each point sum to 𝑏𝑖 and all coordinates are between 𝑏𝑖/2 − 1/2
and 𝑏𝑖/2 + 1/2. For each 𝑖 ∈ [2𝑛], let q(1)

𝑖
:= (c(1)

𝑖 ,v𝑖) and q(2)
𝑖

:= (c(2)
𝑖 ,v𝑖). Finally, let

Q′ := {q(1)
1 ,q(2)

1 , . . . ,q(1)
2𝑛 ,q

(2)
2𝑛 }. Clearly, since all the 𝑏𝑖 are distinct, Q

′ is a subset of ( 12 ·ℤ)
𝑛+1

of size 2𝑛+1. It remains to show that it is an ℓ1-odd-distance set.

First note that, for all 𝑖 ∈ [2𝑛],

∥q(1)
𝑖 − q(2)

𝑖 ∥1 = ∥c(1)
𝑖 − c(2)

𝑖 ∥1 + ∥v𝑖 − v𝑖∥1 = ∥c(1)
𝑖 − c(2)

𝑖 ∥1,
which is odd as C𝑖 is an odd-distance set. Now fix 1 ⩽ 𝑖 < 𝑗 ⩽ 2𝑛 and consider the distance
between q(𝑟)

𝑖 and q(𝑠)
𝑗 , where 𝑟, 𝑠 ∈ {1, 2}. Recall, from our choice of the 𝑏𝑖, that 𝑏𝑗 ⩾ 𝑏𝑖 + 2.

Since the coordinates of c(𝑟)
𝑖 are at most 𝑏𝑖/2 + 1/2 and the coordinates of c(𝑠)

𝑗 are at least
𝑏𝑗/2 − 1/2, both coordinates of c(𝑟)

𝑖 are bounded from above by both coordinates of c(𝑠)
𝑗 .
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Since the sum of the coordinates of c(𝑟)
𝑖 is 𝑏𝑖 and the sum of the coordinates of c(𝑠)

𝑗 is 𝑏𝑗 , it
follows that

∥c(𝑠)
𝑗 − c(𝑟)

𝑖 ∥1 = 𝑏𝑗 − 𝑏𝑖.

Thus,

∥q(𝑠)
𝑗 − q(𝑟)

𝑖 ∥1 = ∥c(𝑠)
𝑗 − c(𝑟)

𝑖 ∥1 + ∥v𝑗 − v𝑖∥1 = (𝑏𝑗 − 𝑏𝑖) + ∥v𝑗 − v𝑖∥1 = ∥q𝑗 − q𝑖∥1,

which is odd since Q is an odd-distance set, as required. □

If we restrict a point set to having half-integer coordinates, we show that our construction is
optimal. We prove this with a simple pigeonhole argument.

Proposition 2. Let P ⊆ ( 12 · ℤ)
𝑛 be an ℓ1-odd-distance set. Then, |P | ⩽ 2𝑛.

Proof. Let 𝜑 : P → {0, 1}𝑛 be defined by setting 𝜑(p) := (1{𝑝𝑖∈ℤ+1/2})𝑖∈[𝑛] .

First, we note that there cannot be two points p,q ∈ P with ∥𝜑(p)∥1 . ∥𝜑(q)∥1 (mod 2).
Indeed, in such a case, there would be an odd number of coordinates 𝑖 ∈ [𝑛] such that
|𝑝𝑖 −𝑞𝑖 | ∈ ℤ+1/2, which implies that ∥p−q∥1 is not an integer. In particular, |𝜑(P)| ⩽ 2𝑛−1.

Secondly, we claim that there cannot be three points a,b,c ∈ P with 𝜑(a) = 𝜑(b) = 𝜑(c).
Indeed, otherwise 𝑎𝑖 − 𝑏𝑖, 𝑏𝑖 − 𝑐𝑖, and 𝑐𝑖 − 𝑎𝑖 are integers for all 𝑖 ∈ [𝑛], and so

∥a − b∥1 =
𝑛∑︁
𝑖=1

|𝑎𝑖 − 𝑏𝑖 | ≡
𝑛∑︁
𝑖=1

(𝑎𝑖 − 𝑏𝑖) (mod 2),

∥b − c∥1 =
𝑛∑︁
𝑖=1

|𝑏𝑖 − 𝑐𝑖 | ≡
𝑛∑︁
𝑖=1

(𝑏𝑖 − 𝑐𝑖) (mod 2),

∥a − c∥1 =
𝑛∑︁
𝑖=1

|𝑎𝑖 − 𝑐𝑖 | ≡
𝑛∑︁
𝑖=1

(𝑎𝑖 − 𝑐𝑖) (mod 2).

Adding the first two expressions and comparing with the last one, we conclude that

∥a − b∥1 + ∥b − c∥1 ≡ ∥a − c∥1 (mod 2),

which is impossible, as the sum of two odd numbers is even. Thus, |P | ⩽ 2 · |𝜑(P)| ⩽ 2𝑛. □

Finally, we show that we may assume all points in ℓ1-odd-distance sets P have rational
coordinates. Indeed, the pairwise distances between the points of P can be expressed by a
system of linear equations on the coordinates of the points of P. Solutions to this system of
linear equations can be characterised by a set of free variables whose choice determines all
other variables. If we now replace all coordinates corresponding to free variables by nearby
rational numbers, this determines all remaining coordinates, and those coordinates will also
be rational since the coefficients of the linear equations were rational. This gives a point
set with rational coefficients, and if the order of the coordinates did not change, then the
distances between the points remain the same. So, the point set will be an odd-distance set.

Lemma 5. For any ℓ1-odd-distance set P ⊆ ℝ𝑛, there exists an odd-distance set Q ⊆ ℚ𝑛 of
the same size as P.
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Proof. By iteratively translating coordinates as in the proof of Theorem 1, we may assume
that |𝑝𝑖 − 𝑞𝑖 | ⩾ 2 for all distinct points p,q ∈ P and all 𝑖 ∈ [𝑛]. Let 𝑠p,q

𝑖
:= 1 if 𝑝𝑖 > 𝑞𝑖 and

𝑠
p,q
𝑖

:= −1 otherwise. Then,

∥p − q∥1 =
𝑛∑︁
𝑖=1

𝑠
p,q
𝑖 (𝑝𝑖 − 𝑞𝑖).

Write 𝑑p,q := ∥p−q∥1 and introduce a variable 𝑥p,𝑖 for all p ∈ P and all 𝑖 ∈ [𝑛]. This means
that the system of linear equations

𝑛∑︁
𝑖=1

𝑠
p,q
𝑖

(
𝑥p,𝑖 − 𝑥q,𝑖

)
= 𝑑p,q

for all distinct p,q ∈ P has a solution given by 𝑥p,𝑖 = 𝑝𝑖 for all p ∈ P and all 𝑖 ∈ [𝑛].
Since all coefficients and all 𝑑p,q are integers, the reduced row echelon form of this system
of linear equations only has rational coefficients. Thus, in the reduced row echelon form,
there exists a set of indices F ⊆ P × [𝑛] such that 𝑥𝑓 is a free variable for all 𝑓 ∈ F while
𝑥𝑔 is a dependent variable for all 𝑔 ∉ F , with 𝑥𝑔 = 𝑎𝑔 +

∑
𝑓∈F 𝑏𝑓,𝑔𝑥𝑓 for some 𝑎𝑔, 𝑏𝑓,𝑔 ∈ ℚ.

Let𝐶 := max𝑓∈F ,𝑔∉F |𝑏𝑓,𝑔 |. For each (p, 𝑖) ∈ F , choose 𝑦p,𝑖 ∈ ℚ so that |𝑦p,𝑖−𝑝𝑖 | < 1/(𝐶 |P |𝑛).
For each (p, 𝑖) ∉ F let 𝑦p,𝑖 = 𝑎p,𝑖 +

∑
𝑓∈F 𝑏𝑓,(p,𝑖)𝑦𝑓, and note that 𝑦p,𝑖 ∈ ℚ and

|𝑦p,𝑖 − 𝑝𝑖 | =

������©«𝑎p,𝑖 +
∑︁

(q,𝑗)∈F
𝑏(q,𝑗),(p,𝑖)𝑦q,𝑗

ª®¬ − ©«𝑎p,𝑖 +
∑︁

(q,𝑗)∈F
𝑏(q,𝑗),(p,𝑖)𝑞𝑗

ª®¬
������

⩽
∑︁

(q,𝑗)∈F

��𝑏(q,𝑗),(p,𝑖) (𝑦q,𝑗 − 𝑞𝑗
) �� < |F |𝐶

𝐶 |P |𝑛 ⩽ 1,

where the first equality used the fact that 𝑥p,𝑖 = 𝑝𝑖 is a solution to the system of equations.

For each p ∈ P, let p′ ∈ ℚ𝑛 be the point with 𝑝′
𝑖 = 𝑦p,𝑖. Consider two distinct points p,q ∈ P.

For each 𝑖, if 𝑝𝑖 < 𝑞𝑖, then 𝑝𝑖 + 2 ⩽ 𝑞𝑖 by assumption, and since |𝑝′
𝑖 −𝑝𝑖 | < 1 and |𝑞′𝑖 − 𝑞𝑖 | < 1,

this implies that 𝑝′
𝑖 < 𝑞′𝑖 . Similarly, if 𝑝𝑖 > 𝑞𝑖, then 𝑝′

𝑖 > 𝑞′𝑖 . Therefore,

∥p′ − q′∥1 =
𝑛∑︁
𝑖=1

𝑠
p,q
𝑖 (𝑝′

𝑖 − 𝑞′𝑖) = 𝑑p,q,

where the last equality uses the fact that 𝑥p,𝑖 = 𝑝′
𝑖 is a solution to the system of equations.

In particular, the distance between p′ and q′ is odd, and so Q = {p′ : p ∈ P} ⊆ ℚ𝑛 is an
odd-distance set of the same size as P. □

Proposition 3 is now an easy consequence since, if we scale all coordinates of an odd-distance
set by a fixed odd integer, the resulting set is still an odd-distance set.

Proposition 3. Let T ⊆ ℚ be the set of rational numbers whose denominators are powers
of 2. For any ℓ1-odd-distance set P ⊆ ℝ𝑛, there exists an ℓ1-odd-distance set Q ⊆ T 𝑛 of the
same size as P.

Proof. By Lemma 5, there exists an odd-distance set Q ⊆ ℚ𝑛 of the same size as P. Let 𝐶 be
the least common multiple of all odd integers that divide the denominator of any coordinate
of any point of Q. Clearly, 𝐶 is an odd integer, and Q′ := {𝐶q : q ∈ Q} ⊆ T 𝑛. Moreover, for
all distinct points 𝐶p,𝐶q ∈ Q′ we have ∥𝐶p − 𝐶q∥1 = 𝐶∥p − q∥1, which is an odd integer
as a product of two odd integers, and so Q′ is an odd-distance set. □
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